/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "InputReader" //#define LOG_NDEBUG 0 // Log debug messages for each raw event received from the EventHub. #define DEBUG_RAW_EVENTS 0 // Log debug messages about touch screen filtering hacks. #define DEBUG_HACKS 0 // Log debug messages about virtual key processing. #define DEBUG_VIRTUAL_KEYS 0 // Log debug messages about pointers. #define DEBUG_POINTERS 0 // Log debug messages about pointer assignment calculations. #define DEBUG_POINTER_ASSIGNMENT 0 // Log debug messages about gesture detection. #define DEBUG_GESTURES 0 #include "InputReader.h" #include #include #include #include #include #include #include #include #include #define INDENT " " #define INDENT2 " " #define INDENT3 " " #define INDENT4 " " namespace android { // --- Constants --- // Quiet time between certain gesture transitions. // Time to allow for all fingers or buttons to settle into a stable state before // starting a new gesture. static const nsecs_t QUIET_INTERVAL = 100 * 1000000; // 100 ms // The minimum speed that a pointer must travel for us to consider switching the active // touch pointer to it during a drag. This threshold is set to avoid switching due // to noise from a finger resting on the touch pad (perhaps just pressing it down). static const float DRAG_MIN_SWITCH_SPEED = 50.0f; // pixels per second // Tap gesture delay time. // The time between down and up must be less than this to be considered a tap. static const nsecs_t TAP_INTERVAL = 150 * 1000000; // 150 ms // Tap drag gesture delay time. // The time between up and the next up must be greater than this to be considered a // drag. Otherwise, the previous tap is finished and a new tap begins. static const nsecs_t TAP_DRAG_INTERVAL = 150 * 1000000; // 150 ms // The distance in pixels that the pointer is allowed to move from initial down // to up and still be called a tap. static const float TAP_SLOP = 10.0f; // 10 pixels // Time after the first touch points go down to settle on an initial centroid. // This is intended to be enough time to handle cases where the user puts down two // fingers at almost but not quite exactly the same time. static const nsecs_t MULTITOUCH_SETTLE_INTERVAL = 100 * 1000000; // 100ms // The transition from PRESS to SWIPE or FREEFORM gesture mode is made when // both of the pointers are moving at least this fast. static const float MULTITOUCH_MIN_SPEED = 150.0f; // pixels per second // The transition from PRESS to SWIPE gesture mode can only occur when the // cosine of the angle between the two vectors is greater than or equal to than this value // which indicates that the vectors are oriented in the same direction. // When the vectors are oriented in the exactly same direction, the cosine is 1.0. // (In exactly opposite directions, the cosine is -1.0.) static const float SWIPE_TRANSITION_ANGLE_COSINE = 0.5f; // cosine of 45 degrees // The transition from PRESS to SWIPE gesture mode can only occur when the // fingers are no more than this far apart relative to the diagonal size of // the touch pad. For example, a ratio of 0.5 means that the fingers must be // no more than half the diagonal size of the touch pad apart. static const float SWIPE_MAX_WIDTH_RATIO = 0.333f; // 1/3 // The gesture movement speed factor relative to the size of the display. // Movement speed applies when the fingers are moving in the same direction. // Without acceleration, a full swipe of the touch pad diagonal in movement mode // will cover this portion of the display diagonal. static const float GESTURE_MOVEMENT_SPEED_RATIO = 0.8f; // The gesture zoom speed factor relative to the size of the display. // Zoom speed applies when the fingers are mostly moving relative to each other // to execute a scale gesture or similar. // Without acceleration, a full swipe of the touch pad diagonal in zoom mode // will cover this portion of the display diagonal. static const float GESTURE_ZOOM_SPEED_RATIO = 0.3f; // --- Static Functions --- template inline static T abs(const T& value) { return value < 0 ? - value : value; } template inline static T min(const T& a, const T& b) { return a < b ? a : b; } template inline static void swap(T& a, T& b) { T temp = a; a = b; b = temp; } inline static float avg(float x, float y) { return (x + y) / 2; } inline static float distance(float x1, float y1, float x2, float y2) { return hypotf(x1 - x2, y1 - y2); } inline static int32_t signExtendNybble(int32_t value) { return value >= 8 ? value - 16 : value; } static inline const char* toString(bool value) { return value ? "true" : "false"; } static int32_t rotateValueUsingRotationMap(int32_t value, int32_t orientation, const int32_t map[][4], size_t mapSize) { if (orientation != DISPLAY_ORIENTATION_0) { for (size_t i = 0; i < mapSize; i++) { if (value == map[i][0]) { return map[i][orientation]; } } } return value; } static const int32_t keyCodeRotationMap[][4] = { // key codes enumerated counter-clockwise with the original (unrotated) key first // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation { AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT }, { AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN }, { AKEYCODE_DPAD_UP, AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT }, { AKEYCODE_DPAD_LEFT, AKEYCODE_DPAD_DOWN, AKEYCODE_DPAD_RIGHT, AKEYCODE_DPAD_UP }, }; static const size_t keyCodeRotationMapSize = sizeof(keyCodeRotationMap) / sizeof(keyCodeRotationMap[0]); int32_t rotateKeyCode(int32_t keyCode, int32_t orientation) { return rotateValueUsingRotationMap(keyCode, orientation, keyCodeRotationMap, keyCodeRotationMapSize); } static const int32_t edgeFlagRotationMap[][4] = { // edge flags enumerated counter-clockwise with the original (unrotated) edge flag first // no rotation, 90 degree rotation, 180 degree rotation, 270 degree rotation { AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT }, { AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM }, { AMOTION_EVENT_EDGE_FLAG_TOP, AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT }, { AMOTION_EVENT_EDGE_FLAG_LEFT, AMOTION_EVENT_EDGE_FLAG_BOTTOM, AMOTION_EVENT_EDGE_FLAG_RIGHT, AMOTION_EVENT_EDGE_FLAG_TOP }, }; static const size_t edgeFlagRotationMapSize = sizeof(edgeFlagRotationMap) / sizeof(edgeFlagRotationMap[0]); static int32_t rotateEdgeFlag(int32_t edgeFlag, int32_t orientation) { return rotateValueUsingRotationMap(edgeFlag, orientation, edgeFlagRotationMap, edgeFlagRotationMapSize); } static inline bool sourcesMatchMask(uint32_t sources, uint32_t sourceMask) { return (sources & sourceMask & ~ AINPUT_SOURCE_CLASS_MASK) != 0; } static uint32_t getButtonStateForScanCode(int32_t scanCode) { // Currently all buttons are mapped to the primary button. switch (scanCode) { case BTN_LEFT: case BTN_RIGHT: case BTN_MIDDLE: case BTN_SIDE: case BTN_EXTRA: case BTN_FORWARD: case BTN_BACK: case BTN_TASK: return BUTTON_STATE_PRIMARY; default: return 0; } } // Returns true if the pointer should be reported as being down given the specified // button states. static bool isPointerDown(uint32_t buttonState) { return buttonState & BUTTON_STATE_PRIMARY; } static int32_t calculateEdgeFlagsUsingPointerBounds( const sp& pointerController, float x, float y) { int32_t edgeFlags = 0; float minX, minY, maxX, maxY; if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) { if (x <= minX) { edgeFlags |= AMOTION_EVENT_EDGE_FLAG_LEFT; } else if (x >= maxX) { edgeFlags |= AMOTION_EVENT_EDGE_FLAG_RIGHT; } if (y <= minY) { edgeFlags |= AMOTION_EVENT_EDGE_FLAG_TOP; } else if (y >= maxY) { edgeFlags |= AMOTION_EVENT_EDGE_FLAG_BOTTOM; } } return edgeFlags; } static void clampPositionUsingPointerBounds( const sp& pointerController, float* x, float* y) { float minX, minY, maxX, maxY; if (pointerController->getBounds(&minX, &minY, &maxX, &maxY)) { if (*x < minX) { *x = minX; } else if (*x > maxX) { *x = maxX; } if (*y < minY) { *y = minY; } else if (*y > maxY) { *y = maxY; } } } static float calculateCommonVector(float a, float b) { if (a > 0 && b > 0) { return a < b ? a : b; } else if (a < 0 && b < 0) { return a > b ? a : b; } else { return 0; } } // --- InputReader --- InputReader::InputReader(const sp& eventHub, const sp& policy, const sp& dispatcher) : mEventHub(eventHub), mPolicy(policy), mDispatcher(dispatcher), mGlobalMetaState(0), mDisableVirtualKeysTimeout(LLONG_MIN), mNextTimeout(LLONG_MAX) { configureExcludedDevices(); updateGlobalMetaState(); updateInputConfiguration(); } InputReader::~InputReader() { for (size_t i = 0; i < mDevices.size(); i++) { delete mDevices.valueAt(i); } } void InputReader::loopOnce() { int32_t timeoutMillis = -1; if (mNextTimeout != LLONG_MAX) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); timeoutMillis = toMillisecondTimeoutDelay(now, mNextTimeout); } size_t count = mEventHub->getEvents(timeoutMillis, mEventBuffer, EVENT_BUFFER_SIZE); if (count) { processEvents(mEventBuffer, count); } if (!count || timeoutMillis == 0) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); #if DEBUG_RAW_EVENTS LOGD("Timeout expired, latency=%0.3fms", (now - mNextTimeout) * 0.000001f); #endif mNextTimeout = LLONG_MAX; timeoutExpired(now); } } void InputReader::processEvents(const RawEvent* rawEvents, size_t count) { for (const RawEvent* rawEvent = rawEvents; count;) { int32_t type = rawEvent->type; size_t batchSize = 1; if (type < EventHubInterface::FIRST_SYNTHETIC_EVENT) { int32_t deviceId = rawEvent->deviceId; while (batchSize < count) { if (rawEvent[batchSize].type >= EventHubInterface::FIRST_SYNTHETIC_EVENT || rawEvent[batchSize].deviceId != deviceId) { break; } batchSize += 1; } #if DEBUG_RAW_EVENTS LOGD("BatchSize: %d Count: %d", batchSize, count); #endif processEventsForDevice(deviceId, rawEvent, batchSize); } else { switch (rawEvent->type) { case EventHubInterface::DEVICE_ADDED: addDevice(rawEvent->deviceId); break; case EventHubInterface::DEVICE_REMOVED: removeDevice(rawEvent->deviceId); break; case EventHubInterface::FINISHED_DEVICE_SCAN: handleConfigurationChanged(rawEvent->when); break; default: assert(false); // can't happen break; } } count -= batchSize; rawEvent += batchSize; } } void InputReader::addDevice(int32_t deviceId) { String8 name = mEventHub->getDeviceName(deviceId); uint32_t classes = mEventHub->getDeviceClasses(deviceId); InputDevice* device = createDevice(deviceId, name, classes); device->configure(); if (device->isIgnored()) { LOGI("Device added: id=%d, name='%s' (ignored non-input device)", deviceId, name.string()); } else { LOGI("Device added: id=%d, name='%s', sources=0x%08x", deviceId, name.string(), device->getSources()); } bool added = false; { // acquire device registry writer lock RWLock::AutoWLock _wl(mDeviceRegistryLock); ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex < 0) { mDevices.add(deviceId, device); added = true; } } // release device registry writer lock if (! added) { LOGW("Ignoring spurious device added event for deviceId %d.", deviceId); delete device; return; } } void InputReader::removeDevice(int32_t deviceId) { bool removed = false; InputDevice* device = NULL; { // acquire device registry writer lock RWLock::AutoWLock _wl(mDeviceRegistryLock); ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { device = mDevices.valueAt(deviceIndex); mDevices.removeItemsAt(deviceIndex, 1); removed = true; } } // release device registry writer lock if (! removed) { LOGW("Ignoring spurious device removed event for deviceId %d.", deviceId); return; } if (device->isIgnored()) { LOGI("Device removed: id=%d, name='%s' (ignored non-input device)", device->getId(), device->getName().string()); } else { LOGI("Device removed: id=%d, name='%s', sources=0x%08x", device->getId(), device->getName().string(), device->getSources()); } device->reset(); delete device; } InputDevice* InputReader::createDevice(int32_t deviceId, const String8& name, uint32_t classes) { InputDevice* device = new InputDevice(this, deviceId, name); // External devices. if (classes & INPUT_DEVICE_CLASS_EXTERNAL) { device->setExternal(true); } // Switch-like devices. if (classes & INPUT_DEVICE_CLASS_SWITCH) { device->addMapper(new SwitchInputMapper(device)); } // Keyboard-like devices. uint32_t keyboardSource = 0; int32_t keyboardType = AINPUT_KEYBOARD_TYPE_NON_ALPHABETIC; if (classes & INPUT_DEVICE_CLASS_KEYBOARD) { keyboardSource |= AINPUT_SOURCE_KEYBOARD; } if (classes & INPUT_DEVICE_CLASS_ALPHAKEY) { keyboardType = AINPUT_KEYBOARD_TYPE_ALPHABETIC; } if (classes & INPUT_DEVICE_CLASS_DPAD) { keyboardSource |= AINPUT_SOURCE_DPAD; } if (classes & INPUT_DEVICE_CLASS_GAMEPAD) { keyboardSource |= AINPUT_SOURCE_GAMEPAD; } if (keyboardSource != 0) { device->addMapper(new KeyboardInputMapper(device, keyboardSource, keyboardType)); } // Cursor-like devices. if (classes & INPUT_DEVICE_CLASS_CURSOR) { device->addMapper(new CursorInputMapper(device)); } // Touchscreens and touchpad devices. if (classes & INPUT_DEVICE_CLASS_TOUCH_MT) { device->addMapper(new MultiTouchInputMapper(device)); } else if (classes & INPUT_DEVICE_CLASS_TOUCH) { device->addMapper(new SingleTouchInputMapper(device)); } // Joystick-like devices. if (classes & INPUT_DEVICE_CLASS_JOYSTICK) { device->addMapper(new JoystickInputMapper(device)); } return device; } void InputReader::processEventsForDevice(int32_t deviceId, const RawEvent* rawEvents, size_t count) { { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex < 0) { LOGW("Discarding event for unknown deviceId %d.", deviceId); return; } InputDevice* device = mDevices.valueAt(deviceIndex); if (device->isIgnored()) { //LOGD("Discarding event for ignored deviceId %d.", deviceId); return; } device->process(rawEvents, count); } // release device registry reader lock } void InputReader::timeoutExpired(nsecs_t when) { { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); if (!device->isIgnored()) { device->timeoutExpired(when); } } } // release device registry reader lock } void InputReader::handleConfigurationChanged(nsecs_t when) { // Reset global meta state because it depends on the list of all configured devices. updateGlobalMetaState(); // Update input configuration. updateInputConfiguration(); // Enqueue configuration changed. mDispatcher->notifyConfigurationChanged(when); } void InputReader::configureExcludedDevices() { Vector excludedDeviceNames; mPolicy->getExcludedDeviceNames(excludedDeviceNames); for (size_t i = 0; i < excludedDeviceNames.size(); i++) { mEventHub->addExcludedDevice(excludedDeviceNames[i]); } } void InputReader::updateGlobalMetaState() { { // acquire state lock AutoMutex _l(mStateLock); mGlobalMetaState = 0; { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); mGlobalMetaState |= device->getMetaState(); } } // release device registry reader lock } // release state lock } int32_t InputReader::getGlobalMetaState() { { // acquire state lock AutoMutex _l(mStateLock); return mGlobalMetaState; } // release state lock } void InputReader::updateInputConfiguration() { { // acquire state lock AutoMutex _l(mStateLock); int32_t touchScreenConfig = InputConfiguration::TOUCHSCREEN_NOTOUCH; int32_t keyboardConfig = InputConfiguration::KEYBOARD_NOKEYS; int32_t navigationConfig = InputConfiguration::NAVIGATION_NONAV; { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); InputDeviceInfo deviceInfo; for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); device->getDeviceInfo(& deviceInfo); uint32_t sources = deviceInfo.getSources(); if ((sources & AINPUT_SOURCE_TOUCHSCREEN) == AINPUT_SOURCE_TOUCHSCREEN) { touchScreenConfig = InputConfiguration::TOUCHSCREEN_FINGER; } if ((sources & AINPUT_SOURCE_TRACKBALL) == AINPUT_SOURCE_TRACKBALL) { navigationConfig = InputConfiguration::NAVIGATION_TRACKBALL; } else if ((sources & AINPUT_SOURCE_DPAD) == AINPUT_SOURCE_DPAD) { navigationConfig = InputConfiguration::NAVIGATION_DPAD; } if (deviceInfo.getKeyboardType() == AINPUT_KEYBOARD_TYPE_ALPHABETIC) { keyboardConfig = InputConfiguration::KEYBOARD_QWERTY; } } } // release device registry reader lock mInputConfiguration.touchScreen = touchScreenConfig; mInputConfiguration.keyboard = keyboardConfig; mInputConfiguration.navigation = navigationConfig; } // release state lock } void InputReader::disableVirtualKeysUntil(nsecs_t time) { mDisableVirtualKeysTimeout = time; } bool InputReader::shouldDropVirtualKey(nsecs_t now, InputDevice* device, int32_t keyCode, int32_t scanCode) { if (now < mDisableVirtualKeysTimeout) { LOGI("Dropping virtual key from device %s because virtual keys are " "temporarily disabled for the next %0.3fms. keyCode=%d, scanCode=%d", device->getName().string(), (mDisableVirtualKeysTimeout - now) * 0.000001, keyCode, scanCode); return true; } else { return false; } } void InputReader::fadePointer() { { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); for (size_t i = 0; i < mDevices.size(); i++) { InputDevice* device = mDevices.valueAt(i); device->fadePointer(); } } // release device registry reader lock } void InputReader::requestTimeoutAtTime(nsecs_t when) { if (when < mNextTimeout) { mNextTimeout = when; } } void InputReader::getInputConfiguration(InputConfiguration* outConfiguration) { { // acquire state lock AutoMutex _l(mStateLock); *outConfiguration = mInputConfiguration; } // release state lock } status_t InputReader::getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) { { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex < 0) { return NAME_NOT_FOUND; } InputDevice* device = mDevices.valueAt(deviceIndex); if (device->isIgnored()) { return NAME_NOT_FOUND; } device->getDeviceInfo(outDeviceInfo); return OK; } // release device registy reader lock } void InputReader::getInputDeviceIds(Vector& outDeviceIds) { outDeviceIds.clear(); { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); size_t numDevices = mDevices.size(); for (size_t i = 0; i < numDevices; i++) { InputDevice* device = mDevices.valueAt(i); if (! device->isIgnored()) { outDeviceIds.add(device->getId()); } } } // release device registy reader lock } int32_t InputReader::getKeyCodeState(int32_t deviceId, uint32_t sourceMask, int32_t keyCode) { return getState(deviceId, sourceMask, keyCode, & InputDevice::getKeyCodeState); } int32_t InputReader::getScanCodeState(int32_t deviceId, uint32_t sourceMask, int32_t scanCode) { return getState(deviceId, sourceMask, scanCode, & InputDevice::getScanCodeState); } int32_t InputReader::getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t switchCode) { return getState(deviceId, sourceMask, switchCode, & InputDevice::getSwitchState); } int32_t InputReader::getState(int32_t deviceId, uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); int32_t result = AKEY_STATE_UNKNOWN; if (deviceId >= 0) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { InputDevice* device = mDevices.valueAt(deviceIndex); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result = (device->*getStateFunc)(sourceMask, code); } } } else { size_t numDevices = mDevices.size(); for (size_t i = 0; i < numDevices; i++) { InputDevice* device = mDevices.valueAt(i); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result = (device->*getStateFunc)(sourceMask, code); if (result >= AKEY_STATE_DOWN) { return result; } } } } return result; } // release device registy reader lock } bool InputReader::hasKeys(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { memset(outFlags, 0, numCodes); return markSupportedKeyCodes(deviceId, sourceMask, numCodes, keyCodes, outFlags); } bool InputReader::markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); bool result = false; if (deviceId >= 0) { ssize_t deviceIndex = mDevices.indexOfKey(deviceId); if (deviceIndex >= 0) { InputDevice* device = mDevices.valueAt(deviceIndex); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result = device->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); } } } else { size_t numDevices = mDevices.size(); for (size_t i = 0; i < numDevices; i++) { InputDevice* device = mDevices.valueAt(i); if (! device->isIgnored() && sourcesMatchMask(device->getSources(), sourceMask)) { result |= device->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); } } } return result; } // release device registy reader lock } void InputReader::dump(String8& dump) { mEventHub->dump(dump); dump.append("\n"); dump.append("Input Reader State:\n"); { // acquire device registry reader lock RWLock::AutoRLock _rl(mDeviceRegistryLock); for (size_t i = 0; i < mDevices.size(); i++) { mDevices.valueAt(i)->dump(dump); } } // release device registy reader lock } // --- InputReaderThread --- InputReaderThread::InputReaderThread(const sp& reader) : Thread(/*canCallJava*/ true), mReader(reader) { } InputReaderThread::~InputReaderThread() { } bool InputReaderThread::threadLoop() { mReader->loopOnce(); return true; } // --- InputDevice --- InputDevice::InputDevice(InputReaderContext* context, int32_t id, const String8& name) : mContext(context), mId(id), mName(name), mSources(0), mIsExternal(false) { } InputDevice::~InputDevice() { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { delete mMappers[i]; } mMappers.clear(); } void InputDevice::dump(String8& dump) { InputDeviceInfo deviceInfo; getDeviceInfo(& deviceInfo); dump.appendFormat(INDENT "Device %d: %s\n", deviceInfo.getId(), deviceInfo.getName().string()); dump.appendFormat(INDENT2 "IsExternal: %s\n", toString(mIsExternal)); dump.appendFormat(INDENT2 "Sources: 0x%08x\n", deviceInfo.getSources()); dump.appendFormat(INDENT2 "KeyboardType: %d\n", deviceInfo.getKeyboardType()); const Vector& ranges = deviceInfo.getMotionRanges(); if (!ranges.isEmpty()) { dump.append(INDENT2 "Motion Ranges:\n"); for (size_t i = 0; i < ranges.size(); i++) { const InputDeviceInfo::MotionRange& range = ranges.itemAt(i); const char* label = getAxisLabel(range.axis); char name[32]; if (label) { strncpy(name, label, sizeof(name)); name[sizeof(name) - 1] = '\0'; } else { snprintf(name, sizeof(name), "%d", range.axis); } dump.appendFormat(INDENT3 "%s: source=0x%08x, " "min=%0.3f, max=%0.3f, flat=%0.3f, fuzz=%0.3f\n", name, range.source, range.min, range.max, range.flat, range.fuzz); } } size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->dump(dump); } } void InputDevice::addMapper(InputMapper* mapper) { mMappers.add(mapper); } void InputDevice::configure() { if (! isIgnored()) { mContext->getEventHub()->getConfiguration(mId, &mConfiguration); } mSources = 0; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->configure(); mSources |= mapper->getSources(); } } void InputDevice::reset() { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->reset(); } } void InputDevice::process(const RawEvent* rawEvents, size_t count) { // Process all of the events in order for each mapper. // We cannot simply ask each mapper to process them in bulk because mappers may // have side-effects that must be interleaved. For example, joystick movement events and // gamepad button presses are handled by different mappers but they should be dispatched // in the order received. size_t numMappers = mMappers.size(); for (const RawEvent* rawEvent = rawEvents; count--; rawEvent++) { #if DEBUG_RAW_EVENTS LOGD("Input event: device=%d type=0x%04x scancode=0x%04x " "keycode=0x%04x value=0x%04x flags=0x%08x", rawEvent->deviceId, rawEvent->type, rawEvent->scanCode, rawEvent->keyCode, rawEvent->value, rawEvent->flags); #endif for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->process(rawEvent); } } } void InputDevice::timeoutExpired(nsecs_t when) { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->timeoutExpired(when); } } void InputDevice::getDeviceInfo(InputDeviceInfo* outDeviceInfo) { outDeviceInfo->initialize(mId, mName); size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->populateDeviceInfo(outDeviceInfo); } } int32_t InputDevice::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { return getState(sourceMask, keyCode, & InputMapper::getKeyCodeState); } int32_t InputDevice::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { return getState(sourceMask, scanCode, & InputMapper::getScanCodeState); } int32_t InputDevice::getSwitchState(uint32_t sourceMask, int32_t switchCode) { return getState(sourceMask, switchCode, & InputMapper::getSwitchState); } int32_t InputDevice::getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc) { int32_t result = AKEY_STATE_UNKNOWN; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; if (sourcesMatchMask(mapper->getSources(), sourceMask)) { result = (mapper->*getStateFunc)(sourceMask, code); if (result >= AKEY_STATE_DOWN) { return result; } } } return result; } bool InputDevice::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { bool result = false; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; if (sourcesMatchMask(mapper->getSources(), sourceMask)) { result |= mapper->markSupportedKeyCodes(sourceMask, numCodes, keyCodes, outFlags); } } return result; } int32_t InputDevice::getMetaState() { int32_t result = 0; size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; result |= mapper->getMetaState(); } return result; } void InputDevice::fadePointer() { size_t numMappers = mMappers.size(); for (size_t i = 0; i < numMappers; i++) { InputMapper* mapper = mMappers[i]; mapper->fadePointer(); } } // --- InputMapper --- InputMapper::InputMapper(InputDevice* device) : mDevice(device), mContext(device->getContext()) { } InputMapper::~InputMapper() { } void InputMapper::populateDeviceInfo(InputDeviceInfo* info) { info->addSource(getSources()); } void InputMapper::dump(String8& dump) { } void InputMapper::configure() { } void InputMapper::reset() { } void InputMapper::timeoutExpired(nsecs_t when) { } int32_t InputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { return AKEY_STATE_UNKNOWN; } int32_t InputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { return AKEY_STATE_UNKNOWN; } int32_t InputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { return AKEY_STATE_UNKNOWN; } bool InputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { return false; } int32_t InputMapper::getMetaState() { return 0; } void InputMapper::fadePointer() { } void InputMapper::dumpRawAbsoluteAxisInfo(String8& dump, const RawAbsoluteAxisInfo& axis, const char* name) { if (axis.valid) { dump.appendFormat(INDENT4 "%s: min=%d, max=%d, flat=%d, fuzz=%d\n", name, axis.minValue, axis.maxValue, axis.flat, axis.fuzz); } else { dump.appendFormat(INDENT4 "%s: unknown range\n", name); } } // --- SwitchInputMapper --- SwitchInputMapper::SwitchInputMapper(InputDevice* device) : InputMapper(device) { } SwitchInputMapper::~SwitchInputMapper() { } uint32_t SwitchInputMapper::getSources() { return AINPUT_SOURCE_SWITCH; } void SwitchInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_SW: processSwitch(rawEvent->when, rawEvent->scanCode, rawEvent->value); break; } } void SwitchInputMapper::processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue) { getDispatcher()->notifySwitch(when, switchCode, switchValue, 0); } int32_t SwitchInputMapper::getSwitchState(uint32_t sourceMask, int32_t switchCode) { return getEventHub()->getSwitchState(getDeviceId(), switchCode); } // --- KeyboardInputMapper --- KeyboardInputMapper::KeyboardInputMapper(InputDevice* device, uint32_t source, int32_t keyboardType) : InputMapper(device), mSource(source), mKeyboardType(keyboardType) { initializeLocked(); } KeyboardInputMapper::~KeyboardInputMapper() { } void KeyboardInputMapper::initializeLocked() { mLocked.metaState = AMETA_NONE; mLocked.downTime = 0; } uint32_t KeyboardInputMapper::getSources() { return mSource; } void KeyboardInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); info->setKeyboardType(mKeyboardType); } void KeyboardInputMapper::dump(String8& dump) { { // acquire lock AutoMutex _l(mLock); dump.append(INDENT2 "Keyboard Input Mapper:\n"); dumpParameters(dump); dump.appendFormat(INDENT3 "KeyboardType: %d\n", mKeyboardType); dump.appendFormat(INDENT3 "KeyDowns: %d keys currently down\n", mLocked.keyDowns.size()); dump.appendFormat(INDENT3 "MetaState: 0x%0x\n", mLocked.metaState); dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime); } // release lock } void KeyboardInputMapper::configure() { InputMapper::configure(); // Configure basic parameters. configureParameters(); // Reset LEDs. { AutoMutex _l(mLock); resetLedStateLocked(); } } void KeyboardInputMapper::configureParameters() { mParameters.orientationAware = false; getDevice()->getConfiguration().tryGetProperty(String8("keyboard.orientationAware"), mParameters.orientationAware); mParameters.associatedDisplayId = mParameters.orientationAware ? 0 : -1; } void KeyboardInputMapper::dumpParameters(String8& dump) { dump.append(INDENT3 "Parameters:\n"); dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n", mParameters.associatedDisplayId); dump.appendFormat(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); } void KeyboardInputMapper::reset() { for (;;) { int32_t keyCode, scanCode; { // acquire lock AutoMutex _l(mLock); // Synthesize key up event on reset if keys are currently down. if (mLocked.keyDowns.isEmpty()) { initializeLocked(); resetLedStateLocked(); break; // done } const KeyDown& keyDown = mLocked.keyDowns.top(); keyCode = keyDown.keyCode; scanCode = keyDown.scanCode; } // release lock nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); processKey(when, false, keyCode, scanCode, 0); } InputMapper::reset(); getContext()->updateGlobalMetaState(); } void KeyboardInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_KEY: { int32_t scanCode = rawEvent->scanCode; if (isKeyboardOrGamepadKey(scanCode)) { processKey(rawEvent->when, rawEvent->value != 0, rawEvent->keyCode, scanCode, rawEvent->flags); } break; } } } bool KeyboardInputMapper::isKeyboardOrGamepadKey(int32_t scanCode) { return scanCode < BTN_MOUSE || scanCode >= KEY_OK || (scanCode >= BTN_MISC && scanCode < BTN_MOUSE) || (scanCode >= BTN_JOYSTICK && scanCode < BTN_DIGI); } void KeyboardInputMapper::processKey(nsecs_t when, bool down, int32_t keyCode, int32_t scanCode, uint32_t policyFlags) { int32_t newMetaState; nsecs_t downTime; bool metaStateChanged = false; { // acquire lock AutoMutex _l(mLock); if (down) { // Rotate key codes according to orientation if needed. // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0) { int32_t orientation; if (!getPolicy()->getDisplayInfo(mParameters.associatedDisplayId, NULL, NULL, & orientation)) { orientation = DISPLAY_ORIENTATION_0; } keyCode = rotateKeyCode(keyCode, orientation); } // Add key down. ssize_t keyDownIndex = findKeyDownLocked(scanCode); if (keyDownIndex >= 0) { // key repeat, be sure to use same keycode as before in case of rotation keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode; } else { // key down if ((policyFlags & POLICY_FLAG_VIRTUAL) && mContext->shouldDropVirtualKey(when, getDevice(), keyCode, scanCode)) { return; } mLocked.keyDowns.push(); KeyDown& keyDown = mLocked.keyDowns.editTop(); keyDown.keyCode = keyCode; keyDown.scanCode = scanCode; } mLocked.downTime = when; } else { // Remove key down. ssize_t keyDownIndex = findKeyDownLocked(scanCode); if (keyDownIndex >= 0) { // key up, be sure to use same keycode as before in case of rotation keyCode = mLocked.keyDowns.itemAt(keyDownIndex).keyCode; mLocked.keyDowns.removeAt(size_t(keyDownIndex)); } else { // key was not actually down LOGI("Dropping key up from device %s because the key was not down. " "keyCode=%d, scanCode=%d", getDeviceName().string(), keyCode, scanCode); return; } } int32_t oldMetaState = mLocked.metaState; newMetaState = updateMetaState(keyCode, down, oldMetaState); if (oldMetaState != newMetaState) { mLocked.metaState = newMetaState; metaStateChanged = true; updateLedStateLocked(false); } downTime = mLocked.downTime; } // release lock // Key down on external an keyboard should wake the device. // We don't do this for internal keyboards to prevent them from waking up in your pocket. // For internal keyboards, the key layout file should specify the policy flags for // each wake key individually. // TODO: Use the input device configuration to control this behavior more finely. if (down && getDevice()->isExternal() && !(policyFlags & (POLICY_FLAG_WAKE | POLICY_FLAG_WAKE_DROPPED))) { policyFlags |= POLICY_FLAG_WAKE_DROPPED; } if (metaStateChanged) { getContext()->updateGlobalMetaState(); } if (down && !isMetaKey(keyCode)) { getContext()->fadePointer(); } getDispatcher()->notifyKey(when, getDeviceId(), mSource, policyFlags, down ? AKEY_EVENT_ACTION_DOWN : AKEY_EVENT_ACTION_UP, AKEY_EVENT_FLAG_FROM_SYSTEM, keyCode, scanCode, newMetaState, downTime); } ssize_t KeyboardInputMapper::findKeyDownLocked(int32_t scanCode) { size_t n = mLocked.keyDowns.size(); for (size_t i = 0; i < n; i++) { if (mLocked.keyDowns[i].scanCode == scanCode) { return i; } } return -1; } int32_t KeyboardInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { return getEventHub()->getKeyCodeState(getDeviceId(), keyCode); } int32_t KeyboardInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { return getEventHub()->getScanCodeState(getDeviceId(), scanCode); } bool KeyboardInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { return getEventHub()->markSupportedKeyCodes(getDeviceId(), numCodes, keyCodes, outFlags); } int32_t KeyboardInputMapper::getMetaState() { { // acquire lock AutoMutex _l(mLock); return mLocked.metaState; } // release lock } void KeyboardInputMapper::resetLedStateLocked() { initializeLedStateLocked(mLocked.capsLockLedState, LED_CAPSL); initializeLedStateLocked(mLocked.numLockLedState, LED_NUML); initializeLedStateLocked(mLocked.scrollLockLedState, LED_SCROLLL); updateLedStateLocked(true); } void KeyboardInputMapper::initializeLedStateLocked(LockedState::LedState& ledState, int32_t led) { ledState.avail = getEventHub()->hasLed(getDeviceId(), led); ledState.on = false; } void KeyboardInputMapper::updateLedStateLocked(bool reset) { updateLedStateForModifierLocked(mLocked.capsLockLedState, LED_CAPSL, AMETA_CAPS_LOCK_ON, reset); updateLedStateForModifierLocked(mLocked.numLockLedState, LED_NUML, AMETA_NUM_LOCK_ON, reset); updateLedStateForModifierLocked(mLocked.scrollLockLedState, LED_SCROLLL, AMETA_SCROLL_LOCK_ON, reset); } void KeyboardInputMapper::updateLedStateForModifierLocked(LockedState::LedState& ledState, int32_t led, int32_t modifier, bool reset) { if (ledState.avail) { bool desiredState = (mLocked.metaState & modifier) != 0; if (reset || ledState.on != desiredState) { getEventHub()->setLedState(getDeviceId(), led, desiredState); ledState.on = desiredState; } } } // --- CursorInputMapper --- CursorInputMapper::CursorInputMapper(InputDevice* device) : InputMapper(device) { initializeLocked(); } CursorInputMapper::~CursorInputMapper() { } uint32_t CursorInputMapper::getSources() { return mSource; } void CursorInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); if (mParameters.mode == Parameters::MODE_POINTER) { float minX, minY, maxX, maxY; if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) { info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, minX, maxX, 0.0f, 0.0f); info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, minY, maxY, 0.0f, 0.0f); } } else { info->addMotionRange(AMOTION_EVENT_AXIS_X, mSource, -1.0f, 1.0f, 0.0f, mXScale); info->addMotionRange(AMOTION_EVENT_AXIS_Y, mSource, -1.0f, 1.0f, 0.0f, mYScale); } info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mSource, 0.0f, 1.0f, 0.0f, 0.0f); if (mHaveVWheel) { info->addMotionRange(AMOTION_EVENT_AXIS_VSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f); } if (mHaveHWheel) { info->addMotionRange(AMOTION_EVENT_AXIS_HSCROLL, mSource, -1.0f, 1.0f, 0.0f, 0.0f); } } void CursorInputMapper::dump(String8& dump) { { // acquire lock AutoMutex _l(mLock); dump.append(INDENT2 "Cursor Input Mapper:\n"); dumpParameters(dump); dump.appendFormat(INDENT3 "XScale: %0.3f\n", mXScale); dump.appendFormat(INDENT3 "YScale: %0.3f\n", mYScale); dump.appendFormat(INDENT3 "XPrecision: %0.3f\n", mXPrecision); dump.appendFormat(INDENT3 "YPrecision: %0.3f\n", mYPrecision); dump.appendFormat(INDENT3 "HaveVWheel: %s\n", toString(mHaveVWheel)); dump.appendFormat(INDENT3 "HaveHWheel: %s\n", toString(mHaveHWheel)); dump.appendFormat(INDENT3 "VWheelScale: %0.3f\n", mVWheelScale); dump.appendFormat(INDENT3 "HWheelScale: %0.3f\n", mHWheelScale); dump.appendFormat(INDENT3 "ButtonState: 0x%08x\n", mLocked.buttonState); dump.appendFormat(INDENT3 "Down: %s\n", toString(isPointerDown(mLocked.buttonState))); dump.appendFormat(INDENT3 "DownTime: %lld\n", mLocked.downTime); } // release lock } void CursorInputMapper::configure() { InputMapper::configure(); // Configure basic parameters. configureParameters(); // Configure device mode. switch (mParameters.mode) { case Parameters::MODE_POINTER: mSource = AINPUT_SOURCE_MOUSE; mXPrecision = 1.0f; mYPrecision = 1.0f; mXScale = 1.0f; mYScale = 1.0f; mPointerController = getPolicy()->obtainPointerController(getDeviceId()); break; case Parameters::MODE_NAVIGATION: mSource = AINPUT_SOURCE_TRACKBALL; mXPrecision = TRACKBALL_MOVEMENT_THRESHOLD; mYPrecision = TRACKBALL_MOVEMENT_THRESHOLD; mXScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; mYScale = 1.0f / TRACKBALL_MOVEMENT_THRESHOLD; break; } mVWheelScale = 1.0f; mHWheelScale = 1.0f; mHaveVWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_WHEEL); mHaveHWheel = getEventHub()->hasRelativeAxis(getDeviceId(), REL_HWHEEL); } void CursorInputMapper::configureParameters() { mParameters.mode = Parameters::MODE_POINTER; String8 cursorModeString; if (getDevice()->getConfiguration().tryGetProperty(String8("cursor.mode"), cursorModeString)) { if (cursorModeString == "navigation") { mParameters.mode = Parameters::MODE_NAVIGATION; } else if (cursorModeString != "pointer" && cursorModeString != "default") { LOGW("Invalid value for cursor.mode: '%s'", cursorModeString.string()); } } mParameters.orientationAware = false; getDevice()->getConfiguration().tryGetProperty(String8("cursor.orientationAware"), mParameters.orientationAware); mParameters.associatedDisplayId = mParameters.mode == Parameters::MODE_POINTER || mParameters.orientationAware ? 0 : -1; } void CursorInputMapper::dumpParameters(String8& dump) { dump.append(INDENT3 "Parameters:\n"); dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n", mParameters.associatedDisplayId); switch (mParameters.mode) { case Parameters::MODE_POINTER: dump.append(INDENT4 "Mode: pointer\n"); break; case Parameters::MODE_NAVIGATION: dump.append(INDENT4 "Mode: navigation\n"); break; default: assert(false); } dump.appendFormat(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); } void CursorInputMapper::initializeLocked() { mAccumulator.clear(); mLocked.buttonState = 0; mLocked.downTime = 0; } void CursorInputMapper::reset() { for (;;) { uint32_t buttonState; { // acquire lock AutoMutex _l(mLock); buttonState = mLocked.buttonState; if (!buttonState) { initializeLocked(); break; // done } } // release lock // Synthesize button up event on reset. nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); mAccumulator.clear(); mAccumulator.buttonDown = 0; mAccumulator.buttonUp = buttonState; mAccumulator.fields = Accumulator::FIELD_BUTTONS; sync(when); } InputMapper::reset(); } void CursorInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_KEY: { uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode); if (buttonState) { if (rawEvent->value) { mAccumulator.buttonDown = buttonState; mAccumulator.buttonUp = 0; } else { mAccumulator.buttonDown = 0; mAccumulator.buttonUp = buttonState; } mAccumulator.fields |= Accumulator::FIELD_BUTTONS; // Sync now since BTN_MOUSE is not necessarily followed by SYN_REPORT and // we need to ensure that we report the up/down promptly. sync(rawEvent->when); break; } break; } case EV_REL: switch (rawEvent->scanCode) { case REL_X: mAccumulator.fields |= Accumulator::FIELD_REL_X; mAccumulator.relX = rawEvent->value; break; case REL_Y: mAccumulator.fields |= Accumulator::FIELD_REL_Y; mAccumulator.relY = rawEvent->value; break; case REL_WHEEL: mAccumulator.fields |= Accumulator::FIELD_REL_WHEEL; mAccumulator.relWheel = rawEvent->value; break; case REL_HWHEEL: mAccumulator.fields |= Accumulator::FIELD_REL_HWHEEL; mAccumulator.relHWheel = rawEvent->value; break; } break; case EV_SYN: switch (rawEvent->scanCode) { case SYN_REPORT: sync(rawEvent->when); break; } break; } } void CursorInputMapper::sync(nsecs_t when) { uint32_t fields = mAccumulator.fields; if (fields == 0) { return; // no new state changes, so nothing to do } int32_t motionEventAction; int32_t motionEventEdgeFlags; PointerCoords pointerCoords; nsecs_t downTime; float vscroll, hscroll; { // acquire lock AutoMutex _l(mLock); bool down, downChanged; bool wasDown = isPointerDown(mLocked.buttonState); bool buttonsChanged = fields & Accumulator::FIELD_BUTTONS; if (buttonsChanged) { mLocked.buttonState = (mLocked.buttonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp; down = isPointerDown(mLocked.buttonState); if (!wasDown && down) { mLocked.downTime = when; downChanged = true; } else if (wasDown && !down) { downChanged = true; } else { downChanged = false; } } else { down = wasDown; downChanged = false; } downTime = mLocked.downTime; float deltaX = fields & Accumulator::FIELD_REL_X ? mAccumulator.relX * mXScale : 0.0f; float deltaY = fields & Accumulator::FIELD_REL_Y ? mAccumulator.relY * mYScale : 0.0f; if (downChanged) { motionEventAction = down ? AMOTION_EVENT_ACTION_DOWN : AMOTION_EVENT_ACTION_UP; } else if (down || mPointerController == NULL) { motionEventAction = AMOTION_EVENT_ACTION_MOVE; } else { motionEventAction = AMOTION_EVENT_ACTION_HOVER_MOVE; } if (mParameters.orientationAware && mParameters.associatedDisplayId >= 0 && (deltaX != 0.0f || deltaY != 0.0f)) { // Rotate motion based on display orientation if needed. // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. int32_t orientation; if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId, NULL, NULL, & orientation)) { orientation = DISPLAY_ORIENTATION_0; } float temp; switch (orientation) { case DISPLAY_ORIENTATION_90: temp = deltaX; deltaX = deltaY; deltaY = -temp; break; case DISPLAY_ORIENTATION_180: deltaX = -deltaX; deltaY = -deltaY; break; case DISPLAY_ORIENTATION_270: temp = deltaX; deltaX = -deltaY; deltaY = temp; break; } } pointerCoords.clear(); motionEventEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE; if (mHaveVWheel && (fields & Accumulator::FIELD_REL_WHEEL)) { vscroll = mAccumulator.relWheel; } else { vscroll = 0; } if (mHaveHWheel && (fields & Accumulator::FIELD_REL_HWHEEL)) { hscroll = mAccumulator.relHWheel; } else { hscroll = 0; } if (mPointerController != NULL) { if (deltaX != 0 || deltaY != 0 || vscroll != 0 || hscroll != 0 || buttonsChanged) { mPointerController->setPresentation( PointerControllerInterface::PRESENTATION_POINTER); if (deltaX != 0 || deltaY != 0) { mPointerController->move(deltaX, deltaY); } if (buttonsChanged) { mPointerController->setButtonState(mLocked.buttonState); } mPointerController->unfade(); } float x, y; mPointerController->getPosition(&x, &y); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, x); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, y); if (motionEventAction == AMOTION_EVENT_ACTION_DOWN) { motionEventEdgeFlags = calculateEdgeFlagsUsingPointerBounds( mPointerController, x, y); } } else { pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_X, deltaX); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_Y, deltaY); } pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); } // release lock // Moving an external trackball or mouse should wake the device. // We don't do this for internal cursor devices to prevent them from waking up // the device in your pocket. // TODO: Use the input device configuration to control this behavior more finely. uint32_t policyFlags = 0; if (getDevice()->isExternal()) { policyFlags |= POLICY_FLAG_WAKE_DROPPED; } int32_t metaState = mContext->getGlobalMetaState(); int32_t pointerId = 0; getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags, motionEventAction, 0, metaState, motionEventEdgeFlags, 1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime); mAccumulator.clear(); if (vscroll != 0 || hscroll != 0) { pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_VSCROLL, vscroll); pointerCoords.setAxisValue(AMOTION_EVENT_AXIS_HSCROLL, hscroll); getDispatcher()->notifyMotion(when, getDeviceId(), mSource, policyFlags, AMOTION_EVENT_ACTION_SCROLL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &pointerId, &pointerCoords, mXPrecision, mYPrecision, downTime); } } int32_t CursorInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { if (scanCode >= BTN_MOUSE && scanCode < BTN_JOYSTICK) { return getEventHub()->getScanCodeState(getDeviceId(), scanCode); } else { return AKEY_STATE_UNKNOWN; } } void CursorInputMapper::fadePointer() { { // acquire lock AutoMutex _l(mLock); if (mPointerController != NULL) { mPointerController->fade(); } } // release lock } // --- TouchInputMapper --- TouchInputMapper::TouchInputMapper(InputDevice* device) : InputMapper(device) { mLocked.surfaceOrientation = -1; mLocked.surfaceWidth = -1; mLocked.surfaceHeight = -1; initializeLocked(); } TouchInputMapper::~TouchInputMapper() { } uint32_t TouchInputMapper::getSources() { return mTouchSource | mPointerSource; } void TouchInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); { // acquire lock AutoMutex _l(mLock); // Ensure surface information is up to date so that orientation changes are // noticed immediately. if (!configureSurfaceLocked()) { return; } info->addMotionRange(mLocked.orientedRanges.x); info->addMotionRange(mLocked.orientedRanges.y); if (mLocked.orientedRanges.havePressure) { info->addMotionRange(mLocked.orientedRanges.pressure); } if (mLocked.orientedRanges.haveSize) { info->addMotionRange(mLocked.orientedRanges.size); } if (mLocked.orientedRanges.haveTouchSize) { info->addMotionRange(mLocked.orientedRanges.touchMajor); info->addMotionRange(mLocked.orientedRanges.touchMinor); } if (mLocked.orientedRanges.haveToolSize) { info->addMotionRange(mLocked.orientedRanges.toolMajor); info->addMotionRange(mLocked.orientedRanges.toolMinor); } if (mLocked.orientedRanges.haveOrientation) { info->addMotionRange(mLocked.orientedRanges.orientation); } if (mPointerController != NULL) { float minX, minY, maxX, maxY; if (mPointerController->getBounds(&minX, &minY, &maxX, &maxY)) { info->addMotionRange(AMOTION_EVENT_AXIS_X, mPointerSource, minX, maxX, 0.0f, 0.0f); info->addMotionRange(AMOTION_EVENT_AXIS_Y, mPointerSource, minY, maxY, 0.0f, 0.0f); } info->addMotionRange(AMOTION_EVENT_AXIS_PRESSURE, mPointerSource, 0.0f, 1.0f, 0.0f, 0.0f); } } // release lock } void TouchInputMapper::dump(String8& dump) { { // acquire lock AutoMutex _l(mLock); dump.append(INDENT2 "Touch Input Mapper:\n"); dumpParameters(dump); dumpVirtualKeysLocked(dump); dumpRawAxes(dump); dumpCalibration(dump); dumpSurfaceLocked(dump); dump.appendFormat(INDENT3 "Translation and Scaling Factors:\n"); dump.appendFormat(INDENT4 "XScale: %0.3f\n", mLocked.xScale); dump.appendFormat(INDENT4 "YScale: %0.3f\n", mLocked.yScale); dump.appendFormat(INDENT4 "XPrecision: %0.3f\n", mLocked.xPrecision); dump.appendFormat(INDENT4 "YPrecision: %0.3f\n", mLocked.yPrecision); dump.appendFormat(INDENT4 "GeometricScale: %0.3f\n", mLocked.geometricScale); dump.appendFormat(INDENT4 "ToolSizeLinearScale: %0.3f\n", mLocked.toolSizeLinearScale); dump.appendFormat(INDENT4 "ToolSizeLinearBias: %0.3f\n", mLocked.toolSizeLinearBias); dump.appendFormat(INDENT4 "ToolSizeAreaScale: %0.3f\n", mLocked.toolSizeAreaScale); dump.appendFormat(INDENT4 "ToolSizeAreaBias: %0.3f\n", mLocked.toolSizeAreaBias); dump.appendFormat(INDENT4 "PressureScale: %0.3f\n", mLocked.pressureScale); dump.appendFormat(INDENT4 "SizeScale: %0.3f\n", mLocked.sizeScale); dump.appendFormat(INDENT4 "OrientationScale: %0.3f\n", mLocked.orientationScale); dump.appendFormat(INDENT3 "Last Touch:\n"); dump.appendFormat(INDENT4 "Pointer Count: %d\n", mLastTouch.pointerCount); dump.appendFormat(INDENT4 "Button State: 0x%08x\n", mLastTouch.buttonState); if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { dump.appendFormat(INDENT3 "Pointer Gesture Detector:\n"); dump.appendFormat(INDENT4 "XMovementScale: %0.3f\n", mLocked.pointerGestureXMovementScale); dump.appendFormat(INDENT4 "YMovementScale: %0.3f\n", mLocked.pointerGestureYMovementScale); dump.appendFormat(INDENT4 "XZoomScale: %0.3f\n", mLocked.pointerGestureXZoomScale); dump.appendFormat(INDENT4 "YZoomScale: %0.3f\n", mLocked.pointerGestureYZoomScale); dump.appendFormat(INDENT4 "MaxSwipeWidth: %f\n", mLocked.pointerGestureMaxSwipeWidth); } } // release lock } void TouchInputMapper::initializeLocked() { mCurrentTouch.clear(); mLastTouch.clear(); mDownTime = 0; for (uint32_t i = 0; i < MAX_POINTERS; i++) { mAveragingTouchFilter.historyStart[i] = 0; mAveragingTouchFilter.historyEnd[i] = 0; } mJumpyTouchFilter.jumpyPointsDropped = 0; mLocked.currentVirtualKey.down = false; mLocked.orientedRanges.havePressure = false; mLocked.orientedRanges.haveSize = false; mLocked.orientedRanges.haveTouchSize = false; mLocked.orientedRanges.haveToolSize = false; mLocked.orientedRanges.haveOrientation = false; mPointerGesture.reset(); } void TouchInputMapper::configure() { InputMapper::configure(); // Configure basic parameters. configureParameters(); // Configure sources. switch (mParameters.deviceType) { case Parameters::DEVICE_TYPE_TOUCH_SCREEN: mTouchSource = AINPUT_SOURCE_TOUCHSCREEN; mPointerSource = 0; break; case Parameters::DEVICE_TYPE_TOUCH_PAD: mTouchSource = AINPUT_SOURCE_TOUCHPAD; mPointerSource = 0; break; case Parameters::DEVICE_TYPE_POINTER: mTouchSource = AINPUT_SOURCE_TOUCHPAD; mPointerSource = AINPUT_SOURCE_MOUSE; break; default: assert(false); } // Configure absolute axis information. configureRawAxes(); // Prepare input device calibration. parseCalibration(); resolveCalibration(); { // acquire lock AutoMutex _l(mLock); // Configure surface dimensions and orientation. configureSurfaceLocked(); } // release lock } void TouchInputMapper::configureParameters() { mParameters.useBadTouchFilter = getPolicy()->filterTouchEvents(); mParameters.useAveragingTouchFilter = getPolicy()->filterTouchEvents(); mParameters.useJumpyTouchFilter = getPolicy()->filterJumpyTouchEvents(); mParameters.virtualKeyQuietTime = getPolicy()->getVirtualKeyQuietTime(); // TODO: Make this configurable. //mParameters.gestureMode = Parameters::GESTURE_MODE_POINTER; mParameters.gestureMode = Parameters::GESTURE_MODE_SPOTS; if (getEventHub()->hasRelativeAxis(getDeviceId(), REL_X) || getEventHub()->hasRelativeAxis(getDeviceId(), REL_Y)) { // The device is a cursor device with a touch pad attached. // By default don't use the touch pad to move the pointer. mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; } else { // The device is just a touch pad. // By default use the touch pad to move the pointer and to perform related gestures. mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; } String8 deviceTypeString; if (getDevice()->getConfiguration().tryGetProperty(String8("touch.deviceType"), deviceTypeString)) { if (deviceTypeString == "touchScreen") { mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_SCREEN; } else if (deviceTypeString == "touchPad") { mParameters.deviceType = Parameters::DEVICE_TYPE_TOUCH_PAD; } else if (deviceTypeString == "pointer") { mParameters.deviceType = Parameters::DEVICE_TYPE_POINTER; } else { LOGW("Invalid value for touch.deviceType: '%s'", deviceTypeString.string()); } } mParameters.orientationAware = mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN; getDevice()->getConfiguration().tryGetProperty(String8("touch.orientationAware"), mParameters.orientationAware); mParameters.associatedDisplayId = mParameters.orientationAware || mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN || mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER ? 0 : -1; } void TouchInputMapper::dumpParameters(String8& dump) { dump.append(INDENT3 "Parameters:\n"); switch (mParameters.deviceType) { case Parameters::DEVICE_TYPE_TOUCH_SCREEN: dump.append(INDENT4 "DeviceType: touchScreen\n"); break; case Parameters::DEVICE_TYPE_TOUCH_PAD: dump.append(INDENT4 "DeviceType: touchPad\n"); break; case Parameters::DEVICE_TYPE_POINTER: dump.append(INDENT4 "DeviceType: pointer\n"); break; default: assert(false); } dump.appendFormat(INDENT4 "AssociatedDisplayId: %d\n", mParameters.associatedDisplayId); dump.appendFormat(INDENT4 "OrientationAware: %s\n", toString(mParameters.orientationAware)); dump.appendFormat(INDENT4 "UseBadTouchFilter: %s\n", toString(mParameters.useBadTouchFilter)); dump.appendFormat(INDENT4 "UseAveragingTouchFilter: %s\n", toString(mParameters.useAveragingTouchFilter)); dump.appendFormat(INDENT4 "UseJumpyTouchFilter: %s\n", toString(mParameters.useJumpyTouchFilter)); } void TouchInputMapper::configureRawAxes() { mRawAxes.x.clear(); mRawAxes.y.clear(); mRawAxes.pressure.clear(); mRawAxes.touchMajor.clear(); mRawAxes.touchMinor.clear(); mRawAxes.toolMajor.clear(); mRawAxes.toolMinor.clear(); mRawAxes.orientation.clear(); } void TouchInputMapper::dumpRawAxes(String8& dump) { dump.append(INDENT3 "Raw Axes:\n"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.x, "X"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.y, "Y"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.pressure, "Pressure"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMajor, "TouchMajor"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.touchMinor, "TouchMinor"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMajor, "ToolMajor"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.toolMinor, "ToolMinor"); dumpRawAbsoluteAxisInfo(dump, mRawAxes.orientation, "Orientation"); } bool TouchInputMapper::configureSurfaceLocked() { // Ensure we have valid X and Y axes. if (!mRawAxes.x.valid || !mRawAxes.y.valid) { LOGW(INDENT "Touch device '%s' did not report support for X or Y axis! " "The device will be inoperable.", getDeviceName().string()); return false; } // Update orientation and dimensions if needed. int32_t orientation = DISPLAY_ORIENTATION_0; int32_t width = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1; int32_t height = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1; if (mParameters.associatedDisplayId >= 0) { // Note: getDisplayInfo is non-reentrant so we can continue holding the lock. if (! getPolicy()->getDisplayInfo(mParameters.associatedDisplayId, &mLocked.associatedDisplayWidth, &mLocked.associatedDisplayHeight, &mLocked.associatedDisplayOrientation)) { return false; } // A touch screen inherits the dimensions of the display. if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) { width = mLocked.associatedDisplayWidth; height = mLocked.associatedDisplayHeight; } // The device inherits the orientation of the display if it is orientation aware. if (mParameters.orientationAware) { orientation = mLocked.associatedDisplayOrientation; } } if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER && mPointerController == NULL) { mPointerController = getPolicy()->obtainPointerController(getDeviceId()); } bool orientationChanged = mLocked.surfaceOrientation != orientation; if (orientationChanged) { mLocked.surfaceOrientation = orientation; } bool sizeChanged = mLocked.surfaceWidth != width || mLocked.surfaceHeight != height; if (sizeChanged) { LOGI("Device reconfigured: id=%d, name='%s', surface size is now %dx%d", getDeviceId(), getDeviceName().string(), width, height); mLocked.surfaceWidth = width; mLocked.surfaceHeight = height; // Configure X and Y factors. mLocked.xScale = float(width) / (mRawAxes.x.maxValue - mRawAxes.x.minValue + 1); mLocked.yScale = float(height) / (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1); mLocked.xPrecision = 1.0f / mLocked.xScale; mLocked.yPrecision = 1.0f / mLocked.yScale; mLocked.orientedRanges.x.axis = AMOTION_EVENT_AXIS_X; mLocked.orientedRanges.x.source = mTouchSource; mLocked.orientedRanges.y.axis = AMOTION_EVENT_AXIS_Y; mLocked.orientedRanges.y.source = mTouchSource; configureVirtualKeysLocked(); // Scale factor for terms that are not oriented in a particular axis. // If the pixels are square then xScale == yScale otherwise we fake it // by choosing an average. mLocked.geometricScale = avg(mLocked.xScale, mLocked.yScale); // Size of diagonal axis. float diagonalSize = hypotf(width, height); // TouchMajor and TouchMinor factors. if (mCalibration.touchSizeCalibration != Calibration::TOUCH_SIZE_CALIBRATION_NONE) { mLocked.orientedRanges.haveTouchSize = true; mLocked.orientedRanges.touchMajor.axis = AMOTION_EVENT_AXIS_TOUCH_MAJOR; mLocked.orientedRanges.touchMajor.source = mTouchSource; mLocked.orientedRanges.touchMajor.min = 0; mLocked.orientedRanges.touchMajor.max = diagonalSize; mLocked.orientedRanges.touchMajor.flat = 0; mLocked.orientedRanges.touchMajor.fuzz = 0; mLocked.orientedRanges.touchMinor = mLocked.orientedRanges.touchMajor; mLocked.orientedRanges.touchMinor.axis = AMOTION_EVENT_AXIS_TOUCH_MINOR; } // ToolMajor and ToolMinor factors. mLocked.toolSizeLinearScale = 0; mLocked.toolSizeLinearBias = 0; mLocked.toolSizeAreaScale = 0; mLocked.toolSizeAreaBias = 0; if (mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) { if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_LINEAR) { if (mCalibration.haveToolSizeLinearScale) { mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale; } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { mLocked.toolSizeLinearScale = float(min(width, height)) / mRawAxes.toolMajor.maxValue; } if (mCalibration.haveToolSizeLinearBias) { mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias; } } else if (mCalibration.toolSizeCalibration == Calibration::TOOL_SIZE_CALIBRATION_AREA) { if (mCalibration.haveToolSizeLinearScale) { mLocked.toolSizeLinearScale = mCalibration.toolSizeLinearScale; } else { mLocked.toolSizeLinearScale = min(width, height); } if (mCalibration.haveToolSizeLinearBias) { mLocked.toolSizeLinearBias = mCalibration.toolSizeLinearBias; } if (mCalibration.haveToolSizeAreaScale) { mLocked.toolSizeAreaScale = mCalibration.toolSizeAreaScale; } else if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { mLocked.toolSizeAreaScale = 1.0f / mRawAxes.toolMajor.maxValue; } if (mCalibration.haveToolSizeAreaBias) { mLocked.toolSizeAreaBias = mCalibration.toolSizeAreaBias; } } mLocked.orientedRanges.haveToolSize = true; mLocked.orientedRanges.toolMajor.axis = AMOTION_EVENT_AXIS_TOOL_MAJOR; mLocked.orientedRanges.toolMajor.source = mTouchSource; mLocked.orientedRanges.toolMajor.min = 0; mLocked.orientedRanges.toolMajor.max = diagonalSize; mLocked.orientedRanges.toolMajor.flat = 0; mLocked.orientedRanges.toolMajor.fuzz = 0; mLocked.orientedRanges.toolMinor = mLocked.orientedRanges.toolMajor; mLocked.orientedRanges.toolMinor.axis = AMOTION_EVENT_AXIS_TOOL_MINOR; } // Pressure factors. mLocked.pressureScale = 0; if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE) { RawAbsoluteAxisInfo rawPressureAxis; switch (mCalibration.pressureSource) { case Calibration::PRESSURE_SOURCE_PRESSURE: rawPressureAxis = mRawAxes.pressure; break; case Calibration::PRESSURE_SOURCE_TOUCH: rawPressureAxis = mRawAxes.touchMajor; break; default: rawPressureAxis.clear(); } if (mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_PHYSICAL || mCalibration.pressureCalibration == Calibration::PRESSURE_CALIBRATION_AMPLITUDE) { if (mCalibration.havePressureScale) { mLocked.pressureScale = mCalibration.pressureScale; } else if (rawPressureAxis.valid && rawPressureAxis.maxValue != 0) { mLocked.pressureScale = 1.0f / rawPressureAxis.maxValue; } } mLocked.orientedRanges.havePressure = true; mLocked.orientedRanges.pressure.axis = AMOTION_EVENT_AXIS_PRESSURE; mLocked.orientedRanges.pressure.source = mTouchSource; mLocked.orientedRanges.pressure.min = 0; mLocked.orientedRanges.pressure.max = 1.0; mLocked.orientedRanges.pressure.flat = 0; mLocked.orientedRanges.pressure.fuzz = 0; } // Size factors. mLocked.sizeScale = 0; if (mCalibration.sizeCalibration != Calibration::SIZE_CALIBRATION_NONE) { if (mCalibration.sizeCalibration == Calibration::SIZE_CALIBRATION_NORMALIZED) { if (mRawAxes.toolMajor.valid && mRawAxes.toolMajor.maxValue != 0) { mLocked.sizeScale = 1.0f / mRawAxes.toolMajor.maxValue; } } mLocked.orientedRanges.haveSize = true; mLocked.orientedRanges.size.axis = AMOTION_EVENT_AXIS_SIZE; mLocked.orientedRanges.size.source = mTouchSource; mLocked.orientedRanges.size.min = 0; mLocked.orientedRanges.size.max = 1.0; mLocked.orientedRanges.size.flat = 0; mLocked.orientedRanges.size.fuzz = 0; } // Orientation mLocked.orientationScale = 0; if (mCalibration.orientationCalibration != Calibration::ORIENTATION_CALIBRATION_NONE) { if (mCalibration.orientationCalibration == Calibration::ORIENTATION_CALIBRATION_INTERPOLATED) { if (mRawAxes.orientation.valid && mRawAxes.orientation.maxValue != 0) { mLocked.orientationScale = float(M_PI_2) / mRawAxes.orientation.maxValue; } } mLocked.orientedRanges.haveOrientation = true; mLocked.orientedRanges.orientation.axis = AMOTION_EVENT_AXIS_ORIENTATION; mLocked.orientedRanges.orientation.source = mTouchSource; mLocked.orientedRanges.orientation.min = - M_PI_2; mLocked.orientedRanges.orientation.max = M_PI_2; mLocked.orientedRanges.orientation.flat = 0; mLocked.orientedRanges.orientation.fuzz = 0; } } if (orientationChanged || sizeChanged) { // Compute oriented surface dimensions, precision, scales and ranges. // Note that the maximum value reported is an inclusive maximum value so it is one // unit less than the total width or height of surface. switch (mLocked.surfaceOrientation) { case DISPLAY_ORIENTATION_90: case DISPLAY_ORIENTATION_270: mLocked.orientedSurfaceWidth = mLocked.surfaceHeight; mLocked.orientedSurfaceHeight = mLocked.surfaceWidth; mLocked.orientedXPrecision = mLocked.yPrecision; mLocked.orientedYPrecision = mLocked.xPrecision; mLocked.orientedRanges.x.min = 0; mLocked.orientedRanges.x.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue) * mLocked.yScale; mLocked.orientedRanges.x.flat = 0; mLocked.orientedRanges.x.fuzz = mLocked.yScale; mLocked.orientedRanges.y.min = 0; mLocked.orientedRanges.y.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue) * mLocked.xScale; mLocked.orientedRanges.y.flat = 0; mLocked.orientedRanges.y.fuzz = mLocked.xScale; break; default: mLocked.orientedSurfaceWidth = mLocked.surfaceWidth; mLocked.orientedSurfaceHeight = mLocked.surfaceHeight; mLocked.orientedXPrecision = mLocked.xPrecision; mLocked.orientedYPrecision = mLocked.yPrecision; mLocked.orientedRanges.x.min = 0; mLocked.orientedRanges.x.max = (mRawAxes.x.maxValue - mRawAxes.x.minValue) * mLocked.xScale; mLocked.orientedRanges.x.flat = 0; mLocked.orientedRanges.x.fuzz = mLocked.xScale; mLocked.orientedRanges.y.min = 0; mLocked.orientedRanges.y.max = (mRawAxes.y.maxValue - mRawAxes.y.minValue) * mLocked.yScale; mLocked.orientedRanges.y.flat = 0; mLocked.orientedRanges.y.fuzz = mLocked.yScale; break; } // Compute pointer gesture detection parameters. // TODO: These factors should not be hardcoded. if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { int32_t rawWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1; int32_t rawHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1; float rawDiagonal = hypotf(rawWidth, rawHeight); float displayDiagonal = hypotf(mLocked.associatedDisplayWidth, mLocked.associatedDisplayHeight); // Scale movements such that one whole swipe of the touch pad covers a // given area relative to the diagonal size of the display. // Assume that the touch pad has a square aspect ratio such that movements in // X and Y of the same number of raw units cover the same physical distance. const float scaleFactor = 0.8f; mLocked.pointerGestureXMovementScale = GESTURE_MOVEMENT_SPEED_RATIO * displayDiagonal / rawDiagonal; mLocked.pointerGestureYMovementScale = mLocked.pointerGestureXMovementScale; // Scale zooms to cover a smaller range of the display than movements do. // This value determines the area around the pointer that is affected by freeform // pointer gestures. mLocked.pointerGestureXZoomScale = GESTURE_ZOOM_SPEED_RATIO * displayDiagonal / rawDiagonal; mLocked.pointerGestureYZoomScale = mLocked.pointerGestureXZoomScale; // Max width between pointers to detect a swipe gesture is more than some fraction // of the diagonal axis of the touch pad. Touches that are wider than this are // translated into freeform gestures. mLocked.pointerGestureMaxSwipeWidth = SWIPE_MAX_WIDTH_RATIO * rawDiagonal; // Reset the current pointer gesture. mPointerGesture.reset(); // Remove any current spots. if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerController->clearSpots(); } } } return true; } void TouchInputMapper::dumpSurfaceLocked(String8& dump) { dump.appendFormat(INDENT3 "SurfaceWidth: %dpx\n", mLocked.surfaceWidth); dump.appendFormat(INDENT3 "SurfaceHeight: %dpx\n", mLocked.surfaceHeight); dump.appendFormat(INDENT3 "SurfaceOrientation: %d\n", mLocked.surfaceOrientation); } void TouchInputMapper::configureVirtualKeysLocked() { Vector virtualKeyDefinitions; getEventHub()->getVirtualKeyDefinitions(getDeviceId(), virtualKeyDefinitions); mLocked.virtualKeys.clear(); if (virtualKeyDefinitions.size() == 0) { return; } mLocked.virtualKeys.setCapacity(virtualKeyDefinitions.size()); int32_t touchScreenLeft = mRawAxes.x.minValue; int32_t touchScreenTop = mRawAxes.y.minValue; int32_t touchScreenWidth = mRawAxes.x.maxValue - mRawAxes.x.minValue + 1; int32_t touchScreenHeight = mRawAxes.y.maxValue - mRawAxes.y.minValue + 1; for (size_t i = 0; i < virtualKeyDefinitions.size(); i++) { const VirtualKeyDefinition& virtualKeyDefinition = virtualKeyDefinitions[i]; mLocked.virtualKeys.add(); VirtualKey& virtualKey = mLocked.virtualKeys.editTop(); virtualKey.scanCode = virtualKeyDefinition.scanCode; int32_t keyCode; uint32_t flags; if (getEventHub()->mapKey(getDeviceId(), virtualKey.scanCode, & keyCode, & flags)) { LOGW(INDENT "VirtualKey %d: could not obtain key code, ignoring", virtualKey.scanCode); mLocked.virtualKeys.pop(); // drop the key continue; } virtualKey.keyCode = keyCode; virtualKey.flags = flags; // convert the key definition's display coordinates into touch coordinates for a hit box int32_t halfWidth = virtualKeyDefinition.width / 2; int32_t halfHeight = virtualKeyDefinition.height / 2; virtualKey.hitLeft = (virtualKeyDefinition.centerX - halfWidth) * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft; virtualKey.hitRight= (virtualKeyDefinition.centerX + halfWidth) * touchScreenWidth / mLocked.surfaceWidth + touchScreenLeft; virtualKey.hitTop = (virtualKeyDefinition.centerY - halfHeight) * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop; virtualKey.hitBottom = (virtualKeyDefinition.centerY + halfHeight) * touchScreenHeight / mLocked.surfaceHeight + touchScreenTop; } } void TouchInputMapper::dumpVirtualKeysLocked(String8& dump) { if (!mLocked.virtualKeys.isEmpty()) { dump.append(INDENT3 "Virtual Keys:\n"); for (size_t i = 0; i < mLocked.virtualKeys.size(); i++) { const VirtualKey& virtualKey = mLocked.virtualKeys.itemAt(i); dump.appendFormat(INDENT4 "%d: scanCode=%d, keyCode=%d, " "hitLeft=%d, hitRight=%d, hitTop=%d, hitBottom=%d\n", i, virtualKey.scanCode, virtualKey.keyCode, virtualKey.hitLeft, virtualKey.hitRight, virtualKey.hitTop, virtualKey.hitBottom); } } } void TouchInputMapper::parseCalibration() { const PropertyMap& in = getDevice()->getConfiguration(); Calibration& out = mCalibration; // Touch Size out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT; String8 touchSizeCalibrationString; if (in.tryGetProperty(String8("touch.touchSize.calibration"), touchSizeCalibrationString)) { if (touchSizeCalibrationString == "none") { out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE; } else if (touchSizeCalibrationString == "geometric") { out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC; } else if (touchSizeCalibrationString == "pressure") { out.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE; } else if (touchSizeCalibrationString != "default") { LOGW("Invalid value for touch.touchSize.calibration: '%s'", touchSizeCalibrationString.string()); } } // Tool Size out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_DEFAULT; String8 toolSizeCalibrationString; if (in.tryGetProperty(String8("touch.toolSize.calibration"), toolSizeCalibrationString)) { if (toolSizeCalibrationString == "none") { out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE; } else if (toolSizeCalibrationString == "geometric") { out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC; } else if (toolSizeCalibrationString == "linear") { out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR; } else if (toolSizeCalibrationString == "area") { out.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_AREA; } else if (toolSizeCalibrationString != "default") { LOGW("Invalid value for touch.toolSize.calibration: '%s'", toolSizeCalibrationString.string()); } } out.haveToolSizeLinearScale = in.tryGetProperty(String8("touch.toolSize.linearScale"), out.toolSizeLinearScale); out.haveToolSizeLinearBias = in.tryGetProperty(String8("touch.toolSize.linearBias"), out.toolSizeLinearBias); out.haveToolSizeAreaScale = in.tryGetProperty(String8("touch.toolSize.areaScale"), out.toolSizeAreaScale); out.haveToolSizeAreaBias = in.tryGetProperty(String8("touch.toolSize.areaBias"), out.toolSizeAreaBias); out.haveToolSizeIsSummed = in.tryGetProperty(String8("touch.toolSize.isSummed"), out.toolSizeIsSummed); // Pressure out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_DEFAULT; String8 pressureCalibrationString; if (in.tryGetProperty(String8("touch.pressure.calibration"), pressureCalibrationString)) { if (pressureCalibrationString == "none") { out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; } else if (pressureCalibrationString == "physical") { out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_PHYSICAL; } else if (pressureCalibrationString == "amplitude") { out.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; } else if (pressureCalibrationString != "default") { LOGW("Invalid value for touch.pressure.calibration: '%s'", pressureCalibrationString.string()); } } out.pressureSource = Calibration::PRESSURE_SOURCE_DEFAULT; String8 pressureSourceString; if (in.tryGetProperty(String8("touch.pressure.source"), pressureSourceString)) { if (pressureSourceString == "pressure") { out.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE; } else if (pressureSourceString == "touch") { out.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH; } else if (pressureSourceString != "default") { LOGW("Invalid value for touch.pressure.source: '%s'", pressureSourceString.string()); } } out.havePressureScale = in.tryGetProperty(String8("touch.pressure.scale"), out.pressureScale); // Size out.sizeCalibration = Calibration::SIZE_CALIBRATION_DEFAULT; String8 sizeCalibrationString; if (in.tryGetProperty(String8("touch.size.calibration"), sizeCalibrationString)) { if (sizeCalibrationString == "none") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; } else if (sizeCalibrationString == "normalized") { out.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED; } else if (sizeCalibrationString != "default") { LOGW("Invalid value for touch.size.calibration: '%s'", sizeCalibrationString.string()); } } // Orientation out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_DEFAULT; String8 orientationCalibrationString; if (in.tryGetProperty(String8("touch.orientation.calibration"), orientationCalibrationString)) { if (orientationCalibrationString == "none") { out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; } else if (orientationCalibrationString == "interpolated") { out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; } else if (orientationCalibrationString == "vector") { out.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_VECTOR; } else if (orientationCalibrationString != "default") { LOGW("Invalid value for touch.orientation.calibration: '%s'", orientationCalibrationString.string()); } } } void TouchInputMapper::resolveCalibration() { // Pressure switch (mCalibration.pressureSource) { case Calibration::PRESSURE_SOURCE_DEFAULT: if (mRawAxes.pressure.valid) { mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_PRESSURE; } else if (mRawAxes.touchMajor.valid) { mCalibration.pressureSource = Calibration::PRESSURE_SOURCE_TOUCH; } break; case Calibration::PRESSURE_SOURCE_PRESSURE: if (! mRawAxes.pressure.valid) { LOGW("Calibration property touch.pressure.source is 'pressure' but " "the pressure axis is not available."); } break; case Calibration::PRESSURE_SOURCE_TOUCH: if (! mRawAxes.touchMajor.valid) { LOGW("Calibration property touch.pressure.source is 'touch' but " "the touchMajor axis is not available."); } break; default: break; } switch (mCalibration.pressureCalibration) { case Calibration::PRESSURE_CALIBRATION_DEFAULT: if (mCalibration.pressureSource != Calibration::PRESSURE_SOURCE_DEFAULT) { mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_AMPLITUDE; } else { mCalibration.pressureCalibration = Calibration::PRESSURE_CALIBRATION_NONE; } break; default: break; } // Tool Size switch (mCalibration.toolSizeCalibration) { case Calibration::TOOL_SIZE_CALIBRATION_DEFAULT: if (mRawAxes.toolMajor.valid) { mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_LINEAR; } else { mCalibration.toolSizeCalibration = Calibration::TOOL_SIZE_CALIBRATION_NONE; } break; default: break; } // Touch Size switch (mCalibration.touchSizeCalibration) { case Calibration::TOUCH_SIZE_CALIBRATION_DEFAULT: if (mCalibration.pressureCalibration != Calibration::PRESSURE_CALIBRATION_NONE && mCalibration.toolSizeCalibration != Calibration::TOOL_SIZE_CALIBRATION_NONE) { mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE; } else { mCalibration.touchSizeCalibration = Calibration::TOUCH_SIZE_CALIBRATION_NONE; } break; default: break; } // Size switch (mCalibration.sizeCalibration) { case Calibration::SIZE_CALIBRATION_DEFAULT: if (mRawAxes.toolMajor.valid) { mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NORMALIZED; } else { mCalibration.sizeCalibration = Calibration::SIZE_CALIBRATION_NONE; } break; default: break; } // Orientation switch (mCalibration.orientationCalibration) { case Calibration::ORIENTATION_CALIBRATION_DEFAULT: if (mRawAxes.orientation.valid) { mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_INTERPOLATED; } else { mCalibration.orientationCalibration = Calibration::ORIENTATION_CALIBRATION_NONE; } break; default: break; } } void TouchInputMapper::dumpCalibration(String8& dump) { dump.append(INDENT3 "Calibration:\n"); // Touch Size switch (mCalibration.touchSizeCalibration) { case Calibration::TOUCH_SIZE_CALIBRATION_NONE: dump.append(INDENT4 "touch.touchSize.calibration: none\n"); break; case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC: dump.append(INDENT4 "touch.touchSize.calibration: geometric\n"); break; case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE: dump.append(INDENT4 "touch.touchSize.calibration: pressure\n"); break; default: assert(false); } // Tool Size switch (mCalibration.toolSizeCalibration) { case Calibration::TOOL_SIZE_CALIBRATION_NONE: dump.append(INDENT4 "touch.toolSize.calibration: none\n"); break; case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC: dump.append(INDENT4 "touch.toolSize.calibration: geometric\n"); break; case Calibration::TOOL_SIZE_CALIBRATION_LINEAR: dump.append(INDENT4 "touch.toolSize.calibration: linear\n"); break; case Calibration::TOOL_SIZE_CALIBRATION_AREA: dump.append(INDENT4 "touch.toolSize.calibration: area\n"); break; default: assert(false); } if (mCalibration.haveToolSizeLinearScale) { dump.appendFormat(INDENT4 "touch.toolSize.linearScale: %0.3f\n", mCalibration.toolSizeLinearScale); } if (mCalibration.haveToolSizeLinearBias) { dump.appendFormat(INDENT4 "touch.toolSize.linearBias: %0.3f\n", mCalibration.toolSizeLinearBias); } if (mCalibration.haveToolSizeAreaScale) { dump.appendFormat(INDENT4 "touch.toolSize.areaScale: %0.3f\n", mCalibration.toolSizeAreaScale); } if (mCalibration.haveToolSizeAreaBias) { dump.appendFormat(INDENT4 "touch.toolSize.areaBias: %0.3f\n", mCalibration.toolSizeAreaBias); } if (mCalibration.haveToolSizeIsSummed) { dump.appendFormat(INDENT4 "touch.toolSize.isSummed: %s\n", toString(mCalibration.toolSizeIsSummed)); } // Pressure switch (mCalibration.pressureCalibration) { case Calibration::PRESSURE_CALIBRATION_NONE: dump.append(INDENT4 "touch.pressure.calibration: none\n"); break; case Calibration::PRESSURE_CALIBRATION_PHYSICAL: dump.append(INDENT4 "touch.pressure.calibration: physical\n"); break; case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: dump.append(INDENT4 "touch.pressure.calibration: amplitude\n"); break; default: assert(false); } switch (mCalibration.pressureSource) { case Calibration::PRESSURE_SOURCE_PRESSURE: dump.append(INDENT4 "touch.pressure.source: pressure\n"); break; case Calibration::PRESSURE_SOURCE_TOUCH: dump.append(INDENT4 "touch.pressure.source: touch\n"); break; case Calibration::PRESSURE_SOURCE_DEFAULT: break; default: assert(false); } if (mCalibration.havePressureScale) { dump.appendFormat(INDENT4 "touch.pressure.scale: %0.3f\n", mCalibration.pressureScale); } // Size switch (mCalibration.sizeCalibration) { case Calibration::SIZE_CALIBRATION_NONE: dump.append(INDENT4 "touch.size.calibration: none\n"); break; case Calibration::SIZE_CALIBRATION_NORMALIZED: dump.append(INDENT4 "touch.size.calibration: normalized\n"); break; default: assert(false); } // Orientation switch (mCalibration.orientationCalibration) { case Calibration::ORIENTATION_CALIBRATION_NONE: dump.append(INDENT4 "touch.orientation.calibration: none\n"); break; case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: dump.append(INDENT4 "touch.orientation.calibration: interpolated\n"); break; case Calibration::ORIENTATION_CALIBRATION_VECTOR: dump.append(INDENT4 "touch.orientation.calibration: vector\n"); break; default: assert(false); } } void TouchInputMapper::reset() { // Synthesize touch up event if touch is currently down. // This will also take care of finishing virtual key processing if needed. if (mLastTouch.pointerCount != 0) { nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); mCurrentTouch.clear(); syncTouch(when, true); } { // acquire lock AutoMutex _l(mLock); initializeLocked(); if (mPointerController != NULL && mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerController->clearSpots(); } } // release lock InputMapper::reset(); } void TouchInputMapper::syncTouch(nsecs_t when, bool havePointerIds) { #if DEBUG_RAW_EVENTS if (!havePointerIds) { LOGD("syncTouch: pointerCount=%d, no pointer ids", mCurrentTouch.pointerCount); } else { LOGD("syncTouch: pointerCount=%d, up=0x%08x, down=0x%08x, move=0x%08x, " "last=0x%08x, current=0x%08x", mCurrentTouch.pointerCount, mLastTouch.idBits.value & ~mCurrentTouch.idBits.value, mCurrentTouch.idBits.value & ~mLastTouch.idBits.value, mLastTouch.idBits.value & mCurrentTouch.idBits.value, mLastTouch.idBits.value, mCurrentTouch.idBits.value); } #endif // Preprocess pointer data. if (mParameters.useBadTouchFilter) { if (applyBadTouchFilter()) { havePointerIds = false; } } if (mParameters.useJumpyTouchFilter) { if (applyJumpyTouchFilter()) { havePointerIds = false; } } if (!havePointerIds) { calculatePointerIds(); } TouchData temp; TouchData* savedTouch; if (mParameters.useAveragingTouchFilter) { temp.copyFrom(mCurrentTouch); savedTouch = & temp; applyAveragingTouchFilter(); } else { savedTouch = & mCurrentTouch; } uint32_t policyFlags = 0; if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) { if (mParameters.deviceType == Parameters::DEVICE_TYPE_TOUCH_SCREEN) { // If this is a touch screen, hide the pointer on an initial down. getContext()->fadePointer(); } // Initial downs on external touch devices should wake the device. // We don't do this for internal touch screens to prevent them from waking // up in your pocket. // TODO: Use the input device configuration to control this behavior more finely. if (getDevice()->isExternal()) { policyFlags |= POLICY_FLAG_WAKE_DROPPED; } } TouchResult touchResult; if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount == 0 && mLastTouch.buttonState == mCurrentTouch.buttonState) { // Drop spurious syncs. touchResult = DROP_STROKE; } else { // Process touches and virtual keys. touchResult = consumeOffScreenTouches(when, policyFlags); if (touchResult == DISPATCH_TOUCH) { suppressSwipeOntoVirtualKeys(when); if (mPointerController != NULL) { dispatchPointerGestures(when, policyFlags, false /*isTimeout*/); } dispatchTouches(when, policyFlags); } } // Copy current touch to last touch in preparation for the next cycle. // Keep the button state so we can track edge-triggered button state changes. if (touchResult == DROP_STROKE) { mLastTouch.clear(); mLastTouch.buttonState = savedTouch->buttonState; } else { mLastTouch.copyFrom(*savedTouch); } } void TouchInputMapper::timeoutExpired(nsecs_t when) { if (mPointerController != NULL) { dispatchPointerGestures(when, 0 /*policyFlags*/, true /*isTimeout*/); } } TouchInputMapper::TouchResult TouchInputMapper::consumeOffScreenTouches( nsecs_t when, uint32_t policyFlags) { int32_t keyEventAction, keyEventFlags; int32_t keyCode, scanCode, downTime; TouchResult touchResult; { // acquire lock AutoMutex _l(mLock); // Update surface size and orientation, including virtual key positions. if (! configureSurfaceLocked()) { return DROP_STROKE; } // Check for virtual key press. if (mLocked.currentVirtualKey.down) { if (mCurrentTouch.pointerCount == 0) { // Pointer went up while virtual key was down. mLocked.currentVirtualKey.down = false; #if DEBUG_VIRTUAL_KEYS LOGD("VirtualKeys: Generating key up: keyCode=%d, scanCode=%d", mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode); #endif keyEventAction = AKEY_EVENT_ACTION_UP; keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; touchResult = SKIP_TOUCH; goto DispatchVirtualKey; } if (mCurrentTouch.pointerCount == 1) { int32_t x = mCurrentTouch.pointers[0].x; int32_t y = mCurrentTouch.pointers[0].y; const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y); if (virtualKey && virtualKey->keyCode == mLocked.currentVirtualKey.keyCode) { // Pointer is still within the space of the virtual key. return SKIP_TOUCH; } } // Pointer left virtual key area or another pointer also went down. // Send key cancellation and drop the stroke so subsequent motions will be // considered fresh downs. This is useful when the user swipes away from the // virtual key area into the main display surface. mLocked.currentVirtualKey.down = false; #if DEBUG_VIRTUAL_KEYS LOGD("VirtualKeys: Canceling key: keyCode=%d, scanCode=%d", mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode); #endif keyEventAction = AKEY_EVENT_ACTION_UP; keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY | AKEY_EVENT_FLAG_CANCELED; // Check whether the pointer moved inside the display area where we should // start a new stroke. int32_t x = mCurrentTouch.pointers[0].x; int32_t y = mCurrentTouch.pointers[0].y; if (isPointInsideSurfaceLocked(x, y)) { mLastTouch.clear(); touchResult = DISPATCH_TOUCH; } else { touchResult = DROP_STROKE; } } else { if (mCurrentTouch.pointerCount >= 1 && mLastTouch.pointerCount == 0) { // Pointer just went down. Handle off-screen touches, if needed. int32_t x = mCurrentTouch.pointers[0].x; int32_t y = mCurrentTouch.pointers[0].y; if (! isPointInsideSurfaceLocked(x, y)) { // If exactly one pointer went down, check for virtual key hit. // Otherwise we will drop the entire stroke. if (mCurrentTouch.pointerCount == 1) { const VirtualKey* virtualKey = findVirtualKeyHitLocked(x, y); if (virtualKey) { if (mContext->shouldDropVirtualKey(when, getDevice(), virtualKey->keyCode, virtualKey->scanCode)) { return DROP_STROKE; } mLocked.currentVirtualKey.down = true; mLocked.currentVirtualKey.downTime = when; mLocked.currentVirtualKey.keyCode = virtualKey->keyCode; mLocked.currentVirtualKey.scanCode = virtualKey->scanCode; #if DEBUG_VIRTUAL_KEYS LOGD("VirtualKeys: Generating key down: keyCode=%d, scanCode=%d", mLocked.currentVirtualKey.keyCode, mLocked.currentVirtualKey.scanCode); #endif keyEventAction = AKEY_EVENT_ACTION_DOWN; keyEventFlags = AKEY_EVENT_FLAG_FROM_SYSTEM | AKEY_EVENT_FLAG_VIRTUAL_HARD_KEY; touchResult = SKIP_TOUCH; goto DispatchVirtualKey; } } return DROP_STROKE; } } return DISPATCH_TOUCH; } DispatchVirtualKey: // Collect remaining state needed to dispatch virtual key. keyCode = mLocked.currentVirtualKey.keyCode; scanCode = mLocked.currentVirtualKey.scanCode; downTime = mLocked.currentVirtualKey.downTime; } // release lock // Dispatch virtual key. int32_t metaState = mContext->getGlobalMetaState(); policyFlags |= POLICY_FLAG_VIRTUAL; getDispatcher()->notifyKey(when, getDeviceId(), AINPUT_SOURCE_KEYBOARD, policyFlags, keyEventAction, keyEventFlags, keyCode, scanCode, metaState, downTime); return touchResult; } void TouchInputMapper::suppressSwipeOntoVirtualKeys(nsecs_t when) { // Disable all virtual key touches that happen within a short time interval of the // most recent touch. The idea is to filter out stray virtual key presses when // interacting with the touch screen. // // Problems we're trying to solve: // // 1. While scrolling a list or dragging the window shade, the user swipes down into a // virtual key area that is implemented by a separate touch panel and accidentally // triggers a virtual key. // // 2. While typing in the on screen keyboard, the user taps slightly outside the screen // area and accidentally triggers a virtual key. This often happens when virtual keys // are layed out below the screen near to where the on screen keyboard's space bar // is displayed. if (mParameters.virtualKeyQuietTime > 0 && mCurrentTouch.pointerCount != 0) { mContext->disableVirtualKeysUntil(when + mParameters.virtualKeyQuietTime); } } void TouchInputMapper::dispatchTouches(nsecs_t when, uint32_t policyFlags) { uint32_t currentPointerCount = mCurrentTouch.pointerCount; uint32_t lastPointerCount = mLastTouch.pointerCount; if (currentPointerCount == 0 && lastPointerCount == 0) { return; // nothing to do! } // Update current touch coordinates. int32_t edgeFlags; float xPrecision, yPrecision; prepareTouches(&edgeFlags, &xPrecision, &yPrecision); // Dispatch motions. BitSet32 currentIdBits = mCurrentTouch.idBits; BitSet32 lastIdBits = mLastTouch.idBits; uint32_t metaState = getContext()->getGlobalMetaState(); if (currentIdBits == lastIdBits) { // No pointer id changes so this is a move event. // The dispatcher takes care of batching moves so we don't have to deal with that here. dispatchMotion(when, policyFlags, mTouchSource, AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, mCurrentTouchCoords, mCurrentTouch.idToIndex, currentIdBits, -1, xPrecision, yPrecision, mDownTime); } else { // There may be pointers going up and pointers going down and pointers moving // all at the same time. BitSet32 upIdBits(lastIdBits.value & ~currentIdBits.value); BitSet32 downIdBits(currentIdBits.value & ~lastIdBits.value); BitSet32 moveIdBits(lastIdBits.value & currentIdBits.value); BitSet32 dispatchedIdBits(lastIdBits.value); // Update last coordinates of pointers that have moved so that we observe the new // pointer positions at the same time as other pointers that have just gone up. bool moveNeeded = updateMovedPointerCoords( mCurrentTouchCoords, mCurrentTouch.idToIndex, mLastTouchCoords, mLastTouch.idToIndex, moveIdBits); // Dispatch pointer up events. while (!upIdBits.isEmpty()) { uint32_t upId = upIdBits.firstMarkedBit(); upIdBits.clearBit(upId); dispatchMotion(when, policyFlags, mTouchSource, AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, 0, mLastTouchCoords, mLastTouch.idToIndex, dispatchedIdBits, upId, xPrecision, yPrecision, mDownTime); dispatchedIdBits.clearBit(upId); } // Dispatch move events if any of the remaining pointers moved from their old locations. // Although applications receive new locations as part of individual pointer up // events, they do not generally handle them except when presented in a move event. if (moveNeeded) { assert(moveIdBits.value == dispatchedIdBits.value); dispatchMotion(when, policyFlags, mTouchSource, AMOTION_EVENT_ACTION_MOVE, 0, metaState, 0, mCurrentTouchCoords, mCurrentTouch.idToIndex, dispatchedIdBits, -1, xPrecision, yPrecision, mDownTime); } // Dispatch pointer down events using the new pointer locations. while (!downIdBits.isEmpty()) { uint32_t downId = downIdBits.firstMarkedBit(); downIdBits.clearBit(downId); dispatchedIdBits.markBit(downId); if (dispatchedIdBits.count() == 1) { // First pointer is going down. Set down time. mDownTime = when; } else { // Only send edge flags with first pointer down. edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE; } dispatchMotion(when, policyFlags, mTouchSource, AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, edgeFlags, mCurrentTouchCoords, mCurrentTouch.idToIndex, dispatchedIdBits, downId, xPrecision, yPrecision, mDownTime); } } // Update state for next time. for (uint32_t i = 0; i < currentPointerCount; i++) { mLastTouchCoords[i].copyFrom(mCurrentTouchCoords[i]); } } void TouchInputMapper::prepareTouches(int32_t* outEdgeFlags, float* outXPrecision, float* outYPrecision) { uint32_t currentPointerCount = mCurrentTouch.pointerCount; uint32_t lastPointerCount = mLastTouch.pointerCount; AutoMutex _l(mLock); // Walk through the the active pointers and map touch screen coordinates (TouchData) into // display or surface coordinates (PointerCoords) and adjust for display orientation. for (uint32_t i = 0; i < currentPointerCount; i++) { const PointerData& in = mCurrentTouch.pointers[i]; // ToolMajor and ToolMinor float toolMajor, toolMinor; switch (mCalibration.toolSizeCalibration) { case Calibration::TOOL_SIZE_CALIBRATION_GEOMETRIC: toolMajor = in.toolMajor * mLocked.geometricScale; if (mRawAxes.toolMinor.valid) { toolMinor = in.toolMinor * mLocked.geometricScale; } else { toolMinor = toolMajor; } break; case Calibration::TOOL_SIZE_CALIBRATION_LINEAR: toolMajor = in.toolMajor != 0 ? in.toolMajor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias : 0; if (mRawAxes.toolMinor.valid) { toolMinor = in.toolMinor != 0 ? in.toolMinor * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias : 0; } else { toolMinor = toolMajor; } break; case Calibration::TOOL_SIZE_CALIBRATION_AREA: if (in.toolMajor != 0) { float diameter = sqrtf(in.toolMajor * mLocked.toolSizeAreaScale + mLocked.toolSizeAreaBias); toolMajor = diameter * mLocked.toolSizeLinearScale + mLocked.toolSizeLinearBias; } else { toolMajor = 0; } toolMinor = toolMajor; break; default: toolMajor = 0; toolMinor = 0; break; } if (mCalibration.haveToolSizeIsSummed && mCalibration.toolSizeIsSummed) { toolMajor /= currentPointerCount; toolMinor /= currentPointerCount; } // Pressure float rawPressure; switch (mCalibration.pressureSource) { case Calibration::PRESSURE_SOURCE_PRESSURE: rawPressure = in.pressure; break; case Calibration::PRESSURE_SOURCE_TOUCH: rawPressure = in.touchMajor; break; default: rawPressure = 0; } float pressure; switch (mCalibration.pressureCalibration) { case Calibration::PRESSURE_CALIBRATION_PHYSICAL: case Calibration::PRESSURE_CALIBRATION_AMPLITUDE: pressure = rawPressure * mLocked.pressureScale; break; default: pressure = 1; break; } // TouchMajor and TouchMinor float touchMajor, touchMinor; switch (mCalibration.touchSizeCalibration) { case Calibration::TOUCH_SIZE_CALIBRATION_GEOMETRIC: touchMajor = in.touchMajor * mLocked.geometricScale; if (mRawAxes.touchMinor.valid) { touchMinor = in.touchMinor * mLocked.geometricScale; } else { touchMinor = touchMajor; } break; case Calibration::TOUCH_SIZE_CALIBRATION_PRESSURE: touchMajor = toolMajor * pressure; touchMinor = toolMinor * pressure; break; default: touchMajor = 0; touchMinor = 0; break; } if (touchMajor > toolMajor) { touchMajor = toolMajor; } if (touchMinor > toolMinor) { touchMinor = toolMinor; } // Size float size; switch (mCalibration.sizeCalibration) { case Calibration::SIZE_CALIBRATION_NORMALIZED: { float rawSize = mRawAxes.toolMinor.valid ? avg(in.toolMajor, in.toolMinor) : in.toolMajor; size = rawSize * mLocked.sizeScale; break; } default: size = 0; break; } // Orientation float orientation; switch (mCalibration.orientationCalibration) { case Calibration::ORIENTATION_CALIBRATION_INTERPOLATED: orientation = in.orientation * mLocked.orientationScale; break; case Calibration::ORIENTATION_CALIBRATION_VECTOR: { int32_t c1 = signExtendNybble((in.orientation & 0xf0) >> 4); int32_t c2 = signExtendNybble(in.orientation & 0x0f); if (c1 != 0 || c2 != 0) { orientation = atan2f(c1, c2) * 0.5f; float scale = 1.0f + hypotf(c1, c2) / 16.0f; touchMajor *= scale; touchMinor /= scale; toolMajor *= scale; toolMinor /= scale; } else { orientation = 0; } break; } default: orientation = 0; } // X and Y // Adjust coords for surface orientation. float x, y; switch (mLocked.surfaceOrientation) { case DISPLAY_ORIENTATION_90: x = float(in.y - mRawAxes.y.minValue) * mLocked.yScale; y = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale; orientation -= M_PI_2; if (orientation < - M_PI_2) { orientation += M_PI; } break; case DISPLAY_ORIENTATION_180: x = float(mRawAxes.x.maxValue - in.x) * mLocked.xScale; y = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale; break; case DISPLAY_ORIENTATION_270: x = float(mRawAxes.y.maxValue - in.y) * mLocked.yScale; y = float(in.x - mRawAxes.x.minValue) * mLocked.xScale; orientation += M_PI_2; if (orientation > M_PI_2) { orientation -= M_PI; } break; default: x = float(in.x - mRawAxes.x.minValue) * mLocked.xScale; y = float(in.y - mRawAxes.y.minValue) * mLocked.yScale; break; } // Write output coords. PointerCoords& out = mCurrentTouchCoords[i]; out.clear(); out.setAxisValue(AMOTION_EVENT_AXIS_X, x); out.setAxisValue(AMOTION_EVENT_AXIS_Y, y); out.setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, pressure); out.setAxisValue(AMOTION_EVENT_AXIS_SIZE, size); out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, touchMajor); out.setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, touchMinor); out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, toolMajor); out.setAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR, toolMinor); out.setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, orientation); } // Check edge flags by looking only at the first pointer since the flags are // global to the event. *outEdgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE; if (lastPointerCount == 0 && currentPointerCount > 0) { const PointerData& in = mCurrentTouch.pointers[0]; if (in.x <= mRawAxes.x.minValue) { *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_LEFT, mLocked.surfaceOrientation); } else if (in.x >= mRawAxes.x.maxValue) { *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_RIGHT, mLocked.surfaceOrientation); } if (in.y <= mRawAxes.y.minValue) { *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_TOP, mLocked.surfaceOrientation); } else if (in.y >= mRawAxes.y.maxValue) { *outEdgeFlags |= rotateEdgeFlag(AMOTION_EVENT_EDGE_FLAG_BOTTOM, mLocked.surfaceOrientation); } } *outXPrecision = mLocked.orientedXPrecision; *outYPrecision = mLocked.orientedYPrecision; } void TouchInputMapper::dispatchPointerGestures(nsecs_t when, uint32_t policyFlags, bool isTimeout) { // Switch pointer presentation. mPointerController->setPresentation( mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS ? PointerControllerInterface::PRESENTATION_SPOT : PointerControllerInterface::PRESENTATION_POINTER); // Update current gesture coordinates. bool cancelPreviousGesture, finishPreviousGesture; bool sendEvents = preparePointerGestures(when, &cancelPreviousGesture, &finishPreviousGesture, isTimeout); if (!sendEvents) { return; } // Show the pointer if needed. if (mPointerGesture.currentGestureMode != PointerGesture::NEUTRAL && mPointerGesture.currentGestureMode != PointerGesture::QUIET) { mPointerController->unfade(); } // Send events! uint32_t metaState = getContext()->getGlobalMetaState(); // Update last coordinates of pointers that have moved so that we observe the new // pointer positions at the same time as other pointers that have just gone up. bool down = mPointerGesture.currentGestureMode == PointerGesture::TAP || mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG || mPointerGesture.currentGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG || mPointerGesture.currentGestureMode == PointerGesture::PRESS || mPointerGesture.currentGestureMode == PointerGesture::SWIPE || mPointerGesture.currentGestureMode == PointerGesture::FREEFORM; bool moveNeeded = false; if (down && !cancelPreviousGesture && !finishPreviousGesture && !mPointerGesture.lastGestureIdBits.isEmpty() && !mPointerGesture.currentGestureIdBits.isEmpty()) { BitSet32 movedGestureIdBits(mPointerGesture.currentGestureIdBits.value & mPointerGesture.lastGestureIdBits.value); moveNeeded = updateMovedPointerCoords( mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, movedGestureIdBits); } // Send motion events for all pointers that went up or were canceled. BitSet32 dispatchedGestureIdBits(mPointerGesture.lastGestureIdBits); if (!dispatchedGestureIdBits.isEmpty()) { if (cancelPreviousGesture) { dispatchMotion(when, policyFlags, mPointerSource, AMOTION_EVENT_ACTION_CANCEL, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, dispatchedGestureIdBits, -1, 0, 0, mPointerGesture.downTime); dispatchedGestureIdBits.clear(); } else { BitSet32 upGestureIdBits; if (finishPreviousGesture) { upGestureIdBits = dispatchedGestureIdBits; } else { upGestureIdBits.value = dispatchedGestureIdBits.value & ~mPointerGesture.currentGestureIdBits.value; } while (!upGestureIdBits.isEmpty()) { uint32_t id = upGestureIdBits.firstMarkedBit(); upGestureIdBits.clearBit(id); dispatchMotion(when, policyFlags, mPointerSource, AMOTION_EVENT_ACTION_POINTER_UP, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.lastGestureCoords, mPointerGesture.lastGestureIdToIndex, dispatchedGestureIdBits, id, 0, 0, mPointerGesture.downTime); dispatchedGestureIdBits.clearBit(id); } } } // Send motion events for all pointers that moved. if (moveNeeded) { dispatchMotion(when, policyFlags, mPointerSource, AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } // Send motion events for all pointers that went down. if (down) { BitSet32 downGestureIdBits(mPointerGesture.currentGestureIdBits.value & ~dispatchedGestureIdBits.value); while (!downGestureIdBits.isEmpty()) { uint32_t id = downGestureIdBits.firstMarkedBit(); downGestureIdBits.clearBit(id); dispatchedGestureIdBits.markBit(id); int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_NONE; if (dispatchedGestureIdBits.count() == 1) { // First pointer is going down. Calculate edge flags and set down time. uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; const PointerCoords& downCoords = mPointerGesture.currentGestureCoords[index]; edgeFlags = calculateEdgeFlagsUsingPointerBounds(mPointerController, downCoords.getAxisValue(AMOTION_EVENT_AXIS_X), downCoords.getAxisValue(AMOTION_EVENT_AXIS_Y)); mPointerGesture.downTime = when; } dispatchMotion(when, policyFlags, mPointerSource, AMOTION_EVENT_ACTION_POINTER_DOWN, 0, metaState, edgeFlags, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, dispatchedGestureIdBits, id, 0, 0, mPointerGesture.downTime); } } // Send motion events for hover. if (mPointerGesture.currentGestureMode == PointerGesture::HOVER) { dispatchMotion(when, policyFlags, mPointerSource, AMOTION_EVENT_ACTION_HOVER_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, mPointerGesture.currentGestureCoords, mPointerGesture.currentGestureIdToIndex, mPointerGesture.currentGestureIdBits, -1, 0, 0, mPointerGesture.downTime); } // Update state. mPointerGesture.lastGestureMode = mPointerGesture.currentGestureMode; if (!down) { mPointerGesture.lastGestureIdBits.clear(); } else { mPointerGesture.lastGestureIdBits = mPointerGesture.currentGestureIdBits; for (BitSet32 idBits(mPointerGesture.currentGestureIdBits); !idBits.isEmpty(); ) { uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; mPointerGesture.lastGestureCoords[index].copyFrom( mPointerGesture.currentGestureCoords[index]); mPointerGesture.lastGestureIdToIndex[id] = index; } } } bool TouchInputMapper::preparePointerGestures(nsecs_t when, bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout) { *outCancelPreviousGesture = false; *outFinishPreviousGesture = false; AutoMutex _l(mLock); // Handle TAP timeout. if (isTimeout) { #if DEBUG_GESTURES LOGD("Gestures: Processing timeout"); #endif if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { if (when <= mPointerGesture.tapUpTime + TAP_DRAG_INTERVAL) { // The tap/drag timeout has not yet expired. getContext()->requestTimeoutAtTime(mPointerGesture.tapUpTime + TAP_DRAG_INTERVAL); } else { // The tap is finished. #if DEBUG_GESTURES LOGD("Gestures: TAP finished"); #endif *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; mPointerGesture.currentGestureIdBits.clear(); mPointerController->setButtonState(0); if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL; mPointerGesture.spotIdBits.clear(); moveSpotsLocked(); } return true; } } // We did not handle this timeout. return false; } // Update the velocity tracker. { VelocityTracker::Position positions[MAX_POINTERS]; uint32_t count = 0; for (BitSet32 idBits(mCurrentTouch.idBits); !idBits.isEmpty(); count++) { uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); uint32_t index = mCurrentTouch.idToIndex[id]; positions[count].x = mCurrentTouch.pointers[index].x * mLocked.pointerGestureXMovementScale; positions[count].y = mCurrentTouch.pointers[index].y * mLocked.pointerGestureYMovementScale; } mPointerGesture.velocityTracker.addMovement(when, mCurrentTouch.idBits, positions); } // Pick a new active touch id if needed. // Choose an arbitrary pointer that just went down, if there is one. // Otherwise choose an arbitrary remaining pointer. // This guarantees we always have an active touch id when there is at least one pointer. // We keep the same active touch id for as long as possible. bool activeTouchChanged = false; int32_t lastActiveTouchId = mPointerGesture.activeTouchId; int32_t activeTouchId = lastActiveTouchId; if (activeTouchId < 0) { if (!mCurrentTouch.idBits.isEmpty()) { activeTouchChanged = true; activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit(); mPointerGesture.firstTouchTime = when; } } else if (!mCurrentTouch.idBits.hasBit(activeTouchId)) { activeTouchChanged = true; if (!mCurrentTouch.idBits.isEmpty()) { activeTouchId = mPointerGesture.activeTouchId = mCurrentTouch.idBits.firstMarkedBit(); } else { activeTouchId = mPointerGesture.activeTouchId = -1; } } // Determine whether we are in quiet time. bool isQuietTime = false; if (activeTouchId < 0) { mPointerGesture.resetQuietTime(); } else { isQuietTime = when < mPointerGesture.quietTime + QUIET_INTERVAL; if (!isQuietTime) { if ((mPointerGesture.lastGestureMode == PointerGesture::PRESS || mPointerGesture.lastGestureMode == PointerGesture::SWIPE || mPointerGesture.lastGestureMode == PointerGesture::FREEFORM) && mCurrentTouch.pointerCount < 2) { // Enter quiet time when exiting swipe or freeform state. // This is to prevent accidentally entering the hover state and flinging the // pointer when finishing a swipe and there is still one pointer left onscreen. isQuietTime = true; } else if (mPointerGesture.lastGestureMode == PointerGesture::BUTTON_CLICK_OR_DRAG && mCurrentTouch.pointerCount >= 2 && !isPointerDown(mCurrentTouch.buttonState)) { // Enter quiet time when releasing the button and there are still two or more // fingers down. This may indicate that one finger was used to press the button // but it has not gone up yet. isQuietTime = true; } if (isQuietTime) { mPointerGesture.quietTime = when; } } } // Switch states based on button and pointer state. if (isQuietTime) { // Case 1: Quiet time. (QUIET) #if DEBUG_GESTURES LOGD("Gestures: QUIET for next %0.3fms", (mPointerGesture.quietTime + QUIET_INTERVAL - when) * 0.000001f); #endif *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::QUIET; mPointerGesture.currentGestureIdBits.clear(); mPointerController->setButtonState(0); if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL; mPointerGesture.spotIdBits.clear(); moveSpotsLocked(); } } else if (isPointerDown(mCurrentTouch.buttonState)) { // Case 2: Button is pressed. (BUTTON_CLICK_OR_DRAG) // The pointer follows the active touch point. // Emit DOWN, MOVE, UP events at the pointer location. // // Only the active touch matters; other fingers are ignored. This policy helps // to handle the case where the user places a second finger on the touch pad // to apply the necessary force to depress an integrated button below the surface. // We don't want the second finger to be delivered to applications. // // For this to work well, we need to make sure to track the pointer that