/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _UI_INPUT_DISPATCHER_H #define _UI_INPUT_DISPATCHER_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "InputWindow.h" #include "InputApplication.h" namespace android { /* * Constants used to report the outcome of input event injection. */ enum { /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */ INPUT_EVENT_INJECTION_PENDING = -1, /* Injection succeeded. */ INPUT_EVENT_INJECTION_SUCCEEDED = 0, /* Injection failed because the injector did not have permission to inject * into the application with input focus. */ INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1, /* Injection failed because there were no available input targets. */ INPUT_EVENT_INJECTION_FAILED = 2, /* Injection failed due to a timeout. */ INPUT_EVENT_INJECTION_TIMED_OUT = 3 }; /* * Constants used to determine the input event injection synchronization mode. */ enum { /* Injection is asynchronous and is assumed always to be successful. */ INPUT_EVENT_INJECTION_SYNC_NONE = 0, /* Waits for previous events to be dispatched so that the input dispatcher can determine * whether input event injection willbe permitted based on the current input focus. * Does not wait for the input event to finish processing. */ INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1, /* Waits for the input event to be completely processed. */ INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2, }; /* * An input target specifies how an input event is to be dispatched to a particular window * including the window's input channel, control flags, a timeout, and an X / Y offset to * be added to input event coordinates to compensate for the absolute position of the * window area. */ struct InputTarget { enum { /* This flag indicates that the event is being delivered to a foreground application. */ FLAG_FOREGROUND = 1 << 0, /* This flag indicates that the target of a MotionEvent is partly or wholly * obscured by another visible window above it. The motion event should be * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */ FLAG_WINDOW_IS_OBSCURED = 1 << 1, /* This flag indicates that a motion event is being split across multiple windows. */ FLAG_SPLIT = 1 << 2, /* This flag indicates that the pointer coordinates dispatched to the application * will be zeroed out to avoid revealing information to an application. This is * used in conjunction with FLAG_DISPATCH_AS_OUTSIDE to prevent apps not sharing * the same UID from watching all touches. */ FLAG_ZERO_COORDS = 1 << 3, /* This flag indicates that the event should be sent as is. * Should always be set unless the event is to be transmuted. */ FLAG_DISPATCH_AS_IS = 1 << 8, /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside * of the area of this target and so should instead be delivered as an * AMOTION_EVENT_ACTION_OUTSIDE to this target. */ FLAG_DISPATCH_AS_OUTSIDE = 1 << 9, /* This flag indicates that a hover sequence is starting in the given window. * The event is transmuted into ACTION_HOVER_ENTER. */ FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10, /* This flag indicates that a hover event happened outside of a window which handled * previous hover events, signifying the end of the current hover sequence for that * window. * The event is transmuted into ACTION_HOVER_ENTER. */ FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11, /* This flag indicates that the event should be canceled. * It is used to transmute ACTION_MOVE into ACTION_CANCEL when a touch slips * outside of a window. */ FLAG_DISPATCH_AS_SLIPPERY_EXIT = 1 << 12, /* This flag indicates that the event should be dispatched as an initial down. * It is used to transmute ACTION_MOVE into ACTION_DOWN when a touch slips * into a new window. */ FLAG_DISPATCH_AS_SLIPPERY_ENTER = 1 << 13, /* Mask for all dispatch modes. */ FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS | FLAG_DISPATCH_AS_OUTSIDE | FLAG_DISPATCH_AS_HOVER_ENTER | FLAG_DISPATCH_AS_HOVER_EXIT | FLAG_DISPATCH_AS_SLIPPERY_EXIT | FLAG_DISPATCH_AS_SLIPPERY_ENTER, }; // The input channel to be targeted. sp inputChannel; // Flags for the input target. int32_t flags; // The x and y offset to add to a MotionEvent as it is delivered. // (ignored for KeyEvents) float xOffset, yOffset; // Scaling factor to apply to MotionEvent as it is delivered. // (ignored for KeyEvents) float scaleFactor; // The subset of pointer ids to include in motion events dispatched to this input target // if FLAG_SPLIT is set. BitSet32 pointerIds; }; /* * Input dispatcher configuration. * * Specifies various options that modify the behavior of the input dispatcher. */ struct InputDispatcherConfiguration { // The key repeat initial timeout. nsecs_t keyRepeatTimeout; // The key repeat inter-key delay. nsecs_t keyRepeatDelay; // The maximum suggested event delivery rate per second. // This value is used to throttle motion event movement actions on a per-device // basis. It is not intended to be a hard limit. int32_t maxEventsPerSecond; InputDispatcherConfiguration() : keyRepeatTimeout(500 * 1000000LL), keyRepeatDelay(50 * 1000000LL), maxEventsPerSecond(60) { } }; /* * Input dispatcher policy interface. * * The input reader policy is used by the input reader to interact with the Window Manager * and other system components. * * The actual implementation is partially supported by callbacks into the DVM * via JNI. This interface is also mocked in the unit tests. */ class InputDispatcherPolicyInterface : public virtual RefBase { protected: InputDispatcherPolicyInterface() { } virtual ~InputDispatcherPolicyInterface() { } public: /* Notifies the system that a configuration change has occurred. */ virtual void notifyConfigurationChanged(nsecs_t when) = 0; /* Notifies the system that an application is not responding. * Returns a new timeout to continue waiting, or 0 to abort dispatch. */ virtual nsecs_t notifyANR(const sp& inputApplicationHandle, const sp& inputWindowHandle) = 0; /* Notifies the system that an input channel is unrecoverably broken. */ virtual void notifyInputChannelBroken(const sp& inputWindowHandle) = 0; /* Gets the input dispatcher configuration. */ virtual void getDispatcherConfiguration(InputDispatcherConfiguration* outConfig) = 0; /* Returns true if automatic key repeating is enabled. */ virtual bool isKeyRepeatEnabled() = 0; /* Filters an input event. * Return true to dispatch the event unmodified, false to consume the event. * A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED * to injectInputEvent. */ virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0; /* Intercepts a key event immediately before queueing it. * The policy can use this method as an opportunity to perform power management functions * and early event preprocessing such as updating policy flags. * * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event * should be dispatched to applications. */ virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0; /* Intercepts a touch, trackball or other motion event before queueing it. * The policy can use this method as an opportunity to perform power management functions * and early event preprocessing such as updating policy flags. * * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event * should be dispatched to applications. */ virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0; /* Allows the policy a chance to intercept a key before dispatching. */ virtual bool interceptKeyBeforeDispatching(const sp& inputWindowHandle, const KeyEvent* keyEvent, uint32_t policyFlags) = 0; /* Allows the policy a chance to perform default processing for an unhandled key. * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */ virtual bool dispatchUnhandledKey(const sp& inputWindowHandle, const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0; /* Notifies the policy about switch events. */ virtual void notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0; /* Poke user activity for an event dispatched to a window. */ virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0; /* Checks whether a given application pid/uid has permission to inject input events * into other applications. * * This method is special in that its implementation promises to be non-reentrant and * is safe to call while holding other locks. (Most other methods make no such guarantees!) */ virtual bool checkInjectEventsPermissionNonReentrant( int32_t injectorPid, int32_t injectorUid) = 0; }; /* Notifies the system about input events generated by the input reader. * The dispatcher is expected to be mostly asynchronous. */ class InputDispatcherInterface : public virtual RefBase { protected: InputDispatcherInterface() { } virtual ~InputDispatcherInterface() { } public: /* Dumps the state of the input dispatcher. * * This method may be called on any thread (usually by the input manager). */ virtual void dump(String8& dump) = 0; /* Runs a single iteration of the dispatch loop. * Nominally processes one queued event, a timeout, or a response from an input consumer. * * This method should only be called on the input dispatcher thread. */ virtual void dispatchOnce() = 0; /* Notifies the dispatcher about new events. * * These methods should only be called on the input reader thread. */ virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0; virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0; virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, uint32_t pointerCount, const PointerProperties* pointerProperties, const PointerCoords* pointerCoords, float xPrecision, float yPrecision, nsecs_t downTime) = 0; virtual void notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0; /* Injects an input event and optionally waits for sync. * The synchronization mode determines whether the method blocks while waiting for * input injection to proceed. * Returns one of the INPUT_EVENT_INJECTION_XXX constants. * * This method may be called on any thread (usually by the input manager). */ virtual int32_t injectInputEvent(const InputEvent* event, int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis, uint32_t policyFlags) = 0; /* Sets the list of input windows. * * This method may be called on any thread (usually by the input manager). */ virtual void setInputWindows(const Vector >& inputWindowHandles) = 0; /* Sets the focused application. * * This method may be called on any thread (usually by the input manager). */ virtual void setFocusedApplication( const sp& inputApplicationHandle) = 0; /* Sets the input dispatching mode. * * This method may be called on any thread (usually by the input manager). */ virtual void setInputDispatchMode(bool enabled, bool frozen) = 0; /* Sets whether input event filtering is enabled. * When enabled, incoming input events are sent to the policy's filterInputEvent * method instead of being dispatched. The filter is expected to use * injectInputEvent to inject the events it would like to have dispatched. * It should include POLICY_FLAG_FILTERED in the policy flags during injection. */ virtual void setInputFilterEnabled(bool enabled) = 0; /* Transfers touch focus from the window associated with one channel to the * window associated with the other channel. * * Returns true on success. False if the window did not actually have touch focus. */ virtual bool transferTouchFocus(const sp& fromChannel, const sp& toChannel) = 0; /* Registers or unregister input channels that may be used as targets for input events. * If monitor is true, the channel will receive a copy of all input events. * * These methods may be called on any thread (usually by the input manager). */ virtual status_t registerInputChannel(const sp& inputChannel, const sp& inputWindowHandle, bool monitor) = 0; virtual status_t unregisterInputChannel(const sp& inputChannel) = 0; }; /* Dispatches events to input targets. Some functions of the input dispatcher, such as * identifying input targets, are controlled by a separate policy object. * * IMPORTANT INVARIANT: * Because the policy can potentially block or cause re-entrance into the input dispatcher, * the input dispatcher never calls into the policy while holding its internal locks. * The implementation is also carefully designed to recover from scenarios such as an * input channel becoming unregistered while identifying input targets or processing timeouts. * * Methods marked 'Locked' must be called with the lock acquired. * * Methods marked 'LockedInterruptible' must be called with the lock acquired but * may during the course of their execution release the lock, call into the policy, and * then reacquire the lock. The caller is responsible for recovering gracefully. * * A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa. */ class InputDispatcher : public InputDispatcherInterface { protected: virtual ~InputDispatcher(); public: explicit InputDispatcher(const sp& policy); virtual void dump(String8& dump); virtual void dispatchOnce(); virtual void notifyConfigurationChanged(nsecs_t eventTime); virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, nsecs_t downTime); virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, uint32_t pointerCount, const PointerProperties* pointerProperties, const PointerCoords* pointerCoords, float xPrecision, float yPrecision, nsecs_t downTime); virtual void notifySwitch(nsecs_t when, int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ; virtual int32_t injectInputEvent(const InputEvent* event, int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis, uint32_t policyFlags); virtual void setInputWindows(const Vector >& inputWindowHandles); virtual void setFocusedApplication(const sp& inputApplicationHandle); virtual void setInputDispatchMode(bool enabled, bool frozen); virtual void setInputFilterEnabled(bool enabled); virtual bool transferTouchFocus(const sp& fromChannel, const sp& toChannel); virtual status_t registerInputChannel(const sp& inputChannel, const sp& inputWindowHandle, bool monitor); virtual status_t unregisterInputChannel(const sp& inputChannel); private: template struct Link { T* next; T* prev; }; struct InjectionState { mutable int32_t refCount; int32_t injectorPid; int32_t injectorUid; int32_t injectionResult; // initially INPUT_EVENT_INJECTION_PENDING bool injectionIsAsync; // set to true if injection is not waiting for the result int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress }; struct EventEntry : Link { enum { TYPE_SENTINEL, TYPE_CONFIGURATION_CHANGED, TYPE_KEY, TYPE_MOTION }; mutable int32_t refCount; int32_t type; nsecs_t eventTime; uint32_t policyFlags; InjectionState* injectionState; bool dispatchInProgress; // initially false, set to true while dispatching inline bool isInjected() const { return injectionState != NULL; } }; struct ConfigurationChangedEntry : EventEntry { }; struct KeyEntry : EventEntry { int32_t deviceId; uint32_t source; int32_t action; int32_t flags; int32_t keyCode; int32_t scanCode; int32_t metaState; int32_t repeatCount; nsecs_t downTime; bool syntheticRepeat; // set to true for synthetic key repeats enum InterceptKeyResult { INTERCEPT_KEY_RESULT_UNKNOWN, INTERCEPT_KEY_RESULT_SKIP, INTERCEPT_KEY_RESULT_CONTINUE, }; InterceptKeyResult interceptKeyResult; // set based on the interception result }; struct MotionSample { MotionSample* next; nsecs_t eventTime; // may be updated during coalescing nsecs_t eventTimeBeforeCoalescing; // not updated during coalescing PointerCoords pointerCoords[MAX_POINTERS]; }; struct MotionEntry : EventEntry { int32_t deviceId; uint32_t source; int32_t action; int32_t flags; int32_t metaState; int32_t buttonState; int32_t edgeFlags; float xPrecision; float yPrecision; nsecs_t downTime; uint32_t pointerCount; PointerProperties pointerProperties[MAX_POINTERS]; // Linked list of motion samples associated with this motion event. MotionSample firstSample; MotionSample* lastSample; uint32_t countSamples() const; // Checks whether we can append samples, assuming the device id and source are the same. bool canAppendSamples(int32_t action, uint32_t pointerCount, const PointerProperties* pointerProperties) const; }; // Tracks the progress of dispatching a particular event to a particular connection. struct DispatchEntry : Link { EventEntry* eventEntry; // the event to dispatch int32_t targetFlags; float xOffset; float yOffset; float scaleFactor; // True if dispatch has started. bool inProgress; // Set to the resolved action and flags when the event is enqueued. int32_t resolvedAction; int32_t resolvedFlags; // For motion events: // Pointer to the first motion sample to dispatch in this cycle. // Usually NULL to indicate that the list of motion samples begins at // MotionEntry::firstSample. Otherwise, some samples were dispatched in a previous // cycle and this pointer indicates the location of the first remainining sample // to dispatch during the current cycle. MotionSample* headMotionSample; // Pointer to a motion sample to dispatch in the next cycle if the dispatcher was // unable to send all motion samples during this cycle. On the next cycle, // headMotionSample will be initialized to tailMotionSample and tailMotionSample // will be set to NULL. MotionSample* tailMotionSample; inline bool hasForegroundTarget() const { return targetFlags & InputTarget::FLAG_FOREGROUND; } inline bool isSplit() const { return targetFlags & InputTarget::FLAG_SPLIT; } }; // A command entry captures state and behavior for an action to be performed in the // dispatch loop after the initial processing has taken place. It is essentially // a kind of continuation used to postpone sensitive policy interactions to a point // in the dispatch loop where it is safe to release the lock (generally after finishing // the critical parts of the dispatch cycle). // // The special thing about commands is that they can voluntarily release and reacquire // the dispatcher lock at will. Initially when the command starts running, the // dispatcher lock is held. However, if the command needs to call into the policy to // do some work, it can release the lock, do the work, then reacquire the lock again // before returning. // // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch // never calls into the policy while holding its lock. // // Commands are implicitly 'LockedInterruptible'. struct CommandEntry; typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry); class Connection; struct CommandEntry : Link { CommandEntry(); ~CommandEntry(); Command command; // parameters for the command (usage varies by command) sp connection; nsecs_t eventTime; KeyEntry* keyEntry; sp inputApplicationHandle; sp inputWindowHandle; int32_t userActivityEventType; bool handled; }; // Generic queue implementation. template struct Queue { T headSentinel; T tailSentinel; inline Queue() { headSentinel.prev = NULL; headSentinel.next = & tailSentinel; tailSentinel.prev = & headSentinel; tailSentinel.next = NULL; } inline bool isEmpty() const { return headSentinel.next == & tailSentinel; } inline void enqueueAtTail(T* entry) { T* last = tailSentinel.prev; last->next = entry; entry->prev = last; entry->next = & tailSentinel; tailSentinel.prev = entry; } inline void enqueueAtHead(T* entry) { T* first = headSentinel.next; headSentinel.next = entry; entry->prev = & headSentinel; entry->next = first; first->prev = entry; } inline void dequeue(T* entry) { entry->prev->next = entry->next; entry->next->prev = entry->prev; } inline T* dequeueAtHead() { T* first = headSentinel.next; dequeue(first); return first; } uint32_t count() const; }; /* Allocates queue entries and performs reference counting as needed. */ class Allocator { public: Allocator(); InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid); ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime); KeyEntry* obtainKeyEntry(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState, int32_t repeatCount, nsecs_t downTime); MotionEntry* obtainMotionEntry(nsecs_t eventTime, int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, float xPrecision, float yPrecision, nsecs_t downTime, uint32_t pointerCount, const PointerProperties* pointerProperties, const PointerCoords* pointerCoords); DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry, int32_t targetFlags, float xOffset, float yOffset, float scaleFactor); CommandEntry* obtainCommandEntry(Command command); void releaseInjectionState(InjectionState* injectionState); void releaseEventEntry(EventEntry* entry); void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry); void releaseKeyEntry(KeyEntry* entry); void releaseMotionEntry(MotionEntry* entry); void freeMotionSample(MotionSample* sample); void releaseDispatchEntry(DispatchEntry* entry); void releaseCommandEntry(CommandEntry* entry); void recycleKeyEntry(KeyEntry* entry); void appendMotionSample(MotionEntry* motionEntry, nsecs_t eventTime, const PointerCoords* pointerCoords); private: Pool mInjectionStatePool; Pool mConfigurationChangeEntryPool; Pool mKeyEntryPool; Pool mMotionEntryPool; Pool mMotionSamplePool; Pool mDispatchEntryPool; Pool mCommandEntryPool; void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime, uint32_t policyFlags); void releaseEventEntryInjectionState(EventEntry* entry); }; /* Specifies which events are to be canceled and why. */ struct CancelationOptions { enum Mode { CANCEL_ALL_EVENTS = 0, CANCEL_POINTER_EVENTS = 1, CANCEL_NON_POINTER_EVENTS = 2, CANCEL_FALLBACK_EVENTS = 3, }; // The criterion to use to determine which events should be canceled. Mode mode; // Descriptive reason for the cancelation. const char* reason; // The specific keycode of the key event to cancel, or -1 to cancel any key event. int32_t keyCode; CancelationOptions(Mode mode, const char* reason) : mode(mode), reason(reason), keyCode(-1) { } }; /* Tracks dispatched key and motion event state so that cancelation events can be * synthesized when events are dropped. */ class InputState { public: InputState(); ~InputState(); // Returns true if there is no state to be canceled. bool isNeutral() const; // Returns true if the specified source is known to have received a hover enter // motion event. bool isHovering(int32_t deviceId, uint32_t source) const; // Records tracking information for a key event that has just been published. // Returns true if the event should be delivered, false if it is inconsistent // and should be skipped. bool trackKey(const KeyEntry* entry, int32_t action, int32_t flags); // Records tracking information for a motion event that has just been published. // Returns true if the event should be delivered, false if it is inconsistent // and should be skipped. bool trackMotion(const