/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.server.display; import android.util.DisplayMetrics; import android.view.Surface; import libcore.util.Objects; /** * Describes the characteristics of a physical display device. */ final class DisplayDeviceInfo { /** * Flag: Indicates that this display device should be considered the default display * device of the system. */ public static final int FLAG_DEFAULT_DISPLAY = 1 << 0; /** * Flag: Indicates that the orientation of this display device is coupled to the * rotation of its associated logical display. *

* This flag should be applied to the default display to indicate that the user * physically rotates the display when content is presented in a different orientation. * The display manager will apply a coordinate transformation assuming that the * physical orientation of the display matches the logical orientation of its content. *

* The flag should not be set when the display device is mounted in a fixed orientation * such as on a desk. The display manager will apply a coordinate transformation * such as a scale and translation to letterbox or pillarbox format under the * assumption that the physical orientation of the display is invariant. *

*/ public static final int FLAG_ROTATES_WITH_CONTENT = 1 << 1; /** * Flag: Indicates that this display device has secure video output, such as HDCP. */ public static final int FLAG_SECURE = 1 << 2; /** * Flag: Indicates that this display device supports compositing * from gralloc protected buffers. */ public static final int FLAG_SUPPORTS_PROTECTED_BUFFERS = 1 << 3; /** * Touch attachment: Display does not receive touch. */ public static final int TOUCH_NONE = 0; /** * Touch attachment: Touch input is via the internal interface. */ public static final int TOUCH_INTERNAL = 1; /** * Touch attachment: Touch input is via an external interface, such as USB. */ public static final int TOUCH_EXTERNAL = 2; /** * Gets the name of the display device, which may be derived from * EDID or other sources. The name may be displayed to the user. */ public String name; /** * The width of the display in its natural orientation, in pixels. * This value is not affected by display rotation. */ public int width; /** * The height of the display in its natural orientation, in pixels. * This value is not affected by display rotation. */ public int height; /** * The refresh rate of the display. */ public float refreshRate; /** * The nominal apparent density of the display in DPI used for layout calculations. * This density is sensitive to the viewing distance. A big TV and a tablet may have * the same apparent density even though the pixels on the TV are much bigger than * those on the tablet. */ public int densityDpi; /** * The physical density of the display in DPI in the X direction. * This density should specify the physical size of each pixel. */ public float xDpi; /** * The physical density of the display in DPI in the X direction. * This density should specify the physical size of each pixel. */ public float yDpi; /** * Display flags. */ public int flags; /** * The touch attachment, per {@link DisplayViewport#touch}. */ public int touch; /** * The additional rotation to apply to all content presented on the display device * relative to its physical coordinate system. Default is {@link Surface#ROTATION_0}. *

* This field can be used to compensate for the fact that the display has been * physically rotated relative to its natural orientation such as an HDMI monitor * that has been mounted sideways to appear to be portrait rather than landscape. *

*/ public int rotation = Surface.ROTATION_0; public void setAssumedDensityForExternalDisplay(int width, int height) { densityDpi = Math.min(width, height) * DisplayMetrics.DENSITY_XHIGH / 1080; // Technically, these values should be smaller than the apparent density // but we don't know the physical size of the display. xDpi = densityDpi; yDpi = densityDpi; } @Override public boolean equals(Object o) { return o instanceof DisplayDeviceInfo && equals((DisplayDeviceInfo)o); } public boolean equals(DisplayDeviceInfo other) { return other != null && Objects.equal(name, other.name) && width == other.width && height == other.height && refreshRate == other.refreshRate && densityDpi == other.densityDpi && xDpi == other.xDpi && yDpi == other.yDpi && flags == other.flags && touch == other.touch && rotation == other.rotation; } @Override public int hashCode() { return 0; // don't care } public void copyFrom(DisplayDeviceInfo other) { name = other.name; width = other.width; height = other.height; refreshRate = other.refreshRate; densityDpi = other.densityDpi; xDpi = other.xDpi; yDpi = other.yDpi; flags = other.flags; touch = other.touch; rotation = other.rotation; } // For debugging purposes @Override public String toString() { return "DisplayDeviceInfo{\"" + name + "\": " + width + " x " + height + ", " + refreshRate + " fps, " + "density " + densityDpi + ", " + xDpi + " x " + yDpi + " dpi" + ", touch " + touchToString(touch) + flagsToString(flags) + ", rotation " + rotation + "}"; } private static String touchToString(int touch) { switch (touch) { case TOUCH_NONE: return "NONE"; case TOUCH_INTERNAL: return "INTERNAL"; case TOUCH_EXTERNAL: return "EXTERNAL"; default: return Integer.toString(touch); } } private static String flagsToString(int flags) { StringBuilder msg = new StringBuilder(); if ((flags & FLAG_DEFAULT_DISPLAY) != 0) { msg.append(", FLAG_DEFAULT_DISPLAY"); } if ((flags & FLAG_ROTATES_WITH_CONTENT) != 0) { msg.append(", FLAG_ROTATES_WITH_CONTENT"); } if ((flags & FLAG_SECURE) != 0) { msg.append(", FLAG_SECURE"); } if ((flags & FLAG_SUPPORTS_PROTECTED_BUFFERS) != 0) { msg.append(", FLAG_SUPPORTS_PROTECTED_BUFFERS"); } return msg.toString(); } }