summaryrefslogtreecommitdiffstats
path: root/libs/rs/rsMatrix4x4.cpp
blob: f34af471cc8c979ea4c8305df1db310df41e362a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "rsMatrix2x2.h"
#include "rsMatrix3x3.h"
#include "rsMatrix4x4.h"

#include "stdlib.h"
#include "string.h"
#include "math.h"

using namespace android;
using namespace android::renderscript;

//////////////////////////////////////////////////////////////////////////////
// Heavy math functions
//////////////////////////////////////////////////////////////////////////////





// Returns true if the matrix was successfully inversed
bool Matrix4x4::inverse() {
    rs_matrix4x4 result;

    int i, j;
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            // computeCofactor for int i, int j
            int c0 = (i+1) % 4;
            int c1 = (i+2) % 4;
            int c2 = (i+3) % 4;
            int r0 = (j+1) % 4;
            int r1 = (j+2) % 4;
            int r2 = (j+3) % 4;

            float minor =
                (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1]))
                - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0]))
                + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0]));

            float cofactor = (i+j) & 1 ? -minor : minor;

            result.m[4*i + j] = cofactor;
        }
    }

    // Dot product of 0th column of source and 0th row of result
    float det = m[0]*result.m[0] + m[4]*result.m[1] +
                 m[8]*result.m[2] + m[12]*result.m[3];

    if (fabs(det) < 1e-6) {
        return false;
    }

    det = 1.0f / det;
    for (i = 0; i < 16; ++i) {
        m[i] = result.m[i] * det;
    }

    return true;
}

// Returns true if the matrix was successfully inversed
bool Matrix4x4::inverseTranspose() {
    rs_matrix4x4 result;

    int i, j;
    for (i = 0; i < 4; ++i) {
        for (j = 0; j < 4; ++j) {
            // computeCofactor for int i, int j
            int c0 = (i+1) % 4;
            int c1 = (i+2) % 4;
            int c2 = (i+3) % 4;
            int r0 = (j+1) % 4;
            int r1 = (j+2) % 4;
            int r2 = (j+3) % 4;

            float minor = (m[c0 + 4*r0] * (m[c1 + 4*r1] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r1]))
                         - (m[c0 + 4*r1] * (m[c1 + 4*r0] * m[c2 + 4*r2] - m[c1 + 4*r2] * m[c2 + 4*r0]))
                         + (m[c0 + 4*r2] * (m[c1 + 4*r0] * m[c2 + 4*r1] - m[c1 + 4*r1] * m[c2 + 4*r0]));

            float cofactor = (i+j) & 1 ? -minor : minor;

            result.m[4*j + i] = cofactor;
        }
    }

    // Dot product of 0th column of source and 0th column of result
    float det = m[0]*result.m[0] + m[4]*result.m[4] +
                 m[8]*result.m[8] + m[12]*result.m[12];

    if (fabs(det) < 1e-6) {
        return false;
    }

    det = 1.0f / det;
    for (i = 0; i < 16; ++i) {
        m[i] = result.m[i] * det;
    }

    return true;
}

void Matrix4x4::transpose() {
    int i, j;
    float temp;
    for (i = 0; i < 3; ++i) {
        for (j = i + 1; j < 4; ++j) {
            temp = m[i*4 + j];
            m[i*4 + j] = m[j*4 + i];
            m[j*4 + i] = temp;
        }
    }
}


///////////////////////////////////////////////////////////////////////////////////

void Matrix4x4::loadIdentity() {
    m[0] = 1.f;
    m[1] = 0.f;
    m[2] = 0.f;
    m[3] = 0.f;
    m[4] = 0.f;
    m[5] = 1.f;
    m[6] = 0.f;
    m[7] = 0.f;
    m[8] = 0.f;
    m[9] = 0.f;
    m[10] = 1.f;
    m[11] = 0.f;
    m[12] = 0.f;
    m[13] = 0.f;
    m[14] = 0.f;
    m[15] = 1.f;
}

void Matrix4x4::load(const float *v) {
    memcpy(m, v, sizeof(m));
}

void Matrix4x4::load(const rs_matrix4x4 *v) {
    memcpy(m, v->m, sizeof(m));
}

void Matrix4x4::load(const rs_matrix3x3 *v) {
    m[0] = v->m[0];
    m[1] = v->m[1];
    m[2] = v->m[2];
    m[3] = 0.f;
    m[4] = v->m[3];
    m[5] = v->m[4];
    m[6] = v->m[5];
    m[7] = 0.f;
    m[8] = v->m[6];
    m[9] = v->m[7];
    m[10] = v->m[8];
    m[11] = 0.f;
    m[12] = 0.f;
    m[13] = 0.f;
    m[14] = 0.f;
    m[15] = 1.f;
}

