#ifndef __RS_CORE_RSH__ #define __RS_CORE_RSH__ #define _RS_RUNTIME extern /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, float); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, float, float); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, float, float, float); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, float, float, float, float); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, double); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, const rs_matrix4x4 *); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, const rs_matrix3x3 *); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, const rs_matrix2x2 *); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, int); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, uint); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, long); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, unsigned long); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, long long); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, unsigned long long); /** * Debug function. Prints a string and value to the log. */ extern void __attribute__((overloadable)) rsDebug(const char *, const void *); #define RS_DEBUG(a) rsDebug(#a, a) #define RS_DEBUG_MARKER rsDebug(__FILE__, __LINE__) /** * Debug function. Prints a string and value to the log. */ _RS_RUNTIME void __attribute__((overloadable)) rsDebug(const char *s, float2 v); /** * Debug function. Prints a string and value to the log. */ _RS_RUNTIME void __attribute__((overloadable)) rsDebug(const char *s, float3 v); /** * Debug function. Prints a string and value to the log. */ _RS_RUNTIME void __attribute__((overloadable)) rsDebug(const char *s, float4 v); /** * Pack floating point (0-1) RGB values into a uchar4. The alpha component is * set to 255 (1.0). * * @param r * @param g * @param b * * @return uchar4 */ _RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float r, float g, float b); /** * Pack floating point (0-1) RGBA values into a uchar4. * * @param r * @param g * @param b * @param a * * @return uchar4 */ _RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float r, float g, float b, float a); /** * Pack floating point (0-1) RGB values into a uchar4. The alpha component is * set to 255 (1.0). * * @param color * * @return uchar4 */ _RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float3 color); /** * Pack floating point (0-1) RGBA values into a uchar4. * * @param color * * @return uchar4 */ _RS_RUNTIME uchar4 __attribute__((overloadable)) rsPackColorTo8888(float4 color); /** * Unpack a uchar4 color to float4. The resulting float range will be (0-1). * * @param c * * @return float4 */ _RS_RUNTIME float4 rsUnpackColor8888(uchar4 c); ///////////////////////////////////////////////////// // Matrix ops ///////////////////////////////////////////////////// /** * Set one element of a matrix. * * @param m The matrix to be set * @param row * @param col * @param v * * @return void */ _RS_RUNTIME void __attribute__((overloadable)) rsMatrixSet(rs_matrix4x4 *m, uint32_t row, uint32_t col, float v); _RS_RUNTIME void __attribute__((overloadable)) rsMatrixSet(rs_matrix3x3 *m, uint32_t row, uint32_t col, float v); _RS_RUNTIME void __attribute__((overloadable)) rsMatrixSet(rs_matrix2x2 *m, uint32_t row, uint32_t col, float v); /** * Get one element of a matrix. * * @param m The matrix to read from * @param row * @param col * * @return float */ _RS_RUNTIME float __attribute__((overloadable)) rsMatrixGet(const rs_matrix4x4 *m, uint32_t row, uint32_t col); _RS_RUNTIME float __attribute__((overloadable)) rsMatrixGet(const rs_matrix3x3 *m, uint32_t row, uint32_t col); _RS_RUNTIME float __attribute__((overloadable)) rsMatrixGet(const rs_matrix2x2 *m, uint32_t row, uint32_t col); /** * Set the elements of a matrix to the identity matrix. * * @param m */ extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix4x4 *m); extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix3x3 *m); extern void __attribute__((overloadable)) rsMatrixLoadIdentity(rs_matrix2x2 *m); /** * Set the elements of a matrix from an array of floats. * * @param m */ extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const float *v); extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const float *v); extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const float *v); /** * Set the elements of a matrix from another matrix. * * @param m */ extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix4x4 *v); extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix3x3 *v); extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix4x4 *m, const rs_matrix2x2 *v); extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix3x3 *m, const rs_matrix3x3 *v); extern void __attribute__((overloadable)) rsMatrixLoad(rs_matrix2x2 *m, const rs_matrix2x2 *v); /** * Load a rotation matrix. * * @param m * @param rot * @param x * @param y * @param z */ extern void __attribute__((overloadable)) rsMatrixLoadRotate(rs_matrix4x4 *m, float rot, float x, float y, float z); extern void __attribute__((overloadable)) rsMatrixLoadScale(rs_matrix4x4 *m, float x, float y, float z); extern void __attribute__((overloadable)) rsMatrixLoadTranslate(rs_matrix4x4 *m, float x, float y, float z); extern void __attribute__((overloadable)) rsMatrixLoadMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs); extern void __attribute__((overloadable)) rsMatrixMultiply(rs_matrix4x4 *m, const rs_matrix4x4 *rhs); extern void __attribute__((overloadable)) rsMatrixLoadMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *lhs, const rs_matrix3x3 *rhs); extern void __attribute__((overloadable)) rsMatrixMultiply(rs_matrix3x3 *m, const rs_matrix3x3 *rhs); extern void __attribute__((overloadable)) rsMatrixLoadMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *lhs, const rs_matrix2x2 *rhs); extern void __attribute__((overloadable)) rsMatrixMultiply(rs_matrix2x2 *m, const rs_matrix2x2 *rhs); extern void __attribute__((overloadable)) rsMatrixRotate(rs_matrix4x4 *m, float rot, float x, float y, float z); extern void __attribute__((overloadable)) rsMatrixScale(rs_matrix4x4 *m, float x, float y, float z); extern void __attribute__((overloadable)) rsMatrixTranslate(rs_matrix4x4 *m, float x, float y, float z); extern void __attribute__((overloadable)) rsMatrixLoadOrtho(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far); extern void __attribute__((overloadable)) rsMatrixLoadFrustum(rs_matrix4x4 *m, float left, float right, float bottom, float top, float near, float far); extern void __attribute__((overloadable)) rsMatrixLoadPerspective(rs_matrix4x4* m, float fovy, float aspect, float near, float far); #if !defined(RS_VERSION) || (RS_VERSION < 14) _RS_RUNTIME float4 __attribute__((overloadable)) rsMatrixMultiply(rs_matrix4x4 *m, float4 in); _RS_RUNTIME float4 __attribute__((overloadable)) rsMatrixMultiply(rs_matrix4x4 *m, float3 in); _RS_RUNTIME float4 __attribute__((overloadable)) rsMatrixMultiply(rs_matrix4x4 *m, float2 in); _RS_RUNTIME float3 __attribute__((overloadable)) rsMatrixMultiply(rs_matrix3x3 *m, float3 in); _RS_RUNTIME float3 __attribute__((overloadable)) rsMatrixMultiply(rs_matrix3x3 *m, float2 in); _RS_RUNTIME float2 __attribute__((overloadable)) rsMatrixMultiply(rs_matrix2x2 *m, float2 in); #else _RS_RUNTIME float4 __attribute__((overloadable)) rsMatrixMultiply(const rs_matrix4x4 *m, float4 in); _RS_RUNTIME float4 __attribute__((overloadable)) rsMatrixMultiply(const rs_matrix4x4 *m, float3 in); _RS_RUNTIME float4 __attribute__((overloadable)) rsMatrixMultiply(const rs_matrix4x4 *m, float2 in); _RS_RUNTIME float3 __attribute__((overloadable)) rsMatrixMultiply(const rs_matrix3x3 *m, float3 in); _RS_RUNTIME float3 __attribute__((overloadable)) rsMatrixMultiply(const rs_matrix3x3 *m, float2 in); _RS_RUNTIME float2 __attribute__((overloadable)) rsMatrixMultiply(const rs_matrix2x2 *m, float2 in); #endif // Returns true if the matrix was successfully inversed extern bool __attribute__((overloadable)) rsMatrixInverse(rs_matrix4x4 *m); extern bool __attribute__((overloadable)) rsMatrixInverseTranspose(rs_matrix4x4 *m); extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix4x4 *m); extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix3x3 *m); extern void __attribute__((overloadable)) rsMatrixTranspose(rs_matrix2x2 *m); ///////////////////////////////////////////////////// // quaternion ops ///////////////////////////////////////////////////// static void __attribute__((overloadable)) rsQuaternionSet(rs_quaternion *q, float w, float x, float y, float z) { q->w = w; q->x = x; q->y = y; q->z = z; } static void __attribute__((overloadable)) rsQuaternionSet(rs_quaternion *q, const rs_quaternion *rhs) { q->w = rhs->w; q->x = rhs->x; q->y = rhs->y; q->z = rhs->z; } static void __attribute__((overloadable)) rsQuaternionMultiply(rs_quaternion *q, float s) { q->w *= s; q->x *= s; q->y *= s; q->z *= s; } static void __attribute__((overloadable)) rsQuaternionMultiply(rs_quaternion *q, const rs_quaternion *rhs) { q->w = -q->x*rhs->x - q->y*rhs->y - q->z*rhs->z + q->w*rhs->w; q->x = q->x*rhs->w + q->y*rhs->z - q->z*rhs->y + q->w*rhs->x; q->y = -q->x*rhs->z + q->y*rhs->w + q->z*rhs->x + q->w*rhs->y; q->z = q->x*rhs->y - q->y*rhs->x + q->z*rhs->w + q->w*rhs->z; } static void rsQuaternionAdd(rs_quaternion *q, const rs_quaternion *rhs) { q->w *= rhs->w; q->x *= rhs->x; q->y *= rhs->y; q->z *= rhs->z; } static void rsQuaternionLoadRotateUnit(rs_quaternion *q, float rot, float x, float y, float z) { rot *= (float)(M_PI / 180.0f) * 0.5f; float c = cos(rot); float s = sin(rot); q->w = c; q->x = x * s; q->y = y * s; q->z = z * s; } static void rsQuaternionLoadRotate(rs_quaternion *q, float rot, float x, float y, float z) { const float len = x*x + y*y + z*z; if (len != 1) { const float recipLen = 1.f / sqrt(len); x *= recipLen; y *= recipLen; z *= recipLen; } rsQuaternionLoadRotateUnit(q, rot, x, y, z); } static void rsQuaternionConjugate(rs_quaternion *q) { q->x = -q->x; q->y = -q->y; q->z = -q->z; } static float rsQuaternionDot(const rs_quaternion *q0, const rs_quaternion *q1) { return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z; } static void rsQuaternionNormalize(rs_quaternion *q) { const float len = rsQuaternionDot(q, q); if (len != 1) { const float recipLen = 1.f / sqrt(len); rsQuaternionMultiply(q, recipLen); } } static void rsQuaternionSlerp(rs_quaternion *q, const rs_quaternion *q0, const rs_quaternion *q1, float t) { if (t <= 0.0f) { rsQuaternionSet(q, q0); return; } if (t >= 1.0f) { rsQuaternionSet(q, q1); return; } rs_quaternion tempq0, tempq1; rsQuaternionSet(&tempq0, q0); rsQuaternionSet(&tempq1, q1); float angle = rsQuaternionDot(q0, q1); if (angle < 0) { rsQuaternionMultiply(&tempq0, -1.0f); angle *= -1.0f; } float scale, invScale; if (angle + 1.0f > 0.05f) { if (1.0f - angle >= 0.05f) { float theta = acos(angle); float invSinTheta = 1.0f / sin(theta); scale = sin(theta * (1.0f - t)) * invSinTheta; invScale = sin(theta * t) * invSinTheta; } else { scale = 1.0f - t; invScale = t; } } else { rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w); scale = sin(M_PI * (0.5f - t)); invScale = sin(M_PI * t); } rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale, tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale); } static void rsQuaternionGetMatrixUnit(rs_matrix4x4 *m, const rs_quaternion *q) { float x2 = 2.0f * q->x * q->x; float y2 = 2.0f * q->y * q->y; float z2 = 2.0f * q->z * q->z; float xy = 2.0f * q->x * q->y; float wz = 2.0f * q->w * q->z; float xz = 2.0f * q->x * q->z; float wy = 2.0f * q->w * q->y; float wx = 2.0f * q->w * q->x; float yz = 2.0f * q->y * q->z; m->m[0] = 1.0f - y2 - z2; m->m[1] = xy - wz; m->m[2] = xz + wy; m->m[3] = 0.0f; m->m[4] = xy + wz; m->m[5] = 1.0f - x2 - z2; m->m[6] = yz - wx; m->m[7] = 0.0f; m->m[8] = xz - wy; m->m[9] = yz - wx; m->m[10] = 1.0f - x2 - y2; m->m[11] = 0.0f; m->m[12] = 0.0f; m->m[13] = 0.0f; m->m[14] = 0.0f; m->m[15] = 1.0f; } ///////////////////////////////////////////////////// // utility funcs ///////////////////////////////////////////////////// __inline__ static void __attribute__((overloadable, always_inline)) rsExtractFrustumPlanes(const rs_matrix4x4 *modelViewProj, float4 *left, float4 *right, float4 *top, float4 *bottom, float4 *near, float4 *far) { // x y z w = a b c d in the plane equation left->x = modelViewProj->m[3] + modelViewProj->m[0]; left->y = modelViewProj->m[7] + modelViewProj->m[4]; left->z = modelViewProj->m[11] + modelViewProj->m[8]; left->w = modelViewProj->m[15] + modelViewProj->m[12]; right->x = modelViewProj->m[3] - modelViewProj->m[0]; right->y = modelViewProj->m[7] - modelViewProj->m[4]; right->z = modelViewProj->m[11] - modelViewProj->m[8]; right->w = modelViewProj->m[15] - modelViewProj->m[12]; top->x = modelViewProj->m[3] - modelViewProj->m[1]; top->y = modelViewProj->m[7] - modelViewProj->m[5]; top->z = modelViewProj->m[11] - modelViewProj->m[9]; top->w = modelViewProj->m[15] - modelViewProj->m[13]; bottom->x = modelViewProj->m[3] + modelViewProj->m[1]; bottom->y = modelViewProj->m[7] + modelViewProj->m[5]; bottom->z = modelViewProj->m[11] + modelViewProj->m[9]; bottom->w = modelViewProj->m[15] + modelViewProj->m[13]; near->x = modelViewProj->m[3] + modelViewProj->m[2]; near->y = modelViewProj->m[7] + modelViewProj->m[6]; near->z = modelViewProj->m[11] + modelViewProj->m[10]; near->w = modelViewProj->m[15] + modelViewProj->m[14]; far->x = modelViewProj->m[3] - modelViewProj->m[2]; far->y = modelViewProj->m[7] - modelViewProj->m[6]; far->z = modelViewProj->m[11] - modelViewProj->m[10]; far->w = modelViewProj->m[15] - modelViewProj->m[14]; float len = length(left->xyz); *left /= len; len = length(right->xyz); *right /= len; len = length(top->xyz); *top /= len; len = length(bottom->xyz); *bottom /= len; len = length(near->xyz); *near /= len; len = length(far->xyz); *far /= len; } __inline__ static bool __attribute__((overloadable, always_inline)) rsIsSphereInFrustum(float4 *sphere, float4 *left, float4 *right, float4 *top, float4 *bottom, float4 *near, float4 *far) { float distToCenter = dot(left->xyz, sphere->xyz) + left->w; if (distToCenter < -sphere->w) { return false; } distToCenter = dot(right->xyz, sphere->xyz) + right->w; if (distToCenter < -sphere->w) { return false; } distToCenter = dot(top->xyz, sphere->xyz) + top->w; if (distToCenter < -sphere->w) { return false; } distToCenter = dot(bottom->xyz, sphere->xyz) + bottom->w; if (distToCenter < -sphere->w) { return false; } distToCenter = dot(near->xyz, sphere->xyz) + near->w; if (distToCenter < -sphere->w) { return false; } distToCenter = dot(far->xyz, sphere->xyz) + far->w; if (distToCenter < -sphere->w) { return false; } return true; } ///////////////////////////////////////////////////// // int ops ///////////////////////////////////////////////////// _RS_RUNTIME uint __attribute__((overloadable, always_inline)) rsClamp(uint amount, uint low, uint high); _RS_RUNTIME int __attribute__((overloadable, always_inline)) rsClamp(int amount, int low, int high); _RS_RUNTIME ushort __attribute__((overloadable, always_inline)) rsClamp(ushort amount, ushort low, ushort high); _RS_RUNTIME short __attribute__((overloadable, always_inline)) rsClamp(short amount, short low, short high); _RS_RUNTIME uchar __attribute__((overloadable, always_inline)) rsClamp(uchar amount, uchar low, uchar high); _RS_RUNTIME char __attribute__((overloadable, always_inline)) rsClamp(char amount, char low, char high); #undef _RS_RUNTIME #endif