/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** @file rs_matrix.rsh * \brief Quaternion routines * * */ #ifndef __RS_QUATERNION_RSH__ #define __RS_QUATERNION_RSH__ /** * Set the quaternion components * @param w component * @param x component * @param y component * @param z component */ static void __attribute__((overloadable)) rsQuaternionSet(rs_quaternion *q, float w, float x, float y, float z) { q->w = w; q->x = x; q->y = y; q->z = z; } /** * Set the quaternion from another quaternion * @param q destination quaternion * @param rhs source quaternion */ static void __attribute__((overloadable)) rsQuaternionSet(rs_quaternion *q, const rs_quaternion *rhs) { q->w = rhs->w; q->x = rhs->x; q->y = rhs->y; q->z = rhs->z; } /** * Multiply quaternion by a scalar * @param q quaternion to multiply * @param s scalar */ static void __attribute__((overloadable)) rsQuaternionMultiply(rs_quaternion *q, float s) { q->w *= s; q->x *= s; q->y *= s; q->z *= s; } /** * Multiply quaternion by another quaternion * @param q destination quaternion * @param rhs right hand side quaternion to multiply by */ static void __attribute__((overloadable)) rsQuaternionMultiply(rs_quaternion *q, const rs_quaternion *rhs) { q->w = -q->x*rhs->x - q->y*rhs->y - q->z*rhs->z + q->w*rhs->w; q->x = q->x*rhs->w + q->y*rhs->z - q->z*rhs->y + q->w*rhs->x; q->y = -q->x*rhs->z + q->y*rhs->w + q->z*rhs->x + q->w*rhs->y; q->z = q->x*rhs->y - q->y*rhs->x + q->z*rhs->w + q->w*rhs->z; } /** * Add two quaternions * @param q destination quaternion to add to * @param rsh right hand side quaternion to add */ static void rsQuaternionAdd(rs_quaternion *q, const rs_quaternion *rhs) { q->w *= rhs->w; q->x *= rhs->x; q->y *= rhs->y; q->z *= rhs->z; } /** * Loads a quaternion that represents a rotation about an arbitrary unit vector * @param q quaternion to set * @param rot angle to rotate by * @param x component of a vector * @param y component of a vector * @param x component of a vector */ static void rsQuaternionLoadRotateUnit(rs_quaternion *q, float rot, float x, float y, float z) { rot *= (float)(M_PI / 180.0f) * 0.5f; float c = cos(rot); float s = sin(rot); q->w = c; q->x = x * s; q->y = y * s; q->z = z * s; } /** * Loads a quaternion that represents a rotation about an arbitrary vector * (doesn't have to be unit) * @param q quaternion to set * @param rot angle to rotate by * @param x component of a vector * @param y component of a vector * @param x component of a vector */ static void rsQuaternionLoadRotate(rs_quaternion *q, float rot, float x, float y, float z) { const float len = x*x + y*y + z*z; if (len != 1) { const float recipLen = 1.f / sqrt(len); x *= recipLen; y *= recipLen; z *= recipLen; } rsQuaternionLoadRotateUnit(q, rot, x, y, z); } /** * Conjugates the quaternion * @param q quaternion to conjugate */ static void rsQuaternionConjugate(rs_quaternion *q) { q->x = -q->x; q->y = -q->y; q->z = -q->z; } /** * Dot product of two quaternions * @param q0 first quaternion * @param q1 second quaternion * @return dot product between q0 and q1 */ static float rsQuaternionDot(const rs_quaternion *q0, const rs_quaternion *q1) { return q0->w*q1->w + q0->x*q1->x + q0->y*q1->y + q0->z*q1->z; } /** * Normalizes the quaternion * @param q quaternion to normalize */ static void rsQuaternionNormalize(rs_quaternion *q) { const float len = rsQuaternionDot(q, q); if (len != 1) { const float recipLen = 1.f / sqrt(len); rsQuaternionMultiply(q, recipLen); } } /** * Performs spherical linear interpolation between two quaternions * @param q result quaternion from interpolation * @param q0 first param * @param q1 second param * @param t how much to interpolate by */ static void rsQuaternionSlerp(rs_quaternion *q, const rs_quaternion *q0, const rs_quaternion *q1, float t) { if (t <= 0.0f) { rsQuaternionSet(q, q0); return; } if (t >= 1.0f) { rsQuaternionSet(q, q1); return; } rs_quaternion tempq0, tempq1; rsQuaternionSet(&tempq0, q0); rsQuaternionSet(&tempq1, q1); float angle = rsQuaternionDot(q0, q1); if (angle < 0) { rsQuaternionMultiply(&tempq0, -1.0f); angle *= -1.0f; } float scale, invScale; if (angle + 1.0f > 0.05f) { if (1.0f - angle >= 0.05f) { float theta = acos(angle); float invSinTheta = 1.0f / sin(theta); scale = sin(theta * (1.0f - t)) * invSinTheta; invScale = sin(theta * t) * invSinTheta; } else { scale = 1.0f - t; invScale = t; } } else { rsQuaternionSet(&tempq1, tempq0.z, -tempq0.y, tempq0.x, -tempq0.w); scale = sin(M_PI * (0.5f - t)); invScale = sin(M_PI * t); } rsQuaternionSet(q, tempq0.w*scale + tempq1.w*invScale, tempq0.x*scale + tempq1.x*invScale, tempq0.y*scale + tempq1.y*invScale, tempq0.z*scale + tempq1.z*invScale); } /** * Computes rotation matrix from the normalized quaternion * @param m resulting matrix * @param p normalized quaternion */ static void rsQuaternionGetMatrixUnit(rs_matrix4x4 *m, const rs_quaternion *q) { float x2 = 2.0f * q->x * q->x; float y2 = 2.0f * q->y * q->y; float z2 = 2.0f * q->z * q->z; float xy = 2.0f * q->x * q->y; float wz = 2.0f * q->w * q->z; float xz = 2.0f * q->x * q->z; float wy = 2.0f * q->w * q->y; float wx = 2.0f * q->w * q->x; float yz = 2.0f * q->y * q->z; m->m[0] = 1.0f - y2 - z2; m->m[1] = xy - wz; m->m[2] = xz + wy; m->m[3] = 0.0f; m->m[4] = xy + wz; m->m[5] = 1.0f - x2 - z2; m->m[6] = yz - wx; m->m[7] = 0.0f; m->m[8] = xz - wy; m->m[9] = yz - wx; m->m[10] = 1.0f - x2 - y2; m->m[11] = 0.0f; m->m[12] = 0.0f; m->m[13] = 0.0f; m->m[14] = 0.0f; m->m[15] = 1.0f; } #endif