void Matrix4x4::load(const rs_matrix2x2 *v) {
    m[0] = v->m[0];
    m[1] = v->m[1];
    m[2] = 0.f;
    m[3] = 0.f;
    m[4] = v->m[2];
    m[5] = v->m[3];
    m[6] = 0.f;
    m[7] = 0.f;
    m[8] = 0.f;
    m[9] = 0.f;
    m[10] = 1.f;
    m[11] = 0.f;
    m[12] = 0.f;
    m[13] = 0.f;
    m[14] = 0.f;
    m[15] = 1.f;
}


void Matrix4x4::loadRotate(float rot, float x, float y, float z) {
    float c, s;
    m[3] = 0;
    m[7] = 0;
    m[11]= 0;
    m[12]= 0;
    m[13]= 0;
    m[14]= 0;
    m[15]= 1;
    rot *= float(M_PI / 180.0f);
    c = cosf(rot);
    s = sinf(rot);

    const float len = x*x + y*y + z*z;
    if (len != 1) {
        const float recipLen = 1.f / sqrtf(len);
        x *= recipLen;
        y *= recipLen;
        z *= recipLen;
    }
    const float nc = 1.0f - c;
    const float xy = x * y;
    const float yz = y * z;
    const float zx = z * x;
    const float xs = x * s;
    const float ys = y * s;
    const float zs = z * s;
    m[ 0] = x*x*nc +  c;
    m[ 4] =  xy*nc - zs;
    m[ 8] =  zx*nc + ys;
    m[ 1] =  xy*nc + zs;
    m[ 5] = y*y*nc +  c;
    m[ 9] =  yz*nc - xs;
    m[ 2] =  zx*nc - ys;
    m[ 6] =  yz*nc + xs;
    m[10] = z*z*nc +  c;
}

void Matrix4x4::loadScale(float x, float y, float z) {
    loadIdentity();
    set(0, 0, x);
    set(1, 1, y);
    set(2, 2, z);
}

void Matrix4x4::loadTranslate(float x, float y, float z) {
    loadIdentity();
    m[12] = x;
    m[13] = y;
    m[14] = z;
}

void Matrix4x4::loadMultiply(const rs_matrix4x4 *lhs, const rs_matrix4x4 *rhs) {
    for (int i=0 ; i<4 ; i++) {
        float ri0 = 0;
        float ri1 = 0;
        float ri2 = 0;
        float ri3 = 0;
        for (int j=0 ; j<4 ; j++) {
            const float rhs_ij = ((const Matrix4x4 *)rhs)->get(i,j);
            ri0 += ((const Matrix4x4 *)lhs)->get(j,0) * rhs_ij;
            ri1 += ((const Matrix4x4 *)lhs)->get(j,1) * rhs_ij;
            ri2 += ((const Matrix4x4 *)lhs)->get(j,2) * rhs_ij;
            ri3 += ((const Matrix4x4 *)lhs)->get(j,3) * rhs_ij;
        }
        set(i,0, ri0);
        set(i,1, ri1);
        set(i,2, ri2);
        set(i,3, ri3);
    }
}

void Matrix4x4::loadOrtho(float left, float right, float bottom, float top, float near, float far) {
    loadIdentity();
    m[0] = 2.f / (right - left);
    m[5] = 2.f / (top - bottom);
    m[10]= -2.f / (far - near);
    m[12]= -(right + left) / (right - left);
    m[13]= -(top + bottom) / (top - bottom);
    m[14]= -(far + near) / (far - near);
}

void Matrix4x4::loadFrustum(float left, float right, float bottom, float top, float near, float far) {
    loadIdentity();
    m[0] = 2.f * near / (right - left);
    m[5] = 2.f * near / (top - bottom);
    m[8] = (right + left) / (right - left);
    m[9] = (top + bottom) / (top - bottom);
    m[10]= -(far + near) / (far - near);
    m[11]= -1.f;
    m[14]= -2.f * far * near / (far - near);
    m[15]= 0.f;
}

void Matrix4x4::loadPerspective(float fovy, float aspect, float near, float far) {
    float top = near * tan((float) (fovy * M_PI / 360.0f));
    float bottom = -top;
    float left = bottom * aspect;
    float right = top * aspect;
    loadFrustum(left, right, bottom, top, near, far);
}

void Matrix4x4::vectorMultiply(float *out, const float *in) const {
    out[0] = (m[0] * in[0]) + (m[4] * in[1]) + (m[8] * in[2]) + m[12];
    out[1] = (m[1] * in[0]) + (m[5] * in[1]) + (m[9] * in[2]) + m[13];
    out[2] = (m[2] * in[0]) + (m[6] * in[1]) + (m[10] * in[2]) + m[14];
    out[3] = (m[3] * in[0]) + (m[7] * in[1]) + (m[11] * in[2]) + m[15];
}

void Matrix4x4::logv(const char *s) const {
    LOGV("%s {%f, %f, %f, %f",  s, m[0], m[4], m[8], m[12]);
    LOGV("%s  %f, %f, %f, %f",  s, m[1], m[5], m[9], m[13]);
    LOGV("%s  %f, %f, %f, %f",  s, m[2], m[6], m[10], m[14]);
    LOGV("%s  %f, %f, %f, %f}", s, m[3], m[7], m[11], m[15]);
}