is really // active. If the user first puts one finger down to click then adds another // finger to drag then the active pointer should switch to the finger that is // being dragged. #if DEBUG_GESTURES LOGD("Gestures: BUTTON_CLICK_OR_DRAG activeTouchId=%d, " "currentTouchPointerCount=%d", activeTouchId, mCurrentTouch.pointerCount); #endif // Reset state when just starting. if (mPointerGesture.lastGestureMode != PointerGesture::BUTTON_CLICK_OR_DRAG) { *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = 0; } // Switch pointers if needed. // Find the fastest pointer and follow it. if (activeTouchId >= 0) { if (mCurrentTouch.pointerCount > 1) { int32_t bestId = -1; float bestSpeed = DRAG_MIN_SWITCH_SPEED; for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) { uint32_t id = mCurrentTouch.pointers[i].id; float vx, vy; if (mPointerGesture.velocityTracker.getVelocity(id, &vx, &vy)) { float speed = hypotf(vx, vy); if (speed > bestSpeed) { bestId = id; bestSpeed = speed; } } } if (bestId >= 0 && bestId != activeTouchId) { mPointerGesture.activeTouchId = activeTouchId = bestId; activeTouchChanged = true; #if DEBUG_GESTURES LOGD("Gestures: BUTTON_CLICK_OR_DRAG switched pointers, " "bestId=%d, bestSpeed=%0.3f", bestId, bestSpeed); #endif } } if (mLastTouch.idBits.hasBit(activeTouchId)) { const PointerData& currentPointer = mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]]; const PointerData& lastPointer = mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]]; float deltaX = (currentPointer.x - lastPointer.x) * mLocked.pointerGestureXMovementScale; float deltaY = (currentPointer.y - lastPointer.y) * mLocked.pointerGestureYMovementScale; // Move the pointer using a relative motion. // When using spots, the click will occur at the position of the anchor // spot and all other spots will move there. mPointerController->move(deltaX, deltaY); } } float x, y; mPointerController->getPosition(&x, &y); mPointerGesture.currentGestureMode = PointerGesture::BUTTON_CLICK_OR_DRAG; mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); mPointerController->setButtonState(BUTTON_STATE_PRIMARY); if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { if (activeTouchId >= 0) { // Collapse all spots into one point at the pointer location. mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_BUTTON_DRAG; mPointerGesture.spotIdBits.clear(); for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) { uint32_t id = mCurrentTouch.pointers[i].id; mPointerGesture.spotIdBits.markBit(id); mPointerGesture.spotIdToIndex[id] = i; mPointerGesture.spotCoords[i] = mPointerGesture.currentGestureCoords[0]; } } else { // No fingers. Generate a spot at the pointer location so the // anchor appears to be pressed. mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_BUTTON_CLICK; mPointerGesture.spotIdBits.clear(); mPointerGesture.spotIdBits.markBit(0); mPointerGesture.spotIdToIndex[0] = 0; mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0]; } moveSpotsLocked(); } } else if (mCurrentTouch.pointerCount == 0) { // Case 3. No fingers down and button is not pressed. (NEUTRAL) *outFinishPreviousGesture = true; // Watch for taps coming out of HOVER or TAP_DRAG mode. bool tapped = false; if ((mPointerGesture.lastGestureMode == PointerGesture::HOVER || mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) && mLastTouch.pointerCount == 1) { if (when <= mPointerGesture.tapDownTime + TAP_INTERVAL) { float x, y; mPointerController->getPosition(&x, &y); if (fabs(x - mPointerGesture.tapX) <= TAP_SLOP && fabs(y - mPointerGesture.tapY) <= TAP_SLOP) { #if DEBUG_GESTURES LOGD("Gestures: TAP"); #endif mPointerGesture.tapUpTime = when; getContext()->requestTimeoutAtTime(when + TAP_DRAG_INTERVAL); mPointerGesture.activeGestureId = 0; mPointerGesture.currentGestureMode = PointerGesture::TAP; mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit( mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[ mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue( AMOTION_EVENT_AXIS_X, mPointerGesture.tapX); mPointerGesture.currentGestureCoords[0].setAxisValue( AMOTION_EVENT_AXIS_Y, mPointerGesture.tapY); mPointerGesture.currentGestureCoords[0].setAxisValue( AMOTION_EVENT_AXIS_PRESSURE, 1.0f); mPointerController->setButtonState(BUTTON_STATE_PRIMARY); if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_TAP; mPointerGesture.spotIdBits.clear(); mPointerGesture.spotIdBits.markBit(lastActiveTouchId); mPointerGesture.spotIdToIndex[lastActiveTouchId] = 0; mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0]; moveSpotsLocked(); } tapped = true; } else { #if DEBUG_GESTURES LOGD("Gestures: Not a TAP, deltaX=%f, deltaY=%f", x - mPointerGesture.tapX, y - mPointerGesture.tapY); #endif } } else { #if DEBUG_GESTURES LOGD("Gestures: Not a TAP, %0.3fms since down", (when - mPointerGesture.tapDownTime) * 0.000001f); #endif } } if (!tapped) { #if DEBUG_GESTURES LOGD("Gestures: NEUTRAL"); #endif mPointerGesture.activeGestureId = -1; mPointerGesture.currentGestureMode = PointerGesture::NEUTRAL; mPointerGesture.currentGestureIdBits.clear(); mPointerController->setButtonState(0); if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_NEUTRAL; mPointerGesture.spotIdBits.clear(); moveSpotsLocked(); } } } else if (mCurrentTouch.pointerCount == 1) { // Case 4. Exactly one finger down, button is not pressed. (HOVER or TAP_DRAG) // The pointer follows the active touch point. // When in HOVER, emit HOVER_MOVE events at the pointer location. // When in TAP_DRAG, emit MOVE events at the pointer location. LOG_ASSERT(activeTouchId >= 0); mPointerGesture.currentGestureMode = PointerGesture::HOVER; if (mPointerGesture.lastGestureMode == PointerGesture::TAP) { if (when <= mPointerGesture.tapUpTime + TAP_DRAG_INTERVAL) { float x, y; mPointerController->getPosition(&x, &y); if (fabs(x - mPointerGesture.tapX) <= TAP_SLOP && fabs(y - mPointerGesture.tapY) <= TAP_SLOP) { mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; } else { #if DEBUG_GESTURES LOGD("Gestures: Not a TAP_DRAG, deltaX=%f, deltaY=%f", x - mPointerGesture.tapX, y - mPointerGesture.tapY); #endif } } else { #if DEBUG_GESTURES LOGD("Gestures: Not a TAP_DRAG, %0.3fms time since up", (when - mPointerGesture.tapUpTime) * 0.000001f); #endif } } else if (mPointerGesture.lastGestureMode == PointerGesture::TAP_DRAG) { mPointerGesture.currentGestureMode = PointerGesture::TAP_DRAG; } if (mLastTouch.idBits.hasBit(activeTouchId)) { const PointerData& currentPointer = mCurrentTouch.pointers[mCurrentTouch.idToIndex[activeTouchId]]; const PointerData& lastPointer = mLastTouch.pointers[mLastTouch.idToIndex[activeTouchId]]; float deltaX = (currentPointer.x - lastPointer.x) * mLocked.pointerGestureXMovementScale; float deltaY = (currentPointer.y - lastPointer.y) * mLocked.pointerGestureYMovementScale; // Move the pointer using a relative motion. // When using spots, the hover or drag will occur at the position of the anchor spot. mPointerController->move(deltaX, deltaY); } bool down; if (mPointerGesture.currentGestureMode == PointerGesture::TAP_DRAG) { #if DEBUG_GESTURES LOGD("Gestures: TAP_DRAG"); #endif down = true; } else { #if DEBUG_GESTURES LOGD("Gestures: HOVER"); #endif *outFinishPreviousGesture = true; mPointerGesture.activeGestureId = 0; down = false; } float x, y; mPointerController->getPosition(&x, &y); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, down ? 1.0f : 0.0f); mPointerController->setButtonState(down ? BUTTON_STATE_PRIMARY : 0); if (mLastTouch.pointerCount == 0 && mCurrentTouch.pointerCount != 0) { mPointerGesture.resetTap(); mPointerGesture.tapDownTime = when; mPointerGesture.tapX = x; mPointerGesture.tapY = y; } if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = down ? PointerControllerInterface::SPOT_GESTURE_DRAG : PointerControllerInterface::SPOT_GESTURE_HOVER; mPointerGesture.spotIdBits.clear(); mPointerGesture.spotIdBits.markBit(activeTouchId); mPointerGesture.spotIdToIndex[activeTouchId] = 0; mPointerGesture.spotCoords[0] = mPointerGesture.currentGestureCoords[0]; moveSpotsLocked(); } } else { // Case 5. At least two fingers down, button is not pressed. (PRESS, SWIPE or FREEFORM) // We need to provide feedback for each finger that goes down so we cannot wait // for the fingers to move before deciding what to do. // // The ambiguous case is deciding what to do when there are two fingers down but they // have not moved enough to determine whether they are part of a drag or part of a // freeform gesture, or just a press or long-press at the pointer location. // // When there are two fingers we start with the PRESS hypothesis and we generate a // down at the pointer location. // // When the two fingers move enough or when additional fingers are added, we make // a decision to transition into SWIPE or FREEFORM mode accordingly. LOG_ASSERT(activeTouchId >= 0); bool needReference = false; bool settled = when >= mPointerGesture.firstTouchTime + MULTITOUCH_SETTLE_INTERVAL; if (mPointerGesture.lastGestureMode != PointerGesture::PRESS && mPointerGesture.lastGestureMode != PointerGesture::SWIPE && mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { *outFinishPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::PRESS; mPointerGesture.activeGestureId = 0; if (settled && mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS && mLastTouch.idBits.hasBit(mPointerGesture.activeTouchId)) { // The spot is already visible and has settled, use it as the reference point // for the gesture. Other spots will be positioned relative to this one. #if DEBUG_GESTURES LOGD("Gestures: Using active spot as reference for MULTITOUCH, " "settle time expired %0.3fms ago", (when - mPointerGesture.firstTouchTime - MULTITOUCH_SETTLE_INTERVAL) * 0.000001f); #endif const PointerData& d = mLastTouch.pointers[mLastTouch.idToIndex[ mPointerGesture.activeTouchId]]; mPointerGesture.referenceTouchX = d.x; mPointerGesture.referenceTouchY = d.y; const PointerCoords& c = mPointerGesture.spotCoords[mPointerGesture.spotIdToIndex[ mPointerGesture.activeTouchId]]; mPointerGesture.referenceGestureX = c.getAxisValue(AMOTION_EVENT_AXIS_X); mPointerGesture.referenceGestureY = c.getAxisValue(AMOTION_EVENT_AXIS_Y); } else { #if DEBUG_GESTURES LOGD("Gestures: Using centroid as reference for MULTITOUCH, " "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime + MULTITOUCH_SETTLE_INTERVAL - when) * 0.000001f); #endif needReference = true; } } else if (!settled && mCurrentTouch.pointerCount > mLastTouch.pointerCount) { // Additional pointers have gone down but not yet settled. // Reset the gesture. #if DEBUG_GESTURES LOGD("Gestures: Resetting gesture since additional pointers went down for MULTITOUCH, " "settle time remaining %0.3fms", (mPointerGesture.firstTouchTime + MULTITOUCH_SETTLE_INTERVAL - when) * 0.000001f); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::PRESS; mPointerGesture.activeGestureId = 0; } else { // Continue previous gesture. mPointerGesture.currentGestureMode = mPointerGesture.lastGestureMode; } if (needReference) { // Use the centroid and pointer location as the reference points for the gesture. mCurrentTouch.getCentroid(&mPointerGesture.referenceTouchX, &mPointerGesture.referenceTouchY); mPointerController->getPosition(&mPointerGesture.referenceGestureX, &mPointerGesture.referenceGestureY); } if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) { float d; if (mCurrentTouch.pointerCount > 2) { // There are more than two pointers, switch to FREEFORM. #if DEBUG_GESTURES LOGD("Gestures: PRESS transitioned to FREEFORM, number of pointers %d > 2", mCurrentTouch.pointerCount); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } else if (((d = distance( mCurrentTouch.pointers[0].x, mCurrentTouch.pointers[0].y, mCurrentTouch.pointers[1].x, mCurrentTouch.pointers[1].y)) > mLocked.pointerGestureMaxSwipeWidth)) { // There are two pointers but they are too far apart, switch to FREEFORM. #if DEBUG_GESTURES LOGD("Gestures: PRESS transitioned to FREEFORM, distance %0.3f > %0.3f", d, mLocked.pointerGestureMaxSwipeWidth); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } else { // There are two pointers. Wait for both pointers to start moving // before deciding whether this is a SWIPE or FREEFORM gesture. uint32_t id1 = mCurrentTouch.pointers[0].id; uint32_t id2 = mCurrentTouch.pointers[1].id; float vx1, vy1, vx2, vy2; mPointerGesture.velocityTracker.getVelocity(id1, &vx1, &vy1); mPointerGesture.velocityTracker.getVelocity(id2, &vx2, &vy2); float speed1 = hypotf(vx1, vy1); float speed2 = hypotf(vx2, vy2); if (speed1 >= MULTITOUCH_MIN_SPEED && speed2 >= MULTITOUCH_MIN_SPEED) { // Calculate the dot product of the velocity vectors. // When the vectors are oriented in approximately the same direction, // the angle betweeen them is near zero and the cosine of the angle // approches 1.0. Recall that dot(v1, v2) = cos(angle) * mag(v1) * mag(v2). float dot = vx1 * vx2 + vy1 * vy2; float cosine = dot / (speed1 * speed2); // denominator always > 0 if (cosine >= SWIPE_TRANSITION_ANGLE_COSINE) { // Pointers are moving in the same direction. Switch to SWIPE. #if DEBUG_GESTURES LOGD("Gestures: PRESS transitioned to SWIPE, " "speed1 %0.3f >= %0.3f, speed2 %0.3f >= %0.3f, " "cosine %0.3f >= %0.3f", speed1, MULTITOUCH_MIN_SPEED, speed2, MULTITOUCH_MIN_SPEED, cosine, SWIPE_TRANSITION_ANGLE_COSINE); #endif mPointerGesture.currentGestureMode = PointerGesture::SWIPE; } else { // Pointers are moving in different directions. Switch to FREEFORM. #if DEBUG_GESTURES LOGD("Gestures: PRESS transitioned to FREEFORM, " "speed1 %0.3f >= %0.3f, speed2 %0.3f >= %0.3f, " "cosine %0.3f < %0.3f", speed1, MULTITOUCH_MIN_SPEED, speed2, MULTITOUCH_MIN_SPEED, cosine, SWIPE_TRANSITION_ANGLE_COSINE); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } } } } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { // Switch from SWIPE to FREEFORM if additional pointers go down. // Cancel previous gesture. if (mCurrentTouch.pointerCount > 2) { #if DEBUG_GESTURES LOGD("Gestures: SWIPE transitioned to FREEFORM, number of pointers %d > 2", mCurrentTouch.pointerCount); #endif *outCancelPreviousGesture = true; mPointerGesture.currentGestureMode = PointerGesture::FREEFORM; } } // Move the reference points based on the overall group motion of the fingers. // The objective is to calculate a vector delta that is common to the movement // of all fingers. BitSet32 commonIdBits(mLastTouch.idBits.value & mCurrentTouch.idBits.value); if (!commonIdBits.isEmpty()) { float commonDeltaX = 0, commonDeltaY = 0; for (BitSet32 idBits(commonIdBits); !idBits.isEmpty(); ) { bool first = (idBits == commonIdBits); uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); const PointerData& cpd = mCurrentTouch.pointers[mCurrentTouch.idToIndex[id]]; const PointerData& lpd = mLastTouch.pointers[mLastTouch.idToIndex[id]]; float deltaX = cpd.x - lpd.x; float deltaY = cpd.y - lpd.y; if (first) { commonDeltaX = deltaX; commonDeltaY = deltaY; } else { commonDeltaX = calculateCommonVector(commonDeltaX, deltaX); commonDeltaY = calculateCommonVector(commonDeltaY, deltaY); } } mPointerGesture.referenceTouchX += commonDeltaX; mPointerGesture.referenceTouchY += commonDeltaY; mPointerGesture.referenceGestureX += commonDeltaX * mLocked.pointerGestureXMovementScale; mPointerGesture.referenceGestureY += commonDeltaY * mLocked.pointerGestureYMovementScale; clampPositionUsingPointerBounds(mPointerController, &mPointerGesture.referenceGestureX, &mPointerGesture.referenceGestureY); } // Report gestures. if (mPointerGesture.currentGestureMode == PointerGesture::PRESS) { // PRESS mode. #if DEBUG_GESTURES LOGD("Gestures: PRESS activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount); #endif LOG_ASSERT(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); mPointerController->setButtonState(BUTTON_STATE_PRIMARY); if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_PRESS; } } else if (mPointerGesture.currentGestureMode == PointerGesture::SWIPE) { // SWIPE mode. #if DEBUG_GESTURES LOGD("Gestures: SWIPE activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount); #endif assert(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); mPointerGesture.currentGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.currentGestureIdToIndex[mPointerGesture.activeGestureId] = 0; mPointerGesture.currentGestureCoords[0].clear(); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_X, mPointerGesture.referenceGestureX); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_Y, mPointerGesture.referenceGestureY); mPointerGesture.currentGestureCoords[0].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); mPointerController->setButtonState(0); // touch is not actually following the pointer if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_SWIPE; } } else if (mPointerGesture.currentGestureMode == PointerGesture::FREEFORM) { // FREEFORM mode. #if DEBUG_GESTURES LOGD("Gestures: FREEFORM activeTouchId=%d," "activeGestureId=%d, currentTouchPointerCount=%d", activeTouchId, mPointerGesture.activeGestureId, mCurrentTouch.pointerCount); #endif assert(mPointerGesture.activeGestureId >= 0); mPointerGesture.currentGestureIdBits.clear(); BitSet32 mappedTouchIdBits; BitSet32 usedGestureIdBits; if (mPointerGesture.lastGestureMode != PointerGesture::FREEFORM) { // Initially, assign the active gesture id to the active touch point // if there is one. No other touch id bits are mapped yet. if (!*outCancelPreviousGesture) { mappedTouchIdBits.markBit(activeTouchId); usedGestureIdBits.markBit(mPointerGesture.activeGestureId); mPointerGesture.freeformTouchToGestureIdMap[activeTouchId] = mPointerGesture.activeGestureId; } else { mPointerGesture.activeGestureId = -1; } } else { // Otherwise, assume we mapped all touches from the previous frame. // Reuse all mappings that are still applicable. mappedTouchIdBits.value = mLastTouch.idBits.value & mCurrentTouch.idBits.value; usedGestureIdBits = mPointerGesture.lastGestureIdBits; // Check whether we need to choose a new active gesture id because the // current went went up. for (BitSet32 upTouchIdBits(mLastTouch.idBits.value & ~mCurrentTouch.idBits.value); !upTouchIdBits.isEmpty(); ) { uint32_t upTouchId = upTouchIdBits.firstMarkedBit(); upTouchIdBits.clearBit(upTouchId); uint32_t upGestureId = mPointerGesture.freeformTouchToGestureIdMap[upTouchId]; if (upGestureId == uint32_t(mPointerGesture.activeGestureId)) { mPointerGesture.activeGestureId = -1; break; } } } #if DEBUG_GESTURES LOGD("Gestures: FREEFORM follow up " "mappedTouchIdBits=0x%08x, usedGestureIdBits=0x%08x, " "activeGestureId=%d", mappedTouchIdBits.value, usedGestureIdBits.value, mPointerGesture.activeGestureId); #endif for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) { uint32_t touchId = mCurrentTouch.pointers[i].id; uint32_t gestureId; if (!mappedTouchIdBits.hasBit(touchId)) { gestureId = usedGestureIdBits.firstUnmarkedBit(); usedGestureIdBits.markBit(gestureId); mPointerGesture.freeformTouchToGestureIdMap[touchId] = gestureId; #if DEBUG_GESTURES LOGD("Gestures: FREEFORM " "new mapping for touch id %d -> gesture id %d", touchId, gestureId); #endif } else { gestureId = mPointerGesture.freeformTouchToGestureIdMap[touchId]; #if DEBUG_GESTURES LOGD("Gestures: FREEFORM " "existing mapping for touch id %d -> gesture id %d", touchId, gestureId); #endif } mPointerGesture.currentGestureIdBits.markBit(gestureId); mPointerGesture.currentGestureIdToIndex[gestureId] = i; float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX) * mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX; float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY) * mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY; mPointerGesture.currentGestureCoords[i].clear(); mPointerGesture.currentGestureCoords[i].setAxisValue( AMOTION_EVENT_AXIS_X, x); mPointerGesture.currentGestureCoords[i].setAxisValue( AMOTION_EVENT_AXIS_Y, y); mPointerGesture.currentGestureCoords[i].setAxisValue( AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } if (mPointerGesture.activeGestureId < 0) { mPointerGesture.activeGestureId = mPointerGesture.currentGestureIdBits.firstMarkedBit(); #if DEBUG_GESTURES LOGD("Gestures: FREEFORM new " "activeGestureId=%d", mPointerGesture.activeGestureId); #endif } mPointerController->setButtonState(0); // touch is not actually following the pointer if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotGesture = PointerControllerInterface::SPOT_GESTURE_FREEFORM; } } // Update spot locations for PRESS, SWIPE and FREEFORM. // We use the same calculation as we do to calculate the gesture pointers // for FREEFORM so that the spots smoothly track gestures. if (mParameters.gestureMode == Parameters::GESTURE_MODE_SPOTS) { mPointerGesture.spotIdBits.clear(); for (uint32_t i = 0; i < mCurrentTouch.pointerCount; i++) { uint32_t id = mCurrentTouch.pointers[i].id; mPointerGesture.spotIdBits.markBit(id); mPointerGesture.spotIdToIndex[id] = i; float x = (mCurrentTouch.pointers[i].x - mPointerGesture.referenceTouchX) * mLocked.pointerGestureXZoomScale + mPointerGesture.referenceGestureX; float y = (mCurrentTouch.pointers[i].y - mPointerGesture.referenceTouchY) * mLocked.pointerGestureYZoomScale + mPointerGesture.referenceGestureY; mPointerGesture.spotCoords[i].clear(); mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, x); mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, y); mPointerGesture.spotCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 1.0f); } moveSpotsLocked(); } } #if DEBUG_GESTURES LOGD("Gestures: finishPreviousGesture=%s, cancelPreviousGesture=%s, " "currentGestureMode=%d, currentGestureIdBits=0x%08x, " "lastGestureMode=%d, lastGestureIdBits=0x%08x", toString(*outFinishPreviousGesture), toString(*outCancelPreviousGesture), mPointerGesture.currentGestureMode, mPointerGesture.currentGestureIdBits.value, mPointerGesture.lastGestureMode, mPointerGesture.lastGestureIdBits.value); for (BitSet32 idBits = mPointerGesture.currentGestureIdBits; !idBits.isEmpty(); ) { uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); uint32_t index = mPointerGesture.currentGestureIdToIndex[id]; const PointerCoords& coords = mPointerGesture.currentGestureCoords[index]; LOGD(" currentGesture[%d]: index=%d, x=%0.3f, y=%0.3f, pressure=%0.3f", id, index, coords.getAxisValue(AMOTION_EVENT_AXIS_X), coords.getAxisValue(AMOTION_EVENT_AXIS_Y), coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); } for (BitSet32 idBits = mPointerGesture.lastGestureIdBits; !idBits.isEmpty(); ) { uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); uint32_t index = mPointerGesture.lastGestureIdToIndex[id]; const PointerCoords& coords = mPointerGesture.lastGestureCoords[index]; LOGD(" lastGesture[%d]: index=%d, x=%0.3f, y=%0.3f, pressure=%0.3f", id, index, coords.getAxisValue(AMOTION_EVENT_AXIS_X), coords.getAxisValue(AMOTION_EVENT_AXIS_Y), coords.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE)); } #endif return true; } void TouchInputMapper::moveSpotsLocked() { mPointerController->setSpots(mPointerGesture.spotGesture, mPointerGesture.spotCoords, mPointerGesture.spotIdToIndex, mPointerGesture.spotIdBits); } void TouchInputMapper::dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source, int32_t action, int32_t flags, uint32_t metaState, int32_t edgeFlags, const PointerCoords* coords, const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime) { PointerCoords pointerCoords[MAX_POINTERS]; int32_t pointerIds[MAX_POINTERS]; uint32_t pointerCount = 0; while (!idBits.isEmpty()) { uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); uint32_t index = idToIndex[id]; pointerIds[pointerCount] = id; pointerCoords[pointerCount].copyFrom(coords[index]); if (changedId >= 0 && id == uint32_t(changedId)) { action |= pointerCount << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT; } pointerCount += 1; } assert(pointerCount != 0); if (changedId >= 0 && pointerCount == 1) { // Replace initial down and final up action. // We can compare the action without masking off the changed pointer index // because we know the index is 0. if (action == AMOTION_EVENT_ACTION_POINTER_DOWN) { action = AMOTION_EVENT_ACTION_DOWN; } else if (action == AMOTION_EVENT_ACTION_POINTER_UP) { action = AMOTION_EVENT_ACTION_UP; } else { // Can't happen. assert(false); } } getDispatcher()->notifyMotion(when, getDeviceId(), source, policyFlags, action, flags, metaState, edgeFlags, pointerCount, pointerIds, pointerCoords, xPrecision, yPrecision, downTime); } bool TouchInputMapper::updateMovedPointerCoords( const PointerCoords* inCoords, const uint32_t* inIdToIndex, PointerCoords* outCoords, const uint32_t* outIdToIndex, BitSet32 idBits) const { bool changed = false; while (!idBits.isEmpty()) { uint32_t id = idBits.firstMarkedBit(); idBits.clearBit(id); uint32_t inIndex = inIdToIndex[id]; uint32_t outIndex = outIdToIndex[id]; const PointerCoords& curInCoords = inCoords[inIndex]; PointerCoords& curOutCoords = outCoords[outIndex]; if (curInCoords != curOutCoords) { curOutCoords.copyFrom(curInCoords); changed = true; } } return changed; } void TouchInputMapper::fadePointer() { { // acquire lock AutoMutex _l(mLock); if (mPointerController != NULL) { mPointerController->fade(); } } // release lock } bool TouchInputMapper::isPointInsideSurfaceLocked(int32_t x, int32_t y) { return x >= mRawAxes.x.minValue && x <= mRawAxes.x.maxValue && y >= mRawAxes.y.minValue && y <= mRawAxes.y.maxValue; } const TouchInputMapper::VirtualKey* TouchInputMapper::findVirtualKeyHitLocked( int32_t x, int32_t y) { size_t numVirtualKeys = mLocked.virtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mLocked.virtualKeys[i]; #if DEBUG_VIRTUAL_KEYS LOGD("VirtualKeys: Hit test (%d, %d): keyCode=%d, scanCode=%d, " "left=%d, top=%d, right=%d, bottom=%d", x, y, virtualKey.keyCode, virtualKey.scanCode, virtualKey.hitLeft, virtualKey.hitTop, virtualKey.hitRight, virtualKey.hitBottom); #endif if (virtualKey.isHit(x, y)) { return & virtualKey; } } return NULL; } void TouchInputMapper::calculatePointerIds() { uint32_t currentPointerCount = mCurrentTouch.pointerCount; uint32_t lastPointerCount = mLastTouch.pointerCount; if (currentPointerCount == 0) { // No pointers to assign. mCurrentTouch.idBits.clear(); } else if (lastPointerCount == 0) { // All pointers are new. mCurrentTouch.idBits.clear(); for (uint32_t i = 0; i < currentPointerCount; i++) { mCurrentTouch.pointers[i].id = i; mCurrentTouch.idToIndex[i] = i; mCurrentTouch.idBits.markBit(i); } } else if (currentPointerCount == 1 && lastPointerCount == 1) { // Only one pointer and no change in count so it must have the same id as before. uint32_t id = mLastTouch.pointers[0].id; mCurrentTouch.pointers[0].id = id; mCurrentTouch.idToIndex[id] = 0; mCurrentTouch.idBits.value = BitSet32::valueForBit(id); } else { // General case. // We build a heap of squared euclidean distances between current and last pointers // associated with the current and last pointer indices. Then, we find the best // match (by distance) for each current pointer. PointerDistanceHeapElement heap[MAX_POINTERS * MAX_POINTERS]; uint32_t heapSize = 0; for (uint32_t currentPointerIndex = 0; currentPointerIndex < currentPointerCount; currentPointerIndex++) { for (uint32_t lastPointerIndex = 0; lastPointerIndex < lastPointerCount; lastPointerIndex++) { int64_t deltaX = mCurrentTouch.pointers[currentPointerIndex].x - mLastTouch.pointers[lastPointerIndex].x; int64_t deltaY = mCurrentTouch.pointers[currentPointerIndex].y - mLastTouch.pointers[lastPointerIndex].y; uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); // Insert new element into the heap (sift up). heap[heapSize].currentPointerIndex = currentPointerIndex; heap[heapSize].lastPointerIndex = lastPointerIndex; heap[heapSize].distance = distance; heapSize += 1; } } // Heapify for (uint32_t startIndex = heapSize / 2; startIndex != 0; ) { startIndex -= 1; for (uint32_t parentIndex = startIndex; ;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } } #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - initial distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } #endif // Pull matches out by increasing order of distance. // To avoid reassigning pointers that have already been matched, the loop keeps track // of which last and current pointers have been matched using the matchedXXXBits variables. // It also tracks the used pointer id bits. BitSet32 matchedLastBits(0); BitSet32 matchedCurrentBits(0); BitSet32 usedIdBits(0); bool first = true; for (uint32_t i = min(currentPointerCount, lastPointerCount); i > 0; i--) { for (;;) { if (first) { // The first time through the loop, we just consume the root element of // the heap (the one with smallest distance). first = false; } else { // Previous iterations consumed the root element of the heap. // Pop root element off of the heap (sift down). heapSize -= 1; assert(heapSize > 0); // Sift down. heap[0] = heap[heapSize]; for (uint32_t parentIndex = 0; ;) { uint32_t childIndex = parentIndex * 2 + 1; if (childIndex >= heapSize) { break; } if (childIndex + 1 < heapSize && heap[childIndex + 1].distance < heap[childIndex].distance) { childIndex += 1; } if (heap[parentIndex].distance <= heap[childIndex].distance) { break; } swap(heap[parentIndex], heap[childIndex]); parentIndex = childIndex; } #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - reduced distance min-heap: size=%d", heapSize); for (size_t i = 0; i < heapSize; i++) { LOGD(" heap[%d]: cur=%d, last=%d, distance=%lld", i, heap[i].currentPointerIndex, heap[i].lastPointerIndex, heap[i].distance); } #endif } uint32_t currentPointerIndex = heap[0].currentPointerIndex; if (matchedCurrentBits.hasBit(currentPointerIndex)) continue; // already matched uint32_t lastPointerIndex = heap[0].lastPointerIndex; if (matchedLastBits.hasBit(lastPointerIndex)) continue; // already matched matchedCurrentBits.markBit(currentPointerIndex); matchedLastBits.markBit(lastPointerIndex); uint32_t id = mLastTouch.pointers[lastPointerIndex].id; mCurrentTouch.pointers[currentPointerIndex].id = id; mCurrentTouch.idToIndex[id] = currentPointerIndex; usedIdBits.markBit(id); #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - matched: cur=%d, last=%d, id=%d, distance=%lld", lastPointerIndex, currentPointerIndex, id, heap[0].distance); #endif break; } } // Assign fresh ids to new pointers. if (currentPointerCount > lastPointerCount) { for (uint32_t i = currentPointerCount - lastPointerCount; ;) { uint32_t currentPointerIndex = matchedCurrentBits.firstUnmarkedBit(); uint32_t id = usedIdBits.firstUnmarkedBit(); mCurrentTouch.pointers[currentPointerIndex].id = id; mCurrentTouch.idToIndex[id] = currentPointerIndex; usedIdBits.markBit(id); #if DEBUG_POINTER_ASSIGNMENT LOGD("calculatePointerIds - assigned: cur=%d, id=%d", currentPointerIndex, id); #endif if (--i == 0) break; // done matchedCurrentBits.markBit(currentPointerIndex); } } // Fix id bits. mCurrentTouch.idBits = usedIdBits; } } /* Special hack for devices that have bad screen data: if one of the * points has moved more than a screen height from the last position, * then drop it. */ bool TouchInputMapper::applyBadTouchFilter() { uint32_t pointerCount = mCurrentTouch.pointerCount; // Nothing to do if there are no points. if (pointerCount == 0) { return false; } // Don't do anything if a finger is going down or up. We run // here before assigning pointer IDs, so there isn't a good // way to do per-finger matching. if (pointerCount != mLastTouch.pointerCount) { return false; } // We consider a single movement across more than a 7/16 of // the long size of the screen to be bad. This was a magic value // determined by looking at the maximum distance it is feasible // to actually move in one sample. int32_t maxDeltaY = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) * 7 / 16; // XXX The original code in InputDevice.java included commented out // code for testing the X axis. Note that when we drop a point // we don't actually restore the old X either. Strange. // The old code also tries to track when bad points were previously // detected but it turns out that due to the placement of a "break" // at the end of the loop, we never set mDroppedBadPoint to true // so it is effectively dead code. // Need to figure out if the old code is busted or just overcomplicated // but working as intended. // Look through all new points and see if any are farther than // acceptable from all previous points. for (uint32_t i = pointerCount; i-- > 0; ) { int32_t y = mCurrentTouch.pointers[i].y; int32_t closestY = INT_MAX; int32_t closestDeltaY = 0; #if DEBUG_HACKS LOGD("BadTouchFilter: Looking at next point #%d: y=%d", i, y); #endif for (uint32_t j = pointerCount; j-- > 0; ) { int32_t lastY = mLastTouch.pointers[j].y; int32_t deltaY = abs(y - lastY); #if DEBUG_HACKS LOGD("BadTouchFilter: Comparing with last point #%d: y=%d deltaY=%d", j, lastY, deltaY); #endif if (deltaY < maxDeltaY) { goto SkipSufficientlyClosePoint; } if (deltaY < closestDeltaY) { closestDeltaY = deltaY; closestY = lastY; } } // Must not have found a close enough match. #if DEBUG_HACKS LOGD("BadTouchFilter: Dropping bad point #%d: newY=%d oldY=%d deltaY=%d maxDeltaY=%d", i, y, closestY, closestDeltaY, maxDeltaY); #endif mCurrentTouch.pointers[i].y = closestY; return true; // XXX original code only corrects one point SkipSufficientlyClosePoint: ; } // No change. return false; } /* Special hack for devices that have bad screen data: drop points where * the coordinate value for one axis has jumped to the other pointer's location. */ bool TouchInputMapper::applyJumpyTouchFilter() { uint32_t pointerCount = mCurrentTouch.pointerCount; if (mLastTouch.pointerCount != pointerCount) { #if DEBUG_HACKS LOGD("JumpyTouchFilter: Different pointer count %d -> %d", mLastTouch.pointerCount, pointerCount); for (uint32_t i = 0; i < pointerCount; i++) { LOGD(" Pointer %d (%d, %d)", i, mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y); } #endif if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_TRANSITION_DROPS) { if (mLastTouch.pointerCount == 1 && pointerCount == 2) { // Just drop the first few events going from 1 to 2 pointers. // They're bad often enough that they're not worth considering. mCurrentTouch.pointerCount = 1; mJumpyTouchFilter.jumpyPointsDropped += 1; #if DEBUG_HACKS LOGD("JumpyTouchFilter: Pointer 2 dropped"); #endif return true; } else if (mLastTouch.pointerCount == 2 && pointerCount == 1) { // The event when we go from 2 -> 1 tends to be messed up too mCurrentTouch.pointerCount = 2; mCurrentTouch.pointers[0] = mLastTouch.pointers[0]; mCurrentTouch.pointers[1] = mLastTouch.pointers[1]; mJumpyTouchFilter.jumpyPointsDropped += 1; #if DEBUG_HACKS for (int32_t i = 0; i < 2; i++) { LOGD("JumpyTouchFilter: Pointer %d replaced (%d, %d)", i, mCurrentTouch.pointers[i].x, mCurrentTouch.pointers[i].y); } #endif return true; } } // Reset jumpy points dropped on other transitions or if limit exceeded. mJumpyTouchFilter.jumpyPointsDropped = 0; #if DEBUG_HACKS LOGD("JumpyTouchFilter: Transition - drop limit reset"); #endif return false; } // We have the same number of pointers as last time. // A 'jumpy' point is one where the coordinate value for one axis // has jumped to the other pointer's location. No need to do anything // else if we only have one pointer. if (pointerCount < 2) { return false; } if (mJumpyTouchFilter.jumpyPointsDropped < JUMPY_DROP_LIMIT) { int jumpyEpsilon = (mRawAxes.y.maxValue - mRawAxes.y.minValue + 1) / JUMPY_EPSILON_DIVISOR; // We only replace the single worst jumpy point as characterized by pointer distance // in a single axis. int32_t badPointerIndex = -1; int32_t badPointerReplacementIndex = -1; int32_t badPointerDistance = INT_MIN; // distance to be corrected for (uint32_t i = pointerCount; i-- > 0; ) { int32_t x = mCurrentTouch.pointers[i].x; int32_t y = mCurrentTouch.pointers[i].y; #if DEBUG_HACKS LOGD("JumpyTouchFilter: Point %d (%d, %d)", i, x, y); #endif // Check if a touch point is too close to another's coordinates bool dropX = false, dropY = false; for (uint32_t j = 0; j < pointerCount; j++) { if (i == j) { continue; } if (abs(x - mCurrentTouch.pointers[j].x) <= jumpyEpsilon) { dropX = true; break; } if (abs(y - mCurrentTouch.pointers[j].y) <= jumpyEpsilon) { dropY = true; break; } } if (! dropX && ! dropY) { continue; // not jumpy } // Find a replacement candidate by comparing with older points on the // complementary (non-jumpy) axis. int32_t distance = INT_MIN; // distance to be corrected int32_t replacementIndex = -1; if (dropX) { // X looks too close. Find an older replacement point with a close Y. int32_t smallestDeltaY = INT_MAX; for (uint32_t j = 0; j < pointerCount; j++) { int32_t deltaY = abs(y - mLastTouch.pointers[j].y); if (deltaY < smallestDeltaY) { smallestDeltaY = deltaY; replacementIndex = j; } } distance = abs(x - mLastTouch.pointers[replacementIndex].x); } else { // Y looks too close. Find an older replacement point with a close X. int32_t smallestDeltaX = INT_MAX; for (uint32_t j = 0; j < pointerCount; j++) { int32_t deltaX = abs(x - mLastTouch.pointers[j].x); if (deltaX < smallestDeltaX) { smallestDeltaX = deltaX; replacementIndex = j; } } distance = abs(y - mLastTouch.pointers[replacementIndex].y); } // If replacing this pointer would correct a worse error than the previous ones // considered, then use this replacement instead. if (distance > badPointerDistance) { badPointerIndex = i; badPointerReplacementIndex = replacementIndex; badPointerDistance = distance; } } // Correct the jumpy pointer if one was found. if (badPointerIndex >= 0) { #if DEBUG_HACKS LOGD("JumpyTouchFilter: Replacing bad pointer %d with (%d, %d)", badPointerIndex, mLastTouch.pointers[badPointerReplacementIndex].x, mLastTouch.pointers[badPointerReplacementIndex].y); #endif mCurrentTouch.pointers[badPointerIndex].x = mLastTouch.pointers[badPointerReplacementIndex].x; mCurrentTouch.pointers[badPointerIndex].y = mLastTouch.pointers[badPointerReplacementIndex].y; mJumpyTouchFilter.jumpyPointsDropped += 1; return true; } } mJumpyTouchFilter.jumpyPointsDropped = 0; return false; } /* Special hack for devices that have bad screen data: aggregate and * compute averages of the coordinate data, to reduce the amount of * jitter seen by applications. */ void TouchInputMapper::applyAveragingTouchFilter() { for (uint32_t currentIndex = 0; currentIndex < mCurrentTouch.pointerCount; currentIndex++) { uint32_t id = mCurrentTouch.pointers[currentIndex].id; int32_t x = mCurrentTouch.pointers[currentIndex].x; int32_t y = mCurrentTouch.pointers[currentIndex].y; int32_t pressure; switch (mCalibration.pressureSource) { case Calibration::PRESSURE_SOURCE_PRESSURE: pressure = mCurrentTouch.pointers[currentIndex].pressure; break; case Calibration::PRESSURE_SOURCE_TOUCH: pressure = mCurrentTouch.pointers[currentIndex].touchMajor; break; default: pressure = 1; break; } if (mLastTouch.idBits.hasBit(id)) { // Pointer was down before and is still down now. // Compute average over history trace. uint32_t start = mAveragingTouchFilter.historyStart[id]; uint32_t end = mAveragingTouchFilter.historyEnd[id]; int64_t deltaX = x - mAveragingTouchFilter.historyData[end].pointers[id].x; int64_t deltaY = y - mAveragingTouchFilter.historyData[end].pointers[id].y; uint64_t distance = uint64_t(deltaX * deltaX + deltaY * deltaY); #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - Distance from last sample: %lld", id, distance); #endif if (distance < AVERAGING_DISTANCE_LIMIT) { // Increment end index in preparation for recording new historical data. end += 1; if (end > AVERAGING_HISTORY_SIZE) { end = 0; } // If the end index has looped back to the start index then we have filled // the historical trace up to the desired size so we drop the historical // data at the start of the trace. if (end == start) { start += 1; if (start > AVERAGING_HISTORY_SIZE) { start = 0; } } // Add the raw data to the historical trace. mAveragingTouchFilter.historyStart[id] = start; mAveragingTouchFilter.historyEnd[id] = end; mAveragingTouchFilter.historyData[end].pointers[id].x = x; mAveragingTouchFilter.historyData[end].pointers[id].y = y; mAveragingTouchFilter.historyData[end].pointers[id].pressure = pressure; // Average over all historical positions in the trace by total pressure. int32_t averagedX = 0; int32_t averagedY = 0; int32_t totalPressure = 0; for (;;) { int32_t historicalX = mAveragingTouchFilter.historyData[start].pointers[id].x; int32_t historicalY = mAveragingTouchFilter.historyData[start].pointers[id].y; int32_t historicalPressure = mAveragingTouchFilter.historyData[start] .pointers[id].pressure; averagedX += historicalX * historicalPressure; averagedY += historicalY * historicalPressure; totalPressure += historicalPressure; if (start == end) { break; } start += 1; if (start > AVERAGING_HISTORY_SIZE) { start = 0; } } if (totalPressure != 0) { averagedX /= totalPressure; averagedY /= totalPressure; #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - " "totalPressure=%d, averagedX=%d, averagedY=%d", id, totalPressure, averagedX, averagedY); #endif mCurrentTouch.pointers[currentIndex].x = averagedX; mCurrentTouch.pointers[currentIndex].y = averagedY; } } else { #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - Exceeded max distance", id); #endif } } else { #if DEBUG_HACKS LOGD("AveragingTouchFilter: Pointer id %d - Pointer went up", id); #endif } // Reset pointer history. mAveragingTouchFilter.historyStart[id] = 0; mAveragingTouchFilter.historyEnd[id] = 0; mAveragingTouchFilter.historyData[0].pointers[id].x = x; mAveragingTouchFilter.historyData[0].pointers[id].y = y; mAveragingTouchFilter.historyData[0].pointers[id].pressure = pressure; } } int32_t TouchInputMapper::getKeyCodeState(uint32_t sourceMask, int32_t keyCode) { { // acquire lock AutoMutex _l(mLock); if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.keyCode == keyCode) { return AKEY_STATE_VIRTUAL; } size_t numVirtualKeys = mLocked.virtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mLocked.virtualKeys[i]; if (virtualKey.keyCode == keyCode) { return AKEY_STATE_UP; } } } // release lock return AKEY_STATE_UNKNOWN; } int32_t TouchInputMapper::getScanCodeState(uint32_t sourceMask, int32_t scanCode) { { // acquire lock AutoMutex _l(mLock); if (mLocked.currentVirtualKey.down && mLocked.currentVirtualKey.scanCode == scanCode) { return AKEY_STATE_VIRTUAL; } size_t numVirtualKeys = mLocked.virtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mLocked.virtualKeys[i]; if (virtualKey.scanCode == scanCode) { return AKEY_STATE_UP; } } } // release lock return AKEY_STATE_UNKNOWN; } bool TouchInputMapper::markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) { { // acquire lock AutoMutex _l(mLock); size_t numVirtualKeys = mLocked.virtualKeys.size(); for (size_t i = 0; i < numVirtualKeys; i++) { const VirtualKey& virtualKey = mLocked.virtualKeys[i]; for (size_t i = 0; i < numCodes; i++) { if (virtualKey.keyCode == keyCodes[i]) { outFlags[i] = 1; } } } } // release lock return true; } // --- SingleTouchInputMapper --- SingleTouchInputMapper::SingleTouchInputMapper(InputDevice* device) : TouchInputMapper(device) { initialize(); } SingleTouchInputMapper::~SingleTouchInputMapper() { } void SingleTouchInputMapper::initialize() { mAccumulator.clear(); mDown = false; mX = 0; mY = 0; mPressure = 0; // default to 0 for devices that don't report pressure mToolWidth = 0; // default to 0 for devices that don't report tool width mButtonState = 0; } void SingleTouchInputMapper::reset() { TouchInputMapper::reset(); initialize(); } void SingleTouchInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_KEY: switch (rawEvent->scanCode) { case BTN_TOUCH: mAccumulator.fields |= Accumulator::FIELD_BTN_TOUCH; mAccumulator.btnTouch = rawEvent->value != 0; // Don't sync immediately. Wait until the next SYN_REPORT since we might // not have received valid position information yet. This logic assumes that // BTN_TOUCH is always followed by SYN_REPORT as part of a complete packet. break; default: if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode); if (buttonState) { if (rawEvent->value) { mAccumulator.buttonDown |= buttonState; } else { mAccumulator.buttonUp |= buttonState; } mAccumulator.fields |= Accumulator::FIELD_BUTTONS; } } break; } break; case EV_ABS: switch (rawEvent->scanCode) { case ABS_X: mAccumulator.fields |= Accumulator::FIELD_ABS_X; mAccumulator.absX = rawEvent->value; break; case ABS_Y: mAccumulator.fields |= Accumulator::FIELD_ABS_Y; mAccumulator.absY = rawEvent->value; break; case ABS_PRESSURE: mAccumulator.fields |= Accumulator::FIELD_ABS_PRESSURE; mAccumulator.absPressure = rawEvent->value; break; case ABS_TOOL_WIDTH: mAccumulator.fields |= Accumulator::FIELD_ABS_TOOL_WIDTH; mAccumulator.absToolWidth = rawEvent->value; break; } break; case EV_SYN: switch (rawEvent->scanCode) { case SYN_REPORT: sync(rawEvent->when); break; } break; } } void SingleTouchInputMapper::sync(nsecs_t when) { uint32_t fields = mAccumulator.fields; if (fields == 0) { return; // no new state changes, so nothing to do } if (fields & Accumulator::FIELD_BTN_TOUCH) { mDown = mAccumulator.btnTouch; } if (fields & Accumulator::FIELD_ABS_X) { mX = mAccumulator.absX; } if (fields & Accumulator::FIELD_ABS_Y) { mY = mAccumulator.absY; } if (fields & Accumulator::FIELD_ABS_PRESSURE) { mPressure = mAccumulator.absPressure; } if (fields & Accumulator::FIELD_ABS_TOOL_WIDTH) { mToolWidth = mAccumulator.absToolWidth; } if (fields & Accumulator::FIELD_BUTTONS) { mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp; } mCurrentTouch.clear(); if (mDown) { mCurrentTouch.pointerCount = 1; mCurrentTouch.pointers[0].id = 0; mCurrentTouch.pointers[0].x = mX; mCurrentTouch.pointers[0].y = mY; mCurrentTouch.pointers[0].pressure = mPressure; mCurrentTouch.pointers[0].touchMajor = 0; mCurrentTouch.pointers[0].touchMinor = 0; mCurrentTouch.pointers[0].toolMajor = mToolWidth; mCurrentTouch.pointers[0].toolMinor = mToolWidth; mCurrentTouch.pointers[0].orientation = 0; mCurrentTouch.idToIndex[0] = 0; mCurrentTouch.idBits.markBit(0); mCurrentTouch.buttonState = mButtonState; } syncTouch(when, true); mAccumulator.clear(); } void SingleTouchInputMapper::configureRawAxes() { TouchInputMapper::configureRawAxes(); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_X, & mRawAxes.x); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_Y, & mRawAxes.y); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_PRESSURE, & mRawAxes.pressure); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_TOOL_WIDTH, & mRawAxes.toolMajor); } // --- MultiTouchInputMapper --- MultiTouchInputMapper::MultiTouchInputMapper(InputDevice* device) : TouchInputMapper(device) { initialize(); } MultiTouchInputMapper::~MultiTouchInputMapper() { } void MultiTouchInputMapper::initialize() { mAccumulator.clear(); mButtonState = 0; } void MultiTouchInputMapper::reset() { TouchInputMapper::reset(); initialize(); } void MultiTouchInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_KEY: { if (mParameters.deviceType == Parameters::DEVICE_TYPE_POINTER) { uint32_t buttonState = getButtonStateForScanCode(rawEvent->scanCode); if (buttonState) { if (rawEvent->value) { mAccumulator.buttonDown |= buttonState; } else { mAccumulator.buttonUp |= buttonState; } } } break; } case EV_ABS: { uint32_t pointerIndex = mAccumulator.pointerCount; Accumulator::Pointer* pointer = & mAccumulator.pointers[pointerIndex]; switch (rawEvent->scanCode) { case ABS_MT_POSITION_X: pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_X; pointer->absMTPositionX = rawEvent->value; break; case ABS_MT_POSITION_Y: pointer->fields |= Accumulator::FIELD_ABS_MT_POSITION_Y; pointer->absMTPositionY = rawEvent->value; break; case ABS_MT_TOUCH_MAJOR: pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MAJOR; pointer->absMTTouchMajor = rawEvent->value; break; case ABS_MT_TOUCH_MINOR: pointer->fields |= Accumulator::FIELD_ABS_MT_TOUCH_MINOR; pointer->absMTTouchMinor = rawEvent->value; break; case ABS_MT_WIDTH_MAJOR: pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MAJOR; pointer->absMTWidthMajor = rawEvent->value; break; case ABS_MT_WIDTH_MINOR: pointer->fields |= Accumulator::FIELD_ABS_MT_WIDTH_MINOR; pointer->absMTWidthMinor = rawEvent->value; break; case ABS_MT_ORIENTATION: pointer->fields |= Accumulator::FIELD_ABS_MT_ORIENTATION; pointer->absMTOrientation = rawEvent->value; break; case ABS_MT_TRACKING_ID: pointer->fields |= Accumulator::FIELD_ABS_MT_TRACKING_ID; pointer->absMTTrackingId = rawEvent->value; break; case ABS_MT_PRESSURE: pointer->fields |= Accumulator::FIELD_ABS_MT_PRESSURE; pointer->absMTPressure = rawEvent->value; break; } break; } case EV_SYN: switch (rawEvent->scanCode) { case SYN_MT_REPORT: { // MultiTouch Sync: The driver has returned all data for *one* of the pointers. uint32_t pointerIndex = mAccumulator.pointerCount; if (mAccumulator.pointers[pointerIndex].fields) { if (pointerIndex == MAX_POINTERS) { LOGW("MultiTouch device driver returned more than maximum of %d pointers.", MAX_POINTERS); } else { pointerIndex += 1; mAccumulator.pointerCount = pointerIndex; } } mAccumulator.pointers[pointerIndex].clear(); break; } case SYN_REPORT: sync(rawEvent->when); break; } break; } } void MultiTouchInputMapper::sync(nsecs_t when) { static const uint32_t REQUIRED_FIELDS = Accumulator::FIELD_ABS_MT_POSITION_X | Accumulator::FIELD_ABS_MT_POSITION_Y; uint32_t inCount = mAccumulator.pointerCount; uint32_t outCount = 0; bool havePointerIds = true; mCurrentTouch.clear(); for (uint32_t inIndex = 0; inIndex < inCount; inIndex++) { const Accumulator::Pointer& inPointer = mAccumulator.pointers[inIndex]; uint32_t fields = inPointer.fields; if ((fields & REQUIRED_FIELDS) != REQUIRED_FIELDS) { // Some drivers send empty MT sync packets without X / Y to indicate a pointer up. // Drop this finger. continue; } PointerData& outPointer = mCurrentTouch.pointers[outCount]; outPointer.x = inPointer.absMTPositionX; outPointer.y = inPointer.absMTPositionY; if (fields & Accumulator::FIELD_ABS_MT_PRESSURE) { if (inPointer.absMTPressure <= 0) { // Some devices send sync packets with X / Y but with a 0 pressure to indicate // a pointer going up. Drop this finger. continue; } outPointer.pressure = inPointer.absMTPressure; } else { // Default pressure to 0 if absent. outPointer.pressure = 0; } if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MAJOR) { if (inPointer.absMTTouchMajor <= 0) { // Some devices send sync packets with X / Y but with a 0 touch major to indicate // a pointer going up. Drop this finger. continue; } outPointer.touchMajor = inPointer.absMTTouchMajor; } else { // Default touch area to 0 if absent. outPointer.touchMajor = 0; } if (fields & Accumulator::FIELD_ABS_MT_TOUCH_MINOR) { outPointer.touchMinor = inPointer.absMTTouchMinor; } else { // Assume touch area is circular. outPointer.touchMinor = outPointer.touchMajor; } if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MAJOR) { outPointer.toolMajor = inPointer.absMTWidthMajor; } else { // Default tool area to 0 if absent. outPointer.toolMajor = 0; } if (fields & Accumulator::FIELD_ABS_MT_WIDTH_MINOR) { outPointer.toolMinor = inPointer.absMTWidthMinor; } else { // Assume tool area is circular. outPointer.toolMinor = outPointer.toolMajor; } if (fields & Accumulator::FIELD_ABS_MT_ORIENTATION) { outPointer.orientation = inPointer.absMTOrientation; } else { // Default orientation to vertical if absent. outPointer.orientation = 0; } // Assign pointer id using tracking id if available. if (havePointerIds) { if (fields & Accumulator::FIELD_ABS_MT_TRACKING_ID) { uint32_t id = uint32_t(inPointer.absMTTrackingId); if (id > MAX_POINTER_ID) { #if DEBUG_POINTERS LOGD("Pointers: Ignoring driver provided pointer id %d because " "it is larger than max supported id %d", id, MAX_POINTER_ID); #endif havePointerIds = false; } else { outPointer.id = id; mCurrentTouch.idToIndex[id] = outCount; mCurrentTouch.idBits.markBit(id); } } else { havePointerIds = false; } } outCount += 1; } mCurrentTouch.pointerCount = outCount; mButtonState = (mButtonState | mAccumulator.buttonDown) & ~mAccumulator.buttonUp; mCurrentTouch.buttonState = mButtonState; syncTouch(when, havePointerIds); mAccumulator.clear(); } void MultiTouchInputMapper::configureRawAxes() { TouchInputMapper::configureRawAxes(); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_X, & mRawAxes.x); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_POSITION_Y, & mRawAxes.y); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MAJOR, & mRawAxes.touchMajor); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_TOUCH_MINOR, & mRawAxes.touchMinor); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MAJOR, & mRawAxes.toolMajor); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_WIDTH_MINOR, & mRawAxes.toolMinor); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_ORIENTATION, & mRawAxes.orientation); getEventHub()->getAbsoluteAxisInfo(getDeviceId(), ABS_MT_PRESSURE, & mRawAxes.pressure); } // --- JoystickInputMapper --- JoystickInputMapper::JoystickInputMapper(InputDevice* device) : InputMapper(device) { } JoystickInputMapper::~JoystickInputMapper() { } uint32_t JoystickInputMapper::getSources() { return AINPUT_SOURCE_JOYSTICK; } void JoystickInputMapper::populateDeviceInfo(InputDeviceInfo* info) { InputMapper::populateDeviceInfo(info); for (size_t i = 0; i < mAxes.size(); i++) { const Axis& axis = mAxes.valueAt(i); info->addMotionRange(axis.axisInfo.axis, AINPUT_SOURCE_JOYSTICK, axis.min, axis.max, axis.flat, axis.fuzz); if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { info->addMotionRange(axis.axisInfo.highAxis, AINPUT_SOURCE_JOYSTICK, axis.min, axis.max, axis.flat, axis.fuzz); } } } void JoystickInputMapper::dump(String8& dump) { dump.append(INDENT2 "Joystick Input Mapper:\n"); dump.append(INDENT3 "Axes:\n"); size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { const Axis& axis = mAxes.valueAt(i); const char* label = getAxisLabel(axis.axisInfo.axis); if (label) { dump.appendFormat(INDENT4 "%s", label); } else { dump.appendFormat(INDENT4 "%d", axis.axisInfo.axis); } if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { label = getAxisLabel(axis.axisInfo.highAxis); if (label) { dump.appendFormat(" / %s (split at %d)", label, axis.axisInfo.splitValue); } else { dump.appendFormat(" / %d (split at %d)", axis.axisInfo.highAxis, axis.axisInfo.splitValue); } } else if (axis.axisInfo.mode == AxisInfo::MODE_INVERT) { dump.append(" (invert)"); } dump.appendFormat(": min=%0.5f, max=%0.5f, flat=%0.5f, fuzz=%0.5f\n", axis.min, axis.max, axis.flat, axis.fuzz); dump.appendFormat(INDENT4 " scale=%0.5f, offset=%0.5f, " "highScale=%0.5f, highOffset=%0.5f\n", axis.scale, axis.offset, axis.highScale, axis.highOffset); dump.appendFormat(INDENT4 " rawAxis=%d, rawMin=%d, rawMax=%d, rawFlat=%d, rawFuzz=%d\n", mAxes.keyAt(i), axis.rawAxisInfo.minValue, axis.rawAxisInfo.maxValue, axis.rawAxisInfo.flat, axis.rawAxisInfo.fuzz); } } void JoystickInputMapper::configure() { InputMapper::configure(); // Collect all axes. for (int32_t abs = 0; abs <= ABS_MAX; abs++) { RawAbsoluteAxisInfo rawAxisInfo; getEventHub()->getAbsoluteAxisInfo(getDeviceId(), abs, &rawAxisInfo); if (rawAxisInfo.valid) { // Map axis. AxisInfo axisInfo; bool explicitlyMapped = !getEventHub()->mapAxis(getDeviceId(), abs, &axisInfo); if (!explicitlyMapped) { // Axis is not explicitly mapped, will choose a generic axis later. axisInfo.mode = AxisInfo::MODE_NORMAL; axisInfo.axis = -1; } // Apply flat override. int32_t rawFlat = axisInfo.flatOverride < 0 ? rawAxisInfo.flat : axisInfo.flatOverride; // Calculate scaling factors and limits. Axis axis; if (axisInfo.mode == AxisInfo::MODE_SPLIT) { float scale = 1.0f / (axisInfo.splitValue - rawAxisInfo.minValue); float highScale = 1.0f / (rawAxisInfo.maxValue - axisInfo.splitValue); axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, scale, 0.0f, highScale, 0.0f, 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale); } else if (isCenteredAxis(axisInfo.axis)) { float scale = 2.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); float offset = avg(rawAxisInfo.minValue, rawAxisInfo.maxValue) * -scale; axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, scale, offset, scale, offset, -1.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale); } else { float scale = 1.0f / (rawAxisInfo.maxValue - rawAxisInfo.minValue); axis.initialize(rawAxisInfo, axisInfo, explicitlyMapped, scale, 0.0f, scale, 0.0f, 0.0f, 1.0f, rawFlat * scale, rawAxisInfo.fuzz * scale); } // To eliminate noise while the joystick is at rest, filter out small variations // in axis values up front. axis.filter = axis.flat * 0.25f; mAxes.add(abs, axis); } } // If there are too many axes, start dropping them. // Prefer to keep explicitly mapped axes. if (mAxes.size() > PointerCoords::MAX_AXES) { LOGI("Joystick '%s' has %d axes but the framework only supports a maximum of %d.", getDeviceName().string(), mAxes.size(), PointerCoords::MAX_AXES); pruneAxes(true); pruneAxes(false); } // Assign generic axis ids to remaining axes. int32_t nextGenericAxisId = AMOTION_EVENT_AXIS_GENERIC_1; size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { Axis& axis = mAxes.editValueAt(i); if (axis.axisInfo.axis < 0) { while (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16 && haveAxis(nextGenericAxisId)) { nextGenericAxisId += 1; } if (nextGenericAxisId <= AMOTION_EVENT_AXIS_GENERIC_16) { axis.axisInfo.axis = nextGenericAxisId; nextGenericAxisId += 1; } else { LOGI("Ignoring joystick '%s' axis %d because all of the generic axis ids " "have already been assigned to other axes.", getDeviceName().string(), mAxes.keyAt(i)); mAxes.removeItemsAt(i--); numAxes -= 1; } } } } bool JoystickInputMapper::haveAxis(int32_t axisId) { size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { const Axis& axis = mAxes.valueAt(i); if (axis.axisInfo.axis == axisId || (axis.axisInfo.mode == AxisInfo::MODE_SPLIT && axis.axisInfo.highAxis == axisId)) { return true; } } return false; } void JoystickInputMapper::pruneAxes(bool ignoreExplicitlyMappedAxes) { size_t i = mAxes.size(); while (mAxes.size() > PointerCoords::MAX_AXES && i-- > 0) { if (ignoreExplicitlyMappedAxes && mAxes.valueAt(i).explicitlyMapped) { continue; } LOGI("Discarding joystick '%s' axis %d because there are too many axes.", getDeviceName().string(), mAxes.keyAt(i)); mAxes.removeItemsAt(i); } } bool JoystickInputMapper::isCenteredAxis(int32_t axis) { switch (axis) { case AMOTION_EVENT_AXIS_X: case AMOTION_EVENT_AXIS_Y: case AMOTION_EVENT_AXIS_Z: case AMOTION_EVENT_AXIS_RX: case AMOTION_EVENT_AXIS_RY: case AMOTION_EVENT_AXIS_RZ: case AMOTION_EVENT_AXIS_HAT_X: case AMOTION_EVENT_AXIS_HAT_Y: case AMOTION_EVENT_AXIS_ORIENTATION: case AMOTION_EVENT_AXIS_RUDDER: case AMOTION_EVENT_AXIS_WHEEL: return true; default: return false; } } void JoystickInputMapper::reset() { // Recenter all axes. nsecs_t when = systemTime(SYSTEM_TIME_MONOTONIC); size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { Axis& axis = mAxes.editValueAt(i); axis.resetValue(); } sync(when, true /*force*/); InputMapper::reset(); } void JoystickInputMapper::process(const RawEvent* rawEvent) { switch (rawEvent->type) { case EV_ABS: { ssize_t index = mAxes.indexOfKey(rawEvent->scanCode); if (index >= 0) { Axis& axis = mAxes.editValueAt(index); float newValue, highNewValue; switch (axis.axisInfo.mode) { case AxisInfo::MODE_INVERT: newValue = (axis.rawAxisInfo.maxValue - rawEvent->value) * axis.scale + axis.offset; highNewValue = 0.0f; break; case AxisInfo::MODE_SPLIT: if (rawEvent->value < axis.axisInfo.splitValue) { newValue = (axis.axisInfo.splitValue - rawEvent->value) * axis.scale + axis.offset; highNewValue = 0.0f; } else if (rawEvent->value > axis.axisInfo.splitValue) { newValue = 0.0f; highNewValue = (rawEvent->value - axis.axisInfo.splitValue) * axis.highScale + axis.highOffset; } else { newValue = 0.0f; highNewValue = 0.0f; } break; default: newValue = rawEvent->value * axis.scale + axis.offset; highNewValue = 0.0f; break; } axis.newValue = newValue; axis.highNewValue = highNewValue; } break; } case EV_SYN: switch (rawEvent->scanCode) { case SYN_REPORT: sync(rawEvent->when, false /*force*/); break; } break; } } void JoystickInputMapper::sync(nsecs_t when, bool force) { if (!filterAxes(force)) { return; } int32_t metaState = mContext->getGlobalMetaState(); PointerCoords pointerCoords; pointerCoords.clear(); size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { const Axis& axis = mAxes.valueAt(i); pointerCoords.setAxisValue(axis.axisInfo.axis, axis.currentValue); if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { pointerCoords.setAxisValue(axis.axisInfo.highAxis, axis.highCurrentValue); } } // Moving a joystick axis should not wake the devide because joysticks can // be fairly noisy even when not in use. On the other hand, pushing a gamepad // button will likely wake the device. // TODO: Use the input device configuration to control this behavior more finely. uint32_t policyFlags = 0; int32_t pointerId = 0; getDispatcher()->notifyMotion(when, getDeviceId(), AINPUT_SOURCE_JOYSTICK, policyFlags, AMOTION_EVENT_ACTION_MOVE, 0, metaState, AMOTION_EVENT_EDGE_FLAG_NONE, 1, &pointerId, &pointerCoords, 0, 0, 0); } bool JoystickInputMapper::filterAxes(bool force) { bool atLeastOneSignificantChange = force; size_t numAxes = mAxes.size(); for (size_t i = 0; i < numAxes; i++) { Axis& axis = mAxes.editValueAt(i); if (force || hasValueChangedSignificantly(axis.filter, axis.newValue, axis.currentValue, axis.min, axis.max)) { axis.currentValue = axis.newValue; atLeastOneSignificantChange = true; } if (axis.axisInfo.mode == AxisInfo::MODE_SPLIT) { if (force || hasValueChangedSignificantly(axis.filter, axis.highNewValue, axis.highCurrentValue, axis.min, axis.max)) { axis.highCurrentValue = axis.highNewValue; atLeastOneSignificantChange = true; } } } return atLeastOneSignificantChange; } bool JoystickInputMapper::hasValueChangedSignificantly( float filter, float newValue, float currentValue, float min, float max) { if (newValue != currentValue) { // Filter out small changes in value unless the value is converging on the axis // bounds or center point. This is intended to reduce the amount of information // sent to applications by particularly noisy joysticks (such as PS3). if (fabs(newValue - currentValue) > filter || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, min) || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, max) || hasMovedNearerToValueWithinFilteredRange(filter, newValue, currentValue, 0)) { return true; } } return false; } bool JoystickInputMapper::hasMovedNearerToValueWithinFilteredRange( float filter, float newValue, float currentValue, float thresholdValue) { float newDistance = fabs(newValue - thresholdValue); if (newDistance < filter) { float oldDistance = fabs(currentValue - thresholdValue); if (newDistance < oldDistance) { return true; } } return false; } } // namespace android