/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_TAG "keystore" #include #include #include #include "keystore.h" /* KeyStore is a secured storage for key-value pairs. In this implementation, * each file stores one key-value pair. Keys are encoded in file names, and * values are encrypted with checksums. The encryption key is protected by a * user-defined password. To keep things simple, buffers are always larger than * the maximum space we needed, so boundary checks on buffers are omitted. */ #define KEY_SIZE ((NAME_MAX - 15) / 2) #define VALUE_SIZE 32768 #define PASSWORD_SIZE VALUE_SIZE /* Here is the encoding of keys. This is necessary in order to allow arbitrary * characters in keys. Characters in [0-~] are not encoded. Others are encoded * into two bytes. The first byte is one of [+-.] which represents the first * two bits of the character. The second byte encodes the rest of the bits into * [0-o]. Therefore in the worst case the length of a key gets doubled. Note * that Base64 cannot be used here due to the need of prefix match on keys. */ static int encode_key(char *out, uint8_t *in, int length) { int i; for (i = length; i > 0; --i, ++in, ++out) { if (*in >= '0' && *in <= '~') { *out = *in; } else { *out = '+' + (*in >> 6); *++out = '0' + (*in & 0x3F); ++length; } } *out = 0; return length; } static int decode_key(uint8_t *out, char *in, int length) { int i; for (i = 0; i < length; ++i, ++in, ++out) { if (*in >= '0' && *in <= '~') { *out = *in; } else { *out = (*in - '+') << 6; *out |= (*++in - '0') & 0x3F; --length; } } *out = 0; return length; } /* Here is the protocol used in both requests and responses: * code [length_1 message_1 ... length_n message_n] end-of-file * where code is one byte long and lengths are unsigned 16-bit integers in * network order. Thus the maximum length of a message is 65535 bytes. */ static int the_socket = -1; static int recv_code(int8_t *code) { return recv(the_socket, code, 1, 0) == 1; } static int recv_message(uint8_t *message, int length) { uint8_t bytes[2]; if (recv(the_socket, &bytes[0], 1, 0) != 1 || recv(the_socket, &bytes[1], 1, 0) != 1) { return -1; } else { int offset = bytes[0] << 8 | bytes[1]; if (length < offset) { return -1; } length = offset; offset = 0; while (offset < length) { int n = recv(the_socket, &message[offset], length - offset, 0); if (n <= 0) { return -1; } offset += n; } } return length; } static int recv_end_of_file() { uint8_t byte; return recv(the_socket, &byte, 1, 0) == 0; } static void send_code(int8_t code) { send(the_socket, &code, 1, 0); } static void send_message(uint8_t *message, int length) { uint16_t bytes = htons(length); send(the_socket, &bytes, 2, 0); send(the_socket, message, length, 0); } /* Here is the file format. There are two parts in blob.value, the secret and * the description. The secret is stored in ciphertext, and its original size * can be found in blob.length. The description is stored after the secret in * plaintext, and its size is specified in blob.info. The total size of the two * parts must be no more than VALUE_SIZE bytes. The first three bytes of the * file are reserved for future use and are always set to zero. Fields other * than blob.info, blob.length, and blob.value are modified by encrypt_blob() * and decrypt_blob(). Thus they should not be accessed from outside. */ static int the_entropy = -1; static struct __attribute__((packed)) { uint8_t reserved[3]; uint8_t info; uint8_t vector[AES_BLOCK_SIZE]; uint8_t encrypted[0]; uint8_t digest[MD5_DIGEST_LENGTH]; uint8_t digested[0]; int32_t length; uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE]; } blob; static int8_t encrypt_blob(char *name, AES_KEY *aes_key) { uint8_t vector[AES_BLOCK_SIZE]; int length; int fd; if (read(the_entropy, blob.vector, AES_BLOCK_SIZE) != AES_BLOCK_SIZE) { return SYSTEM_ERROR; } length = blob.length + (blob.value - blob.encrypted); length = (length + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE * AES_BLOCK_SIZE; if (blob.info != 0) { memmove(&blob.encrypted[length], &blob.value[blob.length], blob.info); } blob.length = htonl(blob.length); MD5(blob.digested, length - (blob.digested - blob.encrypted), blob.digest); memcpy(vector, blob.vector, AES_BLOCK_SIZE); AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key, vector, AES_ENCRYPT); memset(blob.reserved, 0, sizeof(blob.reserved)); length += (blob.encrypted - (uint8_t *)&blob) + blob.info; fd = open(".tmp", O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR); length -= write(fd, &blob, length); close(fd); return (length || rename(".tmp", name)) ? SYSTEM_ERROR : NO_ERROR; } static int8_t decrypt_blob(char *name, AES_KEY *aes_key) { int fd = open(name, O_RDONLY); int length; if (fd == -1) { return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR; } length = read(fd, &blob, sizeof(blob)); close(fd); length -= (blob.encrypted - (uint8_t *)&blob) + blob.info; if (length < blob.value - blob.encrypted || length % AES_BLOCK_SIZE != 0) { return VALUE_CORRUPTED; } AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key, blob.vector, AES_DECRYPT); length -= blob.digested - blob.encrypted; if (memcmp(blob.digest, MD5(blob.digested, length, NULL), MD5_DIGEST_LENGTH)) { return VALUE_CORRUPTED; } length -= blob.value - blob.digested; blob.length = ntohl(blob.length); if (blob.length < 0 || blob.length > length) { return VALUE_CORRUPTED; } if (blob.info != 0) { memmove(&blob.value[blob.length], &blob.value[length], blob.info); } return NO_ERROR; } /* Here are the actions. Each of them is a function without arguments. All * information is defined in global variables, which are set properly before * performing an action. The number of parameters required by each action is * fixed and defined in a table. If the return value of an action is positive, * it will be treated as a response code and transmitted to the client. Note * that the lengths of parameters are checked when they are received, so * boundary checks on parameters are omitted. */ #define MAX_PARAM 2 #define MAX_RETRY 4 static uid_t uid = -1; static int8_t state = UNINITIALIZED; static int8_t retry = MAX_RETRY; static struct { int length; uint8_t value[VALUE_SIZE]; } params[MAX_PARAM]; static AES_KEY encryption_key; static AES_KEY decryption_key; static int8_t test() { return state; } static int8_t get() { char name[NAME_MAX]; int n = sprintf(name, "%u_", uid); encode_key(&name[n], params[0].value, params[0].length); n = decrypt_blob(name, &decryption_key); if (n != NO_ERROR) { return n; } send_code(NO_ERROR); send_message(blob.value, blob.length); return -NO_ERROR; } static int8_t insert() { char name[NAME_MAX]; int n = sprintf(name, "%u_", uid); encode_key(&name[n], params[0].value, params[0].length); blob.info = 0; blob.length = params[1].length; memcpy(blob.value, params[1].value, params[1].length); return encrypt_blob(name, &encryption_key); } static int8_t delete() { char name[NAME_MAX]; int n = sprintf(name, "%u_", uid); encode_key(&name[n], params[0].value, params[0].length); return (unlink(name) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR; } static int8_t exist() { char name[NAME_MAX]; int n = sprintf(name, "%u_", uid); encode_key(&name[n], params[0].value, params[0].length); if (access(name, R_OK) == -1) { return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND; } return NO_ERROR; } static int8_t saw() { DIR *dir = opendir("."); struct dirent *file; char name[NAME_MAX]; int n; if (!dir) { return SYSTEM_ERROR; } n = sprintf(name, "%u_", uid); n += encode_key(&name[n], params[0].value, params[0].length); send_code(NO_ERROR); while ((file = readdir(dir)) != NULL) { if (!strncmp(name, file->d_name, n)) { char *p = &file->d_name[n]; params[0].length = decode_key(params[0].value, p, strlen(p)); send_message(params[0].value, params[0].length); } } closedir(dir); return -NO_ERROR; } static int8_t reset() { DIR *dir = opendir("."); struct dirent *file; memset(&encryption_key, 0, sizeof(encryption_key)); memset(&decryption_key, 0, sizeof(decryption_key)); state = UNINITIALIZED; retry = MAX_RETRY; if (!dir) { return SYSTEM_ERROR; } while ((file = readdir(dir)) != NULL) { unlink(file->d_name); } closedir(dir); return NO_ERROR; } #define MASTER_KEY_FILE ".masterkey" #define MASTER_KEY_SIZE 16 #define SALT_SIZE 16 static void set_key(uint8_t *key, uint8_t *password, int length, uint8_t *salt) { if (salt) { PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, salt, SALT_SIZE, 8192, MASTER_KEY_SIZE, key); } else { PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, (uint8_t *)"keystore", sizeof("keystore"), 1024, MASTER_KEY_SIZE, key); } } /* Here is the history. To improve the security, the parameters to generate the * master key has been changed. To make a seamless transition, we update the * file using the same password when the user unlock it for the first time. If * any thing goes wrong during the transition, the new file will not overwrite * the old one. This avoids permanent damages of the existing data. */ static int8_t password() { uint8_t key[MASTER_KEY_SIZE]; AES_KEY aes_key; int8_t response = SYSTEM_ERROR; if (state == UNINITIALIZED) { if (read(the_entropy, blob.value, MASTER_KEY_SIZE) != MASTER_KEY_SIZE) { return SYSTEM_ERROR; } } else { int fd = open(MASTER_KEY_FILE, O_RDONLY); uint8_t *salt = NULL; if (fd != -1) { int length = read(fd, &blob, sizeof(blob)); close(fd); if (length > SALT_SIZE && blob.info == SALT_SIZE) { salt = (uint8_t *)&blob + length - SALT_SIZE; } } set_key(key, params[0].value, params[0].length, salt); AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key); response = decrypt_blob(MASTER_KEY_FILE, &aes_key); if (response == SYSTEM_ERROR) { return SYSTEM_ERROR; } if (response != NO_ERROR || blob.length != MASTER_KEY_SIZE) { if (retry <= 0) { reset(); return UNINITIALIZED; } return WRONG_PASSWORD + --retry; } if (!salt && params[1].length == -1) { params[1] = params[0]; } } if (params[1].length == -1) { memcpy(key, blob.value, MASTER_KEY_SIZE); } else { uint8_t *salt = &blob.value[MASTER_KEY_SIZE]; if (read(the_entropy, salt, SALT_SIZE) != SALT_SIZE) { return SYSTEM_ERROR; } set_key(key, params[1].value, params[1].length, salt); AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key); memcpy(key, blob.value, MASTER_KEY_SIZE); blob.info = SALT_SIZE; blob.length = MASTER_KEY_SIZE; response = encrypt_blob(MASTER_KEY_FILE, &aes_key); } if (response == NO_ERROR) { AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &encryption_key); AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &decryption_key); state = NO_ERROR; retry = MAX_RETRY; } return response; } static int8_t lock() { memset(&encryption_key, 0, sizeof(encryption_key)); memset(&decryption_key, 0, sizeof(decryption_key)); state = LOCKED; return NO_ERROR; } static int8_t unlock() { params[1].length = -1; return password(); } /* Here are the permissions, actions, users, and the main function. */ enum perm { TEST = 1, GET = 2, INSERT = 4, DELETE = 8, EXIST = 16, SAW = 32, RESET = 64, PASSWORD = 128, LOCK = 256, UNLOCK = 512, }; static struct action { int8_t (*run)(); int8_t code; int8_t state; uint32_t perm; int lengths[MAX_PARAM]; } actions[] = { {test, 't', 0, TEST, {0}}, {get, 'g', NO_ERROR, GET, {KEY_SIZE}}, {insert, 'i', NO_ERROR, INSERT, {KEY_SIZE, VALUE_SIZE}}, {delete, 'd', 0, DELETE, {KEY_SIZE}}, {exist, 'e', 0, EXIST, {KEY_SIZE}}, {saw, 's', 0, SAW, {KEY_SIZE}}, {reset, 'r', 0, RESET, {0}}, {password, 'p', 0, PASSWORD, {PASSWORD_SIZE, PASSWORD_SIZE}}, {lock, 'l', NO_ERROR, LOCK, {0}}, {unlock, 'u', LOCKED, UNLOCK, {PASSWORD_SIZE}}, {NULL, 0 , 0, 0, {0}}, }; static struct user { uid_t uid; uid_t euid; uint32_t perms; } users[] = { {AID_SYSTEM, ~0, ~GET}, {AID_VPN, AID_SYSTEM, GET}, {AID_WIFI, AID_SYSTEM, GET}, {AID_ROOT, AID_SYSTEM, GET}, {~0, ~0, TEST | GET | INSERT | DELETE | EXIST | SAW}, }; static int8_t process(int8_t code) { struct user *user = users; struct action *action = actions; int i; while (~user->uid && user->uid != uid) { ++user; } while (action->code && action->code != code) { ++action; } if (!action->code) { return UNDEFINED_ACTION; } if (!(action->perm & user->perms)) { return PERMISSION_DENIED; } if (action->state && action->state != state) { return state; } if (~user->euid) { uid = user->euid; } for (i = 0; i < MAX_PARAM && action->lengths[i]; ++i) { params[i].length = recv_message(params[i].value, action->lengths[i]); if (params[i].length == -1) { return PROTOCOL_ERROR; } } if (!recv_end_of_file()) { return PROTOCOL_ERROR; } return action->run(); } #define RANDOM_DEVICE "/dev/urandom" int main(int argc, char **argv) { int control_socket = android_get_control_socket("keystore"); if (argc < 2) { LOGE("A directory must be specified!"); return 1; } if (chdir(argv[1]) == -1) { LOGE("chdir: %s: %s", argv[1], strerror(errno)); return 1; } if ((the_entropy = open(RANDOM_DEVICE, O_RDONLY)) == -1) { LOGE("open: %s: %s", RANDOM_DEVICE, strerror(errno)); return 1; } if (listen(control_socket, 3) == -1) { LOGE("listen: %s", strerror(errno)); return 1; } signal(SIGPIPE, SIG_IGN); if (access(MASTER_KEY_FILE, R_OK) == 0) { state = LOCKED; } while ((the_socket = accept(control_socket, NULL, 0)) != -1) { struct timeval tv = {.tