/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _UI_INPUT_READER_H #define _UI_INPUT_READER_H #include "EventHub.h" #include "InputDispatcher.h" #include "PointerController.h" #include #include #include #include #include #include #include #include #include #include namespace android { class InputDevice; class InputMapper; /* * Input reader configuration. * * Specifies various options that modify the behavior of the input reader. */ struct InputReaderConfiguration { // Describes changes that have occurred. enum { // The pointer speed changed. CHANGE_POINTER_SPEED = 1 << 0, // The pointer gesture control changed. CHANGE_POINTER_GESTURE_ENABLEMENT = 1 << 1, // All devices must be reopened. CHANGE_MUST_REOPEN = 1 << 31, }; // Gets the amount of time to disable virtual keys after the screen is touched // in order to filter out accidental virtual key presses due to swiping gestures // or taps near the edge of the display. May be 0 to disable the feature. nsecs_t virtualKeyQuietTime; // The excluded device names for the platform. // Devices with these names will be ignored. Vector excludedDeviceNames; // Velocity control parameters for mouse pointer movements. VelocityControlParameters pointerVelocityControlParameters; // Velocity control parameters for mouse wheel movements. VelocityControlParameters wheelVelocityControlParameters; // True if pointer gestures are enabled. bool pointerGesturesEnabled; // Quiet time between certain pointer gesture transitions. // Time to allow for all fingers or buttons to settle into a stable state before // starting a new gesture. nsecs_t pointerGestureQuietInterval; // The minimum speed that a pointer must travel for us to consider switching the active // touch pointer to it during a drag. This threshold is set to avoid switching due // to noise from a finger resting on the touch pad (perhaps just pressing it down). float pointerGestureDragMinSwitchSpeed; // in pixels per second // Tap gesture delay time. // The time between down and up must be less than this to be considered a tap. nsecs_t pointerGestureTapInterval; // Tap drag gesture delay time. // The time between the previous tap's up and the next down must be less than // this to be considered a drag. Otherwise, the previous tap is finished and a // new tap begins. // // Note that the previous tap will be held down for this entire duration so this // interval must be shorter than the long press timeout. nsecs_t pointerGestureTapDragInterval; // The distance in pixels that the pointer is allowed to move from initial down // to up and still be called a tap. float pointerGestureTapSlop; // in pixels // Time after the first touch points go down to settle on an initial centroid. // This is intended to be enough time to handle cases where the user puts down two // fingers at almost but not quite exactly the same time. nsecs_t pointerGestureMultitouchSettleInterval; // The transition from PRESS to SWIPE or FREEFORM gesture mode is made when // at least two pointers have moved at least this far from their starting place. float pointerGestureMultitouchMinDistance; // in pixels // The transition from PRESS to SWIPE gesture mode can only occur when the // cosine of the angle between the two vectors is greater than or equal to than this value // which indicates that the vectors are oriented in the same direction. // When the vectors are oriented in the exactly same direction, the cosine is 1.0. // (In exactly opposite directions, the cosine is -1.0.) float pointerGestureSwipeTransitionAngleCosine; // The transition from PRESS to SWIPE gesture mode can only occur when the // fingers are no more than this far apart relative to the diagonal size of // the touch pad. For example, a ratio of 0.5 means that the fingers must be // no more than half the diagonal size of the touch pad apart. float pointerGestureSwipeMaxWidthRatio; // The gesture movement speed factor relative to the size of the display. // Movement speed applies when the fingers are moving in the same direction. // Without acceleration, a full swipe of the touch pad diagonal in movement mode // will cover this portion of the display diagonal. float pointerGestureMovementSpeedRatio; // The gesture zoom speed factor relative to the size of the display. // Zoom speed applies when the fingers are mostly moving relative to each other // to execute a scale gesture or similar. // Without acceleration, a full swipe of the touch pad diagonal in zoom mode // will cover this portion of the display diagonal. float pointerGestureZoomSpeedRatio; InputReaderConfiguration() : virtualKeyQuietTime(0), pointerVelocityControlParameters(1.0f, 500.0f, 3000.0f, 3.0f), wheelVelocityControlParameters(1.0f, 15.0f, 50.0f, 4.0f), pointerGesturesEnabled(true), pointerGestureQuietInterval(100 * 1000000LL), // 100 ms pointerGestureDragMinSwitchSpeed(50), // 50 pixels per second pointerGestureTapInterval(150 * 1000000LL), // 150 ms pointerGestureTapDragInterval(150 * 1000000LL), // 150 ms pointerGestureTapSlop(10.0f), // 10 pixels pointerGestureMultitouchSettleInterval(100 * 1000000LL), // 100 ms pointerGestureMultitouchMinDistance(15), // 15 pixels pointerGestureSwipeTransitionAngleCosine(0.2588f), // cosine of 75 degrees pointerGestureSwipeMaxWidthRatio(0.25f), pointerGestureMovementSpeedRatio(0.8f), pointerGestureZoomSpeedRatio(0.3f) { } }; /* * Input reader policy interface. * * The input reader policy is used by the input reader to interact with the Window Manager * and other system components. * * The actual implementation is partially supported by callbacks into the DVM * via JNI. This interface is also mocked in the unit tests. */ class InputReaderPolicyInterface : public virtual RefBase { protected: InputReaderPolicyInterface() { } virtual ~InputReaderPolicyInterface() { } public: /* Display orientations. */ enum { ROTATION_0 = 0, ROTATION_90 = 1, ROTATION_180 = 2, ROTATION_270 = 3 }; /* Gets information about the display with the specified id. * Returns true if the display info is available, false otherwise. */ virtual bool getDisplayInfo(int32_t displayId, int32_t* width, int32_t* height, int32_t* orientation) = 0; /* Gets the input reader configuration. */ virtual void getReaderConfiguration(InputReaderConfiguration* outConfig) = 0; /* Gets a pointer controller associated with the specified cursor device (ie. a mouse). */ virtual sp obtainPointerController(int32_t deviceId) = 0; }; /* Processes raw input events and sends cooked event data to an input dispatcher. */ class InputReaderInterface : public virtual RefBase { protected: InputReaderInterface() { } virtual ~InputReaderInterface() { } public: /* Dumps the state of the input reader. * * This method may be called on any thread (usually by the input manager). */ virtual void dump(String8& dump) = 0; /* Runs a single iteration of the processing loop. * Nominally reads and processes one incoming message from the EventHub. * * This method should be called on the input reader thread. */ virtual void loopOnce() = 0; /* Gets the current input device configuration. * * This method may be called on any thread (usually by the input manager). */ virtual void getInputConfiguration(InputConfiguration* outConfiguration) = 0; /* Gets information about the specified input device. * Returns OK if the device information was obtained or NAME_NOT_FOUND if there * was no such device. * * This method may be called on any thread (usually by the input manager). */ virtual status_t getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo) = 0; /* Gets the list of all registered device ids. */ virtual void getInputDeviceIds(Vector& outDeviceIds) = 0; /* Query current input state. */ virtual int32_t getScanCodeState(int32_t deviceId, uint32_t sourceMask, int32_t scanCode) = 0; virtual int32_t getKeyCodeState(int32_t deviceId, uint32_t sourceMask, int32_t keyCode) = 0; virtual int32_t getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t sw) = 0; /* Determine whether physical keys exist for the given framework-domain key codes. */ virtual bool hasKeys(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags) = 0; /* Requests that a reconfiguration of all input devices. * The changes flag is a bitfield that indicates what has changed and whether * the input devices must all be reopened. */ virtual void requestRefreshConfiguration(uint32_t changes) = 0; }; /* Internal interface used by individual input devices to access global input device state * and parameters maintained by the input reader. */ class InputReaderContext { public: InputReaderContext() { } virtual ~InputReaderContext() { } virtual void updateGlobalMetaState() = 0; virtual int32_t getGlobalMetaState() = 0; virtual void disableVirtualKeysUntil(nsecs_t time) = 0; virtual bool shouldDropVirtualKey(nsecs_t now, InputDevice* device, int32_t keyCode, int32_t scanCode) = 0; virtual void fadePointer() = 0; virtual void requestTimeoutAtTime(nsecs_t when) = 0; virtual InputReaderPolicyInterface* getPolicy() = 0; virtual InputDispatcherInterface* getDispatcher() = 0; virtual EventHubInterface* getEventHub() = 0; }; /* The input reader reads raw event data from the event hub and processes it into input events * that it sends to the input dispatcher. Some functions of the input reader, such as early * event filtering in low power states, are controlled by a separate policy object. * * IMPORTANT INVARIANT: * Because the policy and dispatcher can potentially block or cause re-entrance into * the input reader, the input reader never calls into other components while holding * an exclusive internal lock whenever re-entrance can happen. */ class InputReader : public InputReaderInterface, protected InputReaderContext { public: InputReader(const sp& eventHub, const sp& policy, const sp& dispatcher); virtual ~InputReader(); virtual void dump(String8& dump); virtual void loopOnce(); virtual void getInputConfiguration(InputConfiguration* outConfiguration); virtual