MotionEntry* entry, int32_t action, int32_t flags); // Synthesizes cancelation events for the current state and resets the tracked state. void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator, Vector& outEvents, const CancelationOptions& options); // Clears the current state. void clear(); // Copies pointer-related parts of the input state to another instance. void copyPointerStateTo(InputState& other) const; // Gets the fallback key associated with a keycode. // Returns -1 if none. // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy. int32_t getFallbackKey(int32_t originalKeyCode); // Sets the fallback key for a particular keycode. void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode); // Removes the fallback key for a particular keycode. void removeFallbackKey(int32_t originalKeyCode); inline const KeyedVector& getFallbackKeys() const { return mFallbackKeys; } private: struct KeyMemento { int32_t deviceId; uint32_t source; int32_t keyCode; int32_t scanCode; int32_t flags; nsecs_t downTime; }; struct MotionMemento { int32_t deviceId; uint32_t source; int32_t flags; float xPrecision; float yPrecision; nsecs_t downTime; uint32_t pointerCount; PointerProperties pointerProperties[MAX_POINTERS]; PointerCoords pointerCoords[MAX_POINTERS]; bool hovering; void setPointers(const MotionEntry* entry); }; Vector mKeyMementos; Vector mMotionMementos; KeyedVector mFallbackKeys; ssize_t findKeyMemento(const KeyEntry* entry) const; ssize_t findMotionMemento(const MotionEntry* entry, bool hovering) const; void addKeyMemento(const KeyEntry* entry, int32_t flags); void addMotionMemento(const MotionEntry* entry, int32_t flags, bool hovering); static bool shouldCancelKey(const KeyMemento& memento, const CancelationOptions& options); static bool shouldCancelMotion(const MotionMemento& memento, const CancelationOptions& options); }; /* Manages the dispatch state associated with a single input channel. */ class Connection : public RefBase { protected: virtual ~Connection(); public: enum Status { // Everything is peachy. STATUS_NORMAL, // An unrecoverable communication error has occurred. STATUS_BROKEN, // The input channel has been unregistered. STATUS_ZOMBIE }; Status status; sp inputChannel; // never null sp inputWindowHandle; // may be null InputPublisher inputPublisher; InputState inputState; Queue outboundQueue; nsecs_t lastEventTime; // the time when the event was originally captured nsecs_t lastDispatchTime; // the time when the last event was dispatched explicit Connection(const sp& inputChannel, const sp& inputWindowHandle); inline const char* getInputChannelName() const { return inputChannel->getName().string(); } const char* getStatusLabel() const; // Finds a DispatchEntry in the outbound queue associated with the specified event. // Returns NULL if not found. DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const; // Gets the time since the current event was originally obtained from the input driver. inline double getEventLatencyMillis(nsecs_t currentTime) const { return (currentTime - lastEventTime) / 1000000.0; } // Gets the time since the current event entered the outbound dispatch queue. inline double getDispatchLatencyMillis(nsecs_t currentTime) const { return (currentTime - lastDispatchTime) / 1000000.0; } status_t initialize(); }; enum DropReason { DROP_REASON_NOT_DROPPED = 0, DROP_REASON_POLICY = 1, DROP_REASON_APP_SWITCH = 2, DROP_REASON_DISABLED = 3, DROP_REASON_BLOCKED = 4, DROP_REASON_STALE = 5, }; sp mPolicy; InputDispatcherConfiguration mConfig; Mutex mLock; Allocator mAllocator; sp mLooper; EventEntry* mPendingEvent; Queue mInboundQueue; Queue mCommandQueue; Vector mTempCancelationEvents; void dispatchOnceInnerLocked(nsecs_t* nextWakeupTime); // Batches a new sample onto a motion entry. // Assumes that the we have already checked that we can append samples. void batchMotionLocked(MotionEntry* entry, nsecs_t eventTime, int32_t metaState, const PointerCoords* pointerCoords, const char* eventDescription); // Enqueues an inbound event. Returns true if mLooper->wake() should be called. bool enqueueInboundEventLocked(EventEntry* entry); // Cleans up input state when dropping an inbound event. void dropInboundEventLocked(EventEntry* entry, DropReason dropReason); // App switch latency optimization. bool mAppSwitchSawKeyDown; nsecs_t mAppSwitchDueTime; static bool isAppSwitchKeyCode(int32_t keyCode); bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry); bool isAppSwitchPendingLocked(); void resetPendingAppSwitchLocked(bool handled); // Stale event latency optimization. static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry); // Blocked event latency optimization. Drops old events when the user intends // to transfer focus to a new application. EventEntry* mNextUnblockedEvent; sp findTouchedWindowAtLocked(int32_t x, int32_t y); // All registered connections mapped by receive pipe file descriptor. KeyedVector > mConnectionsByReceiveFd; ssize_t getConnectionIndexLocked(const sp& inputChannel); // Active connections are connections that have a non-empty outbound queue. // We don't use a ref-counted pointer here because we explicitly abort connections // during unregistration which causes the connection's outbound queue to be cleared // and the connection itself to be deactivated. Vector mActiveConnections; // Input channels that will receive a copy of all input events. Vector > mMonitoringChannels; // Event injection and synchronization. Condition mInjectionResultAvailableCondition; bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid); void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult); Condition mInjectionSyncFinishedCondition; void incrementPendingForegroundDispatchesLocked(EventEntry* entry); void decrementPendingForegroundDispatchesLocked(EventEntry* entry); // Throttling state. struct ThrottleState { nsecs_t minTimeBetweenEvents; nsecs_t lastEventTime; int32_t lastDeviceId; uint32_t lastSource; uint32_t originalSampleCount; // only collected during debugging } mThrottleState; // Key repeat tracking. struct KeyRepeatState { KeyEntry* lastKeyEntry; // or null if no repeat nsecs_t nextRepeatTime; } mKeyRepeatState; void resetKeyRepeatLocked(); KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime); // Deferred command processing. bool runCommandsLockedInterruptible(); CommandEntry* postCommandLocked(Command command); // Inbound event processing. void drainInboundQueueLocked(); void releasePendingEventLocked(); void releaseInboundEventLocked(EventEntry* entry); // Dispatch state. bool mDispatchEnabled; bool mDispatchFrozen; bool mInputFilterEnabled; Vector > mWindowHandles; sp getWindowHandleLocked(const sp& inputChannel) const; bool hasWindowHandleLocked(const sp& windowHandle) const; // Focus tracking for keys, trackball, etc. sp mFocusedWindowHandle; // Focus tracking for touch. struct TouchedWindow { sp windowHandle; int32_t targetFlags; BitSet32 pointerIds; // zero unless target flag FLAG_SPLIT is set }; struct TouchState { bool down; bool split; int32_t deviceId; // id of the device that is currently down, others are rejected uint32_t source; // source of the device that is current down, others are rejected Vector windows; TouchState(); ~TouchState(); void reset(); void copyFrom(const TouchState& other); void addOrUpdateWindow(const sp& windowHandle, int32_t targetFlags, BitSet32 pointerIds); void filterNonAsIsTouchWindows(); sp getFirstForegroundWindowHandle() const; bool isSlippery() const; }; TouchState mTouchState; TouchState mTempTouchState; // Focused application. sp mFocusedApplicationHandle; // Dispatch inbound events. bool dispatchConfigurationChangedLocked( nsecs_t currentTime, ConfigurationChangedEntry* entry); bool dispatchKeyLocked( nsecs_t currentTime, KeyEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime); bool dispatchMotionLocked( nsecs_t currentTime, MotionEntry* entry, DropReason* dropReason, nsecs_t* nextWakeupTime); void dispatchEventToCurrentInputTargetsLocked( nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample); void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry); void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry); // The input targets that were most recently identified for dispatch. bool mCurrentInputTargetsValid; // false while targets are being recomputed Vector mCurrentInputTargets; enum InputTargetWaitCause { INPUT_TARGET_WAIT_CAUSE_NONE, INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY, INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY, }; InputTargetWaitCause mInputTargetWaitCause; nsecs_t mInputTargetWaitStartTime; nsecs_t mInputTargetWaitTimeoutTime; bool mInputTargetWaitTimeoutExpired; sp mInputTargetWaitApplicationHandle; // Contains the last window which received a hover event. sp mLastHoverWindowHandle; // Finding targets for input events. void resetTargetsLocked(); void commitTargetsLocked(); int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry, const sp& applicationHandle, const sp& windowHandle, nsecs_t* nextWakeupTime); void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout, const sp& inputChannel); nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime); void resetANRTimeoutsLocked(); int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry, nsecs_t* nextWakeupTime); int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry, nsecs_t* nextWakeupTime, bool* outConflictingPointerActions, const MotionSample** outSplitBatchAfterSample); void addWindowTargetLocked(const sp& windowHandle, int32_t targetFlags, BitSet32 pointerIds); void addMonitoringTargetsLocked(); void pokeUserActivityLocked(const EventEntry* eventEntry); bool checkInjectionPermission(const sp& windowHandle, const InjectionState* injectionState); bool isWindowObscuredAtPointLocked(const sp& windowHandle, int32_t x, int32_t y) const; bool isWindowFinishedWithPreviousInputLocked(const sp& windowHandle); String8 getApplicationWindowLabelLocked(const sp& applicationHandle, const sp& windowHandle); // Manage the dispatch cycle for a single connection. // These methods are deliberately not Interruptible because doing all of the work // with the mutex held makes it easier to ensure that connection invariants are maintained. // If needed, the methods post commands to run later once the critical bits are done. void prepareDispatchCycleLocked(nsecs_t currentTime, const sp& connection, EventEntry* eventEntry, const InputTarget* inputTarget, bool resumeWithAppendedMotionSample); void enqueueDispatchEntryLocked(const sp& connection, EventEntry* eventEntry, const InputTarget* inputTarget, bool resumeWithAppendedMotionSample, int32_t dispatchMode); void startDispatchCycleLocked(nsecs_t currentTime, const sp& connection); void finishDispatchCycleLocked(nsecs_t currentTime, const sp& connection, bool handled); void startNextDispatchCycleLocked(nsecs_t currentTime, const sp& connection); void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp& connection); void drainOutboundQueueLocked(Connection* connection); static int handleReceiveCallback(int receiveFd, int events, void* data); void synthesizeCancelationEventsForAllConnectionsLocked( const CancelationOptions& options); void synthesizeCancelationEventsForInputChannelLocked(const sp& channel, const CancelationOptions& options); void synthesizeCancelationEventsForConnectionLocked(const sp& connection, const CancelationOptions& options); // Splitting motion events across windows. MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds); // Reset and drop everything the dispatcher is doing. void resetAndDropEverythingLocked(const char* reason); // Dump state. void dumpDispatchStateLocked(String8& dump); void logDispatchStateLocked(); // Add or remove a connection to the mActiveConnections vector. void activateConnectionLocked(Connection* connection); void deactivateConnectionLocked(Connection* connection); // Interesting events that we might like to log or tell the framework about. void onDispatchCycleStartedLocked( nsecs_t currentTime, const sp& connection); void onDispatchCycleFinishedLocked( nsecs_t currentTime, const sp& connection, bool handled); void onDispatchCycleBrokenLocked( nsecs_t currentTime, const sp& connection); void onANRLocked( nsecs_t currentTime, const sp& applicationHandle, const sp& windowHandle, nsecs_t eventTime, nsecs_t waitStartTime); // Outbound policy interactions. void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry); void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry); void doNotifyANRLockedInterruptible(CommandEntry* commandEntry); void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry); void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry); bool afterKeyEventLockedInterruptible(const sp& connection, DispatchEntry* dispatchEntry, KeyEntry* keyEntry, bool handled); bool afterMotionEventLockedInterruptible(const sp& connection, DispatchEntry* dispatchEntry, MotionEntry* motionEntry, bool handled); void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry); void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry); // Statistics gathering. void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry, int32_t injectionResult, nsecs_t timeSpentWaitingForApplication); }; /* Enqueues and dispatches input events, endlessly. */ class InputDispatcherThread : public Thread { public: explicit InputDispatcherThread(const sp& dispatcher); ~InputDispatcherThread(); private: virtual bool threadLoop(); sp mDispatcher; }; } // namespace android #endif // _UI_INPUT_DISPATCHER_H