/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "Fusion.h" namespace android { // ----------------------------------------------------------------------- template static inline TYPE sqr(TYPE x) { return x*x; } template static inline T clamp(T v) { return v < 0 ? 0 : v; } template static mat scaleCovariance( const mat& A, const mat& P) { // A*P*transpose(A); mat APAt; for (size_t r=0 ; r static mat crossMatrix(const vec& p, OTHER_TYPE diag) { mat r; r[0][0] = diag; r[1][1] = diag; r[2][2] = diag; r[0][1] = p.z; r[1][0] =-p.z; r[0][2] =-p.y; r[2][0] = p.y; r[1][2] = p.x; r[2][1] =-p.x; return r; } template static mat MRPsToMatrix(const vec& p) { mat res(1); const mat px(crossMatrix(p, 0)); const TYPE ptp(dot_product(p,p)); const TYPE t = 4/sqr(1+ptp); res -= t * (1-ptp) * px; res += t * 2 * sqr(px); return res; } template vec matrixToMRPs(const mat& R) { // matrix to MRPs vec q; const float Hx = R[0].x; const float My = R[1].y; const float Az = R[2].z; const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f )); q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w; q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w; q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w; q.x = copysignf(q.x, R[2].y - R[1].z); q.y = copysignf(q.y, R[0].z - R[2].x); q.z = copysignf(q.z, R[1].x - R[0].y); return q; } template class Covariance { mat mSumXX; vec mSumX; size_t mN; public: Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { } void update(const vec& x) { mSumXX += x*transpose(x); mSumX += x; mN++; } mat operator()() const { const float N = 1.0f / mN; return mSumXX*N - (mSumX*transpose(mSumX))*(N*N); } void reset() { mN = 0; mSumXX = 0; mSumX = 0; } size_t getCount() const { return mN; } }; // ----------------------------------------------------------------------- Fusion::Fusion() { // process noise covariance matrix const float w1 = gyroSTDEV; const float w2 = biasSTDEV; Q[0] = w1*w1; Q[1] = w2*w2; Ba.x = 0; Ba.y = 0; Ba.z = 1; Bm.x = 0; Bm.y = 1; Bm.z = 0; init(); } void Fusion::init() { // initial estimate: E{ x(t0) } x = 0; // initial covariance: Var{ x(t0) } P = 0; mInitState = 0; mCount[0] = 0; mCount[1] = 0; mCount[2] = 0; mData = 0; } bool Fusion::hasEstimate() const { return (mInitState == (MAG|ACC|GYRO)); } bool Fusion::checkInitComplete(int what, const vec3_t& d) { if (mInitState == (MAG|ACC|GYRO)) return true; if (what == ACC) { mData[0] += d * (1/length(d)); mCount[0]++; mInitState |= ACC; } else if (what == MAG) { mData[1] += d * (1/length(d)); mCount[1]++; mInitState |= MAG; } else if (what == GYRO) { mData[2] += d; mCount[2]++; if (mCount[2] == 64) { // 64 samples is good enough to estimate the gyro drift and // doesn't take too much time. mInitState |= GYRO; } } if (mInitState == (MAG|ACC|GYRO)) { // Average all the values we collected so far mData[0] *= 1.0f/mCount[0]; mData[1] *= 1.0f/mCount[1]; mData[2] *= 1.0f/mCount[2]; // calculate the MRPs from the data collection, this gives us // a rough estimate of our initial state mat33_t R; vec3_t up(mData[0]); vec3_t east(cross_product(mData[1], up)); east *= 1/length(east); vec3_t north(cross_product(up, east)); R << east << north << up; x[0] = matrixToMRPs(R); // NOTE: we could try to use the average of the gyro data // to estimate the initial bias, but this only works if // the device is not moving. For now, we don't use that value // and start with a bias of 0. x[1] = 0; // initial covariance P = 0; } return false; } void Fusion::handleGyro(const vec3_t& w, float dT) { const vec3_t wdT(w * dT); // rad/s * s -> rad if (!checkInitComplete(GYRO, wdT)) return; predict(wdT); } status_t Fusion::handleAcc(const vec3_t& a) { if (length(a) < 0.981f) return BAD_VALUE; if (!checkInitComplete(ACC, a)) return BAD_VALUE; // ignore acceleration data if we're close to free-fall const float l = 1/length(a); update(a*l, Ba, accSTDEV*l); return NO_ERROR; } status_t Fusion::handleMag(const vec3_t& m) { // the geomagnetic-field should be between 30uT and 60uT // reject obviously wrong magnetic-fields if (length(m) > 100) return BAD_VALUE; if (!checkInitComplete(MAG, m)) return BAD_VALUE; const vec3_t up( getRotationMatrix() * Ba ); const vec3_t east( cross_product(m, up) ); vec3_t north( cross_product(up, east) ); const float l = 1 / length(north); north *= l; #if 0 // in practice the magnetic-field sensor is so wrong // that there is no point trying to use it to constantly // correct the gyro. instead, we use the mag-sensor only when // the device points north (just to give us a reference). // We're hoping that it'll actually point north, if it doesn't // we'll be offset, but at least the instantaneous posture // of the device will be correct. const float cos_30 = 0.8660254f; if (dot_product(north, Bm) < cos_30) return BAD_VALUE; #endif update(north, Bm, magSTDEV*l); return NO_ERROR; } bool Fusion::checkState(const vec3_t& v) { if (isnanf(length(v))) { LOGW("9-axis fusion diverged. reseting state."); P = 0; x[1] = 0; mInitState = 0; mCount[0] = 0; mCount[1] = 0; mCount[2] = 0; mData = 0; return false; } return true; } vec3_t Fusion::getAttitude() const { return x[0]; } vec3_t Fusion::getBias() const { return x[1]; } mat33_t Fusion::getRotationMatrix() const { return MRPsToMatrix(x[0]); } mat33_t Fusion::getF(const vec3_t& p) { const float p0 = p.x; const float p1 = p.y; const float p2 = p.z; // f(p, w) const float p0p1 = p0*p1; const float p0p2 = p0*p2; const float p1p2 = p1*p2; const float p0p0 = p0*p0; const float p1p1 = p1*p1; const float p2p2 = p2*p2; const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2)); mat33_t F; F[0][0] = 0.5f*(p0p0 + pp); F[0][1] = 0.5f*(p0p1 + p2); F[0][2] = 0.5f*(p0p2 - p1); F[1][0] = 0.5f*(p0p1 - p2); F[1][1] = 0.5f*(p1p1 + pp); F[1][2] = 0.5f*(p1p2 + p0); F[2][0] = 0.5f*(p0p2 + p1); F[2][1] = 0.5f*(p1p2 - p0); F[2][2] = 0.5f*(p2p2 + pp); return F; } mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) { // dF = | A = df/dp -F | // | 0 0 | mat33_t A; A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z); A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z); A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y); A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x); A[1][0] = -A[0][1]; A[2][0] = -A[0][2]; A[2][1] = -A[1][2]; return A; } void Fusion::predict(const vec3_t& w) { // f(p, w) vec3_t& p(x[0]); // There is a discontinuity at 2.pi, to avoid it we need to switch to // the shadow of p when pT.p gets too big. const float ptp(dot_product(p,p)); if (ptp >= 2.0f) { p = -p * (1/ptp); } const mat33_t F(getF(p)); // compute w with the bias correction: // w_estimated = w - b_estimated const vec3_t& b(x[1]); const vec3_t we(w - b); // prediction const vec3_t dX(F*we); if (!checkState(dX)) return; p += dX; const mat33_t A(getdFdp(p, we)); // G = | G0 0 | = | -F 0 | // | 0 1 | | 0 1 | // P += A*P + P*At + F*Q*Ft const mat33_t AP(A*transpose(P[0][0])); const mat33_t PAt(P[0][0]*transpose(A)); const mat33_t FPSt(F*transpose(P[1][0])); const mat33_t PSFt(P[1][0]*transpose(F)); const mat33_t FQFt(scaleCovariance(F, Q[0])); P[0][0] += AP + PAt - FPSt - PSFt + FQFt; P[1][0] += A*P[1][0] - F*P[1][1]; P[1][1] += Q[1]; } void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) { const vec3_t p(x[0]); // measured vector in body space: h(p) = A(p)*Bi const mat33_t A(MRPsToMatrix(p)); const vec3_t Bb(A*Bi); // Sensitivity matrix H = dh(p)/dp // H = [ L 0 ] const float ptp(dot_product(p,p)); const mat33_t px(crossMatrix(p, 0.5f*(ptp-1))); const mat33_t ppt(p*transpose(p)); const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px)); // update... const mat33_t R(sigma*sigma); const mat33_t S(scaleCovariance(L, P[0][0]) + R); const mat33_t Si(invert(S)); const mat33_t LtSi(transpose(L)*Si); vec K; K[0] = P[0][0] * LtSi; K[1] = transpose(P[1][0])*LtSi; const vec3_t e(z - Bb); const vec3_t K0e(K[0]*e); const vec3_t K1e(K[1]*e); if (!checkState(K0e)) return; if (!checkState(K1e)) return; x[0] += K0e; x[1] += K1e; // P -= K*H*P; const mat33_t K0L(K[0] * L); const mat33_t K1L(K[1] * L); P[0][0] -= K0L*P[0][0]; P[1][1] -= K1L*P[1][0]; P[1][0] -= K0L*P[1][0]; } // ----------------------------------------------------------------------- }; // namespace android