status_t getInputDeviceInfo(int32_t deviceId, InputDeviceInfo* outDeviceInfo); virtual void getInputDeviceIds(Vector& outDeviceIds); virtual int32_t getScanCodeState(int32_t deviceId, uint32_t sourceMask, int32_t scanCode); virtual int32_t getKeyCodeState(int32_t deviceId, uint32_t sourceMask, int32_t keyCode); virtual int32_t getSwitchState(int32_t deviceId, uint32_t sourceMask, int32_t sw); virtual bool hasKeys(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags); virtual void requestRefreshConfiguration(uint32_t changes); protected: // These methods are protected virtual so they can be overridden and instrumented // by test cases. virtual InputDevice* createDevice(int32_t deviceId, const String8& name, uint32_t classes); private: sp mEventHub; sp mPolicy; sp mDispatcher; InputReaderConfiguration mConfig; virtual InputReaderPolicyInterface* getPolicy() { return mPolicy.get(); } virtual InputDispatcherInterface* getDispatcher() { return mDispatcher.get(); } virtual EventHubInterface* getEventHub() { return mEventHub.get(); } // The event queue. static const int EVENT_BUFFER_SIZE = 256; RawEvent mEventBuffer[EVENT_BUFFER_SIZE]; // This reader/writer lock guards the list of input devices. // The writer lock must be held whenever the list of input devices is modified // and then promptly released. // The reader lock must be held whenever the list of input devices is traversed or an // input device in the list is accessed. // This lock only protects the registry and prevents inadvertent deletion of device objects // that are in use. Individual devices are responsible for guarding their own internal state // as needed for concurrent operation. RWLock mDeviceRegistryLock; KeyedVector mDevices; // low-level input event decoding and device management void processEvents(const RawEvent* rawEvents, size_t count); void addDevice(int32_t deviceId); void removeDevice(int32_t deviceId); void processEventsForDevice(int32_t deviceId, const RawEvent* rawEvents, size_t count); void timeoutExpired(nsecs_t when); void handleConfigurationChanged(nsecs_t when); // state management for all devices Mutex mStateLock; int32_t mGlobalMetaState; // guarded by mStateLock virtual void updateGlobalMetaState(); virtual int32_t getGlobalMetaState(); virtual void fadePointer(); InputConfiguration mInputConfiguration; // guarded by mStateLock void updateInputConfiguration(); nsecs_t mDisableVirtualKeysTimeout; // only accessed by reader thread virtual void disableVirtualKeysUntil(nsecs_t time); virtual bool shouldDropVirtualKey(nsecs_t now, InputDevice* device, int32_t keyCode, int32_t scanCode); nsecs_t mNextTimeout; // only accessed by reader thread, not guarded virtual void requestTimeoutAtTime(nsecs_t when); uint32_t mConfigurationChangesToRefresh; // guarded by mStateLock void refreshConfiguration(uint32_t changes); // state queries typedef int32_t (InputDevice::*GetStateFunc)(uint32_t sourceMask, int32_t code); int32_t getState(int32_t deviceId, uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc); bool markSupportedKeyCodes(int32_t deviceId, uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags); }; /* Reads raw events from the event hub and processes them, endlessly. */ class InputReaderThread : public Thread { public: InputReaderThread(const sp& reader); virtual ~InputReaderThread(); private: sp mReader; virtual bool threadLoop(); }; /* Represents the state of a single input device. */ class InputDevice { public: InputDevice(InputReaderContext* context, int32_t id, const String8& name); ~InputDevice(); inline InputReaderContext* getContext() { return mContext; } inline int32_t getId() { return mId; } inline const String8& getName() { return mName; } inline uint32_t getSources() { return mSources; } inline bool isExternal() { return mIsExternal; } inline void setExternal(bool external) { mIsExternal = external; } inline bool isIgnored() { return mMappers.isEmpty(); } void dump(String8& dump); void addMapper(InputMapper* mapper); void configure(const InputReaderConfiguration* config, uint32_t changes); void reset(); void process(const RawEvent* rawEvents, size_t count); void timeoutExpired(nsecs_t when); void getDeviceInfo(InputDeviceInfo* outDeviceInfo); int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode); int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode); int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode); bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags); int32_t getMetaState(); void fadePointer(); inline const PropertyMap& getConfiguration() { return mConfiguration; } private: InputReaderContext* mContext; int32_t mId; Vector mMappers; String8 mName; uint32_t mSources; bool mIsExternal; bool mDropUntilNextSync; typedef int32_t (InputMapper::*GetStateFunc)(uint32_t sourceMask, int32_t code); int32_t getState(uint32_t sourceMask, int32_t code, GetStateFunc getStateFunc); PropertyMap mConfiguration; }; /* An input mapper transforms raw input events into cooked event data. * A single input device can have multiple associated input mappers in order to interpret * different classes of events. */ class InputMapper { public: InputMapper(InputDevice* device); virtual ~InputMapper(); inline InputDevice* getDevice() { return mDevice; } inline int32_t getDeviceId() { return mDevice->getId(); } inline const String8 getDeviceName() { return mDevice->getName(); } inline InputReaderContext* getContext() { return mContext; } inline InputReaderPolicyInterface* getPolicy() { return mContext->getPolicy(); } inline InputDispatcherInterface* getDispatcher() { return mContext->getDispatcher(); } inline EventHubInterface* getEventHub() { return mContext->getEventHub(); } virtual uint32_t getSources() = 0; virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo); virtual void dump(String8& dump); virtual void configure(const InputReaderConfiguration* config, uint32_t changes); virtual void reset(); virtual void process(const RawEvent* rawEvent) = 0; virtual void timeoutExpired(nsecs_t when); virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode); virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode); virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode); virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags); virtual int32_t getMetaState(); virtual void fadePointer(); protected: InputDevice* mDevice; InputReaderContext* mContext; static void dumpRawAbsoluteAxisInfo(String8& dump, const RawAbsoluteAxisInfo& axis, const char* name); }; class SwitchInputMapper : public InputMapper { public: SwitchInputMapper(InputDevice* device); virtual ~SwitchInputMapper(); virtual uint32_t getSources(); virtual void process(const RawEvent* rawEvent); virtual int32_t getSwitchState(uint32_t sourceMask, int32_t switchCode); private: void processSwitch(nsecs_t when, int32_t switchCode, int32_t switchValue); }; class KeyboardInputMapper : public InputMapper { public: KeyboardInputMapper(InputDevice* device, uint32_t source, int32_t keyboardType); virtual ~KeyboardInputMapper(); virtual uint32_t getSources(); virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo); virtual void dump(String8& dump); virtual void configure(const InputReaderConfiguration* config, uint32_t changes); virtual void reset(); virtual void process(const RawEvent* rawEvent); virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode); virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode); virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags); virtual int32_t getMetaState(); private: Mutex mLock; struct KeyDown { int32_t keyCode; int32_t scanCode; }; uint32_t mSource; int32_t mKeyboardType; // Immutable configuration parameters. struct Parameters { int32_t associatedDisplayId; bool orientationAware; } mParameters; struct LockedState { Vector keyDowns; // keys that are down int32_t metaState; nsecs_t downTime; // time of most recent key down struct LedState { bool avail; // led is available bool on; // we think the led is currently on }; LedState capsLockLedState; LedState numLockLedState; LedState scrollLockLedState; } mLocked; void initializeLocked(); void configureParameters(); void dumpParameters(String8& dump); bool isKeyboardOrGamepadKey(int32_t scanCode); void processKey(nsecs_t when, bool down, int32_t keyCode, int32_t scanCode, uint32_t policyFlags); ssize_t findKeyDownLocked(int32_t scanCode); void resetLedStateLocked(); void initializeLedStateLocked(LockedState::LedState& ledState, int32_t led); void updateLedStateLocked(bool reset); void updateLedStateForModifierLocked(LockedState::LedState& ledState, int32_t led, int32_t modifier, bool reset); }; class CursorInputMapper : public InputMapper { public: CursorInputMapper(InputDevice* device); virtual ~CursorInputMapper(); virtual uint32_t getSources(); virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo); virtual void dump(String8& dump); virtual void configure(const InputReaderConfiguration* config, uint32_t changes); virtual void reset(); virtual void process(const RawEvent* rawEvent); virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode); virtual void fadePointer(); private: // Amount that trackball needs to move in order to generate a key event. static const int32_t TRACKBALL_MOVEMENT_THRESHOLD = 6; Mutex mLock; // Immutable configuration parameters. struct Parameters { enum Mode { MODE_POINTER, MODE_NAVIGATION, }; Mode mode; int32_t associatedDisplayId; bool orientationAware; } mParameters; struct Accumulator { enum { FIELD_BUTTONS = 1, FIELD_REL_X = 2, FIELD_REL_Y = 4, FIELD_REL_WHEEL = 8, FIELD_REL_HWHEEL = 16, }; uint32_t fields; uint32_t buttonDown; uint32_t buttonUp; int32_t relX; int32_t relY; int32_t relWheel; int32_t relHWheel; inline void clear() { fields = 0; } } mAccumulator; int32_t mSource; float mXScale; float mYScale; float mXPrecision; float mYPrecision; bool mHaveVWheel; bool mHaveHWheel; float mVWheelScale; float mHWheelScale; // Velocity controls for mouse pointer and wheel movements. // The controls for X and Y wheel movements are separate to keep them decoupled. VelocityControl mPointerVelocityControl; VelocityControl mWheelXVelocityControl; VelocityControl mWheelYVelocityControl; sp mPointerController; struct LockedState { int32_t buttonState; nsecs_t downTime; } mLocked; void initializeLocked(); void configureParameters(); void dumpParameters(String8& dump); void sync(nsecs_t when); }; class TouchInputMapper : public InputMapper { public: TouchInputMapper(InputDevice* device); virtual ~TouchInputMapper(); virtual uint32_t getSources(); virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo); virtual void dump(String8& dump); virtual void configure(const InputReaderConfiguration* config, uint32_t changes); virtual void reset(); virtual int32_t getKeyCodeState(uint32_t sourceMask, int32_t keyCode); virtual int32_t getScanCodeState(uint32_t sourceMask, int32_t scanCode); virtual bool markSupportedKeyCodes(uint32_t sourceMask, size_t numCodes, const int32_t* keyCodes, uint8_t* outFlags); virtual void fadePointer(); virtual void timeoutExpired(nsecs_t when); protected: Mutex mLock; struct VirtualKey { int32_t keyCode; int32_t scanCode; uint32_t flags; // computed hit box, specified in touch screen coords based on known display size int32_t hitLeft; int32_t hitTop; int32_t hitRight; int32_t hitBottom; inline bool isHit(int32_t x, int32_t y) const { return x >= hitLeft && x <= hitRight && y >= hitTop && y <= hitBottom; } }; // Raw data for a single pointer. struct PointerData { uint32_t id; int32_t x; int32_t y; int32_t pressure; int32_t touchMajor; int32_t touchMinor; int32_t toolMajor; int32_t toolMinor; int32_t orientation; int32_t distance; bool isStylus; inline bool operator== (const PointerData& other) const { return id == other.id && x == other.x && y == other.y && pressure == other.pressure && touchMajor == other.touchMajor && touchMinor == other.touchMinor && toolMajor == other.toolMajor && toolMinor == other.toolMinor && orientation == other.orientation && distance == other.distance; } inline bool operator!= (const PointerData& other) const { return !(*this == other); } }; // Raw data for a collection of pointers including a pointer id mapping table. struct TouchData { uint32_t pointerCount; PointerData pointers[MAX_POINTERS]; BitSet32 idBits; uint32_t idToIndex[MAX_POINTER_ID + 1]; int32_t buttonState; void copyFrom(const TouchData& other) { pointerCount = other.pointerCount; idBits = other.idBits; buttonState = other.buttonState; for (uint32_t i = 0; i < pointerCount; i++) { pointers[i] = other.pointers[i]; int id = pointers[i].id; idToIndex[id] = other.idToIndex[id]; } } inline void clear() { pointerCount = 0; idBits.clear(); buttonState = 0; } void getCentroid(float* outX, float* outY) { float x = 0, y = 0; if (pointerCount != 0) { for (uint32_t i = 0; i < pointerCount; i++) { x += pointers[i].x; y += pointers[i].y; } x /= pointerCount; y /= pointerCount; } *outX = x; *outY = y; } }; // Input sources supported by the device. uint32_t mTouchSource; // sources when reporting touch data uint32_t mPointerSource; // sources when reporting pointer gestures // The reader's configuration. InputReaderConfiguration mConfig; // Immutable configuration parameters. struct Parameters { enum DeviceType { DEVICE_TYPE_TOUCH_SCREEN, DEVICE_TYPE_TOUCH_PAD, DEVICE_TYPE_POINTER, }; DeviceType deviceType; int32_t associatedDisplayId; bool orientationAware; enum GestureMode { GESTURE_MODE_POINTER, GESTURE_MODE_SPOTS, }; GestureMode gestureMode; } mParameters; // Immutable calibration parameters in parsed form. struct Calibration { // Touch Size enum TouchSizeCalibration { TOUCH_SIZE_CALIBRATION_DEFAULT, TOUCH_SIZE_CALIBRATION_NONE, TOUCH_SIZE_CALIBRATION_GEOMETRIC, TOUCH_SIZE_CALIBRATION_PRESSURE, }; TouchSizeCalibration touchSizeCalibration; // Tool Size enum ToolSizeCalibration { TOOL_SIZE_CALIBRATION_DEFAULT, TOOL_SIZE_CALIBRATION_NONE, TOOL_SIZE_CALIBRATION_GEOMETRIC, TOOL_SIZE_CALIBRATION_LINEAR, TOOL_SIZE_CALIBRATION_AREA, }; ToolSizeCalibration toolSizeCalibration; bool haveToolSizeLinearScale; float toolSizeLinearScale; bool haveToolSizeLinearBias; float toolSizeLinearBias; bool haveToolSizeAreaScale; float toolSizeAreaScale; bool haveToolSizeAreaBias; float toolSizeAreaBias; bool haveToolSizeIsSummed; bool toolSizeIsSummed; // Pressure enum PressureCalibration { PRESSURE_CALIBRATION_DEFAULT, PRESSURE_CALIBRATION_NONE, PRESSURE_CALIBRATION_PHYSICAL, PRESSURE_CALIBRATION_AMPLITUDE, }; enum PressureSource { PRESSURE_SOURCE_DEFAULT, PRESSURE_SOURCE_PRESSURE, PRESSURE_SOURCE_TOUCH, }; PressureCalibration pressureCalibration; PressureSource pressureSource; bool havePressureScale; float pressureScale; // Size enum SizeCalibration { SIZE_CALIBRATION_DEFAULT, SIZE_CALIBRATION_NONE, SIZE_CALIBRATION_NORMALIZED, }; SizeCalibration sizeCalibration; // Orientation enum OrientationCalibration { ORIENTATION_CALIBRATION_DEFAULT, ORIENTATION_CALIBRATION_NONE, ORIENTATION_CALIBRATION_INTERPOLATED, ORIENTATION_CALIBRATION_VECTOR, }; OrientationCalibration orientationCalibration; // Distance enum DistanceCalibration { DISTANCE_CALIBRATION_DEFAULT, DISTANCE_CALIBRATION_NONE, DISTANCE_CALIBRATION_SCALED, }; DistanceCalibration distanceCalibration; bool haveDistanceScale; float distanceScale; } mCalibration; // Raw axis information from the driver. struct RawAxes { RawAbsoluteAxisInfo x; RawAbsoluteAxisInfo y; RawAbsoluteAxisInfo pressure; RawAbsoluteAxisInfo touchMajor; RawAbsoluteAxisInfo touchMinor; RawAbsoluteAxisInfo toolMajor; RawAbsoluteAxisInfo toolMinor; RawAbsoluteAxisInfo orientation; RawAbsoluteAxisInfo distance; RawAbsoluteAxisInfo trackingId; RawAbsoluteAxisInfo slot; } mRawAxes; // Current and previous touch sample data. TouchData mCurrentTouch; PointerProperties mCurrentTouchProperties[MAX_POINTERS]; PointerCoords mCurrentTouchCoords[MAX_POINTERS]; TouchData mLastTouch; PointerProperties mLastTouchProperties[MAX_POINTERS]; PointerCoords mLastTouchCoords[MAX_POINTERS]; // The time the primary pointer last went down. nsecs_t mDownTime; // The pointer controller, or null if the device is not a pointer. sp mPointerController; struct LockedState { Vector virtualKeys; // The surface orientation and width and height set by configureSurfaceLocked(). int32_t surfaceOrientation; int32_t surfaceWidth, surfaceHeight; // The associated display orientation and width and height set by configureSurfaceLocked(). int32_t associatedDisplayOrientation; int32_t associatedDisplayWidth, associatedDisplayHeight; // Translation and scaling factors, orientation-independent. float xScale; float xPrecision; float yScale; float yPrecision; float geometricScale; float toolSizeLinearScale; float toolSizeLinearBias; float toolSizeAreaScale; float toolSizeAreaBias; float pressureScale; float sizeScale; float orientationScale; float distanceScale; // Oriented motion ranges for input device info. struct OrientedRanges { InputDeviceInfo::MotionRange x; InputDeviceInfo::MotionRange y; bool havePressure; InputDeviceInfo::MotionRange pressure; bool haveSize; InputDeviceInfo::MotionRange size; bool haveTouchSize; InputDeviceInfo::MotionRange touchMajor; InputDeviceInfo::MotionRange touchMinor; bool haveToolSize; InputDeviceInfo::MotionRange toolMajor; InputDeviceInfo::MotionRange toolMinor; bool haveOrientation; InputDeviceInfo::MotionRange orientation; bool haveDistance; InputDeviceInfo::MotionRange distance; } orientedRanges; // Oriented dimensions and precision. float orientedSurfaceWidth, orientedSurfaceHeight; float orientedXPrecision, orientedYPrecision; struct CurrentVirtualKeyState { bool down; nsecs_t downTime; int32_t keyCode; int32_t scanCode; } currentVirtualKey; // Scale factor for gesture based pointer movements. float pointerGestureXMovementScale; float pointerGestureYMovementScale; // Scale factor for gesture based zooming and other freeform motions. float pointerGestureXZoomScale; float pointerGestureYZoomScale; // The maximum swipe width. float pointerGestureMaxSwipeWidth; } mLocked; virtual void configureParameters(); virtual void dumpParameters(String8& dump); virtual void configureRawAxes(); virtual void dumpRawAxes(String8& dump); virtual bool configureSurfaceLocked(); virtual void dumpSurfaceLocked(String8& dump); virtual void configureVirtualKeysLocked(); virtual void dumpVirtualKeysLocked(String8& dump); virtual void parseCalibration(); virtual void resolveCalibration(); virtual void dumpCalibration(String8& dump); enum TouchResult { // Dispatch the touch normally. DISPATCH_TOUCH, // Do not dispatch the touch, but keep tracking the current stroke. SKIP_TOUCH, // Do not dispatch the touch, and drop all information associated with the current stoke // so the next movement will appear as a new down. DROP_STROKE }; void syncTouch(nsecs_t when, bool havePointerIds); private: struct PointerDistanceHeapElement { uint32_t currentPointerIndex : 8; uint32_t lastPointerIndex : 8; uint64_t distance : 48; // squared distance }; struct PointerGesture { enum Mode { // No fingers, button is not pressed. // Nothing happening. NEUTRAL, // No fingers, button is not pressed. // Tap detected. // Emits DOWN and UP events at the pointer location. TAP, // Exactly one finger dragging following a tap. // Pointer follows the active finger. // Emits DOWN, MOVE and UP events at the pointer location. // // Detect double-taps when the finger goes up while in TAP_DRAG mode. TAP_DRAG, // Button is pressed. // Pointer follows the active finger if there is one. Other fingers are ignored. // Emits DOWN, MOVE and UP events at the pointer location. BUTTON_CLICK_OR_DRAG, // Exactly one finger, button is not pressed. // Pointer follows the active finger. // Emits HOVER_MOVE events at the pointer location. // // Detect taps when the finger goes up while in HOVER mode. HOVER, // Exactly two fingers but neither have moved enough to clearly indicate // whether a swipe or freeform gesture was intended. We consider the // pointer to be pressed so this enables clicking or long-pressing on buttons. // Pointer does not move. // Emits DOWN, MOVE and UP events with a single stationary pointer coordinate. PRESS, // Exactly two fingers moving in the same direction, button is not pressed. // Pointer does not move. // Emits DOWN, MOVE and UP events with a single pointer coordinate that // follows the midpoint between both fingers. SWIPE, // Two or more fingers moving in arbitrary directions, button is not pressed. // Pointer does not move. // Emits DOWN, POINTER_DOWN, MOVE, POINTER_UP and UP events that follow // each finger individually relative to the initial centroid of the finger. FREEFORM, // Waiting for quiet time to end before starting the next gesture. QUIET, }; // Time the first finger went down. nsecs_t firstTouchTime; // The active pointer id from the raw touch data. int32_t activeTouchId; // -1 if none // The active pointer id from the gesture last delivered to the application. int32_t activeGestureId; // -1 if none // Pointer coords and ids for the current and previous pointer gesture. Mode currentGestureMode; BitSet32 currentGestureIdBits; uint32_t currentGestureIdToIndex[MAX_POINTER_ID + 1]; PointerProperties currentGestureProperties[MAX_POINTERS]; PointerCoords currentGestureCoords[MAX_POINTERS]; Mode lastGestureMode; BitSet32 lastGestureIdBits; uint32_t lastGestureIdToIndex[MAX_POINTER_ID + 1]; PointerProperties lastGestureProperties[MAX_POINTERS]; PointerCoords lastGestureCoords[MAX_POINTERS]; // Time the pointer gesture last went down. nsecs_t downTime; // Time when the pointer went down for a TAP. nsecs_t tapDownTime; // Time when the pointer went up for a TAP. nsecs_t tapUpTime; // Location of initial tap. float tapX, tapY; // Time we started waiting for quiescence. nsecs_t quietTime; // Reference points for multitouch gestures. float referenceTouchX; // reference touch X/Y coordinates in surface units float referenceTouchY; float referenceGestureX; // reference gesture X/Y coordinates in pixels float referenceGestureY; // Distance that each pointer has traveled which has not yet been // subsumed into the reference gesture position. BitSet32 referenceIdBits; struct Delta { float dx, dy; }; Delta referenceDeltas[MAX_POINTER_ID + 1]; // Describes how touch ids are mapped to gesture ids for freeform gestures. uint32_t freeformTouchToGestureIdMap[MAX_POINTER_ID + 1]; // A velocity tracker for determining whether to switch active pointers during drags. VelocityTracker velocityTracker; // Velocity control for pointer movements. VelocityControl pointerVelocityControl; void reset() { firstTouchTime = LLONG_MIN; activeTouchId = -1; activeGestureId = -1; currentGestureMode = NEUTRAL; currentGestureIdBits.clear(); lastGestureMode = NEUTRAL; lastGestureIdBits.clear(); downTime = 0; velocityTracker.clear(); resetTap(); resetQuietTime(); pointerVelocityControl.reset(); } void resetTap() { tapDownTime = LLONG_MIN; tapUpTime = LLONG_MIN; } void resetQuietTime() { quietTime = LLONG_MIN; } } mPointerGesture; void initializeLocked(); TouchResult consumeOffScreenTouches(nsecs_t when, uint32_t policyFlags); void dispatchTouches(nsecs_t when, uint32_t policyFlags); void prepareTouches(float* outXPrecision, float* outYPrecision); void dispatchPointerGestures(nsecs_t when, uint32_t policyFlags, bool isTimeout); bool preparePointerGestures(nsecs_t when, bool* outCancelPreviousGesture, bool* outFinishPreviousGesture, bool isTimeout); // Dispatches a motion event. // If the changedId is >= 0 and the action is POINTER_DOWN or POINTER_UP, the // method will take care of setting the index and transmuting the action to DOWN or UP // it is the first / last pointer to go down / up. void dispatchMotion(nsecs_t when, uint32_t policyFlags, uint32_t source, int32_t action, int32_t flags, int32_t metaState, int32_t buttonState, int32_t edgeFlags, const PointerProperties* properties, const PointerCoords* coords, const uint32_t* idToIndex, BitSet32 idBits, int32_t changedId, float xPrecision, float yPrecision, nsecs_t downTime); // Updates pointer coords and properties for pointers with specified ids that have moved. // Returns true if any of them changed. bool updateMovedPointers(const PointerProperties* inProperties, const PointerCoords* inCoords, const uint32_t* inIdToIndex, PointerProperties* outProperties, PointerCoords* outCoords, const uint32_t* outIdToIndex, BitSet32 idBits) const; void suppressSwipeOntoVirtualKeys(nsecs_t when); int32_t getTouchToolType(bool isStylus) const; bool isPointInsideSurfaceLocked(int32_t x, int32_t y); const VirtualKey* findVirtualKeyHitLocked(int32_t x, int32_t y); void calculatePointerIds(); }; class SingleTouchInputMapper : public TouchInputMapper { public: SingleTouchInputMapper(InputDevice* device); virtual ~SingleTouchInputMapper(); virtual void reset(); virtual void process(const RawEvent* rawEvent); protected: virtual void configureRawAxes(); private: struct Accumulator { enum { FIELD_BTN_TOUCH = 1, FIELD_ABS_X = 2, FIELD_ABS_Y = 4, FIELD_ABS_PRESSURE = 8, FIELD_ABS_TOOL_WIDTH = 16, FIELD_BUTTONS = 32, }; uint32_t fields; bool btnTouch; int32_t absX; int32_t absY; int32_t absPressure; int32_t absToolWidth; uint32_t buttonDown; uint32_t buttonUp; inline void clear() { fields = 0; buttonDown = 0; buttonUp = 0; } } mAccumulator; bool mDown; int32_t mX; int32_t mY; int32_t mPressure; int32_t mToolWidth; int32_t mButtonState; void clearState(); void sync(nsecs_t when); }; class MultiTouchInputMapper : public TouchInputMapper { public: MultiTouchInputMapper(InputDevice* device); virtual ~MultiTouchInputMapper(); virtual void reset(); virtual void process(const RawEvent* rawEvent); protected: virtual void configureRawAxes(); private: struct Accumulator { enum { FIELD_ABS_MT_POSITION_X = 1 << 0, FIELD_ABS_MT_POSITION_Y = 1 << 1, FIELD_ABS_MT_TOUCH_MAJOR = 1 << 2, FIELD_ABS_MT_TOUCH_MINOR = 1 << 3, FIELD_ABS_MT_WIDTH_MAJOR = 1 << 4, FIELD_ABS_MT_WIDTH_MINOR = 1 << 5, FIELD_ABS_MT_ORIENTATION = 1 << 6, FIELD_ABS_MT_TRACKING_ID = 1 << 7, FIELD_ABS_MT_PRESSURE = 1 << 8, FIELD_ABS_MT_TOOL_TYPE = 1 << 9, FIELD_ABS_MT_DISTANCE = 1 << 10, }; struct Slot { uint32_t fields; // 0 if slot is unused int32_t absMTPositionX; int32_t absMTPositionY; int32_t absMTTouchMajor; int32_t absMTTouchMinor; int32_t absMTWidthMajor; int32_t absMTWidthMinor; int32_t absMTOrientation; int32_t absMTTrackingId; int32_t absMTPressure; int32_t absMTToolType; int32_t absMTDistance; inline Slot() { clear(); } inline void clear() { fields = 0; } }; // Current slot index. int32_t currentSlot; // Array of slots. Slot* slots; // Bitfield of buttons that went down or up. uint32_t buttonDown; uint32_t buttonUp; Accumulator() : currentSlot(0), slots(NULL), buttonDown(0), buttonUp(0) { } ~Accumulator() { delete[] slots; } void allocateSlots(size_t slotCount) { slots = new Slot[slotCount]; } void clearSlots(size_t slotCount) { for (size_t i = 0; i < slotCount; i++) { slots[i].clear(); } currentSlot = 0; } void clearButtons() { buttonDown = 0; buttonUp = 0; } } mAccumulator; size_t mSlotCount; bool mUsingSlotsProtocol; int32_t mButtonState; // Specifies the pointer id bits that are in use, and their associated tracking id. BitSet32 mPointerIdBits; int32_t mPointerTrackingIdMap[MAX_POINTER_ID + 1]; void clearState(); void sync(nsecs_t when); }; class JoystickInputMapper : public InputMapper { public: JoystickInputMapper(InputDevice* device); virtual ~JoystickInputMapper(); virtual uint32_t getSources(); virtual void populateDeviceInfo(InputDeviceInfo* deviceInfo); virtual void dump(String8& dump); virtual void configure(const InputReaderConfiguration* config, uint32_t changes); virtual void reset(); virtual void process(const RawEvent* rawEvent); private: struct Axis { RawAbsoluteAxisInfo rawAxisInfo; AxisInfo axisInfo; bool explicitlyMapped; // true if the axis was explicitly assigned an axis id float scale; // scale factor from raw to normalized values float offset; // offset to add after scaling for normalization float highScale; // scale factor from raw to normalized values of high split float highOffset; // offset to add after scaling for normalization of high split float min; // normalized inclusive minimum float max; // normalized inclusive maximum float flat; // normalized flat region size float fuzz; // normalized error tolerance float filter; // filter out small variations of this size float currentValue; // current value float newValue; // most recent value float highCurrentValue; // current value of high split float highNewValue; // most recent value of high split void initialize(const RawAbsoluteAxisInfo& rawAxisInfo, const AxisInfo& axisInfo, bool explicitlyMapped, float scale, float offset, float highScale, float highOffset, float min, float max, float flat, float fuzz) { this->rawAxisInfo = rawAxisInfo; this->axisInfo = axisInfo; this->explicitlyMapped = explicitlyMapped; this->scale = scale; this->offset = offset; this->highScale = highScale; this->highOffset = highOffset; this->min = min; this->max = max; this->flat = flat; this->fuzz = fuzz; this->filter = 0; resetValue(); } void resetValue() { this->currentValue = 0; this->newValue = 0; this->highCurrentValue = 0; this->highNewValue = 0; } }; // Axes indexed by raw ABS_* axis index. KeyedVector mAxes; void sync(nsecs_t when, bool force); bool haveAxis(int32_t axisId); void pruneAxes(bool ignoreExplicitlyMappedAxes); bool filterAxes(bool force); static bool hasValueChangedSignificantly(float filter, float newValue, float currentValue, float min, float max); static bool hasMovedNearerToValueWithinFilteredRange(float filter, float newValue, float currentValue, float thresholdValue); static bool isCenteredAxis(int32_t axis); }; } // namespace android #endif // _UI_INPUT_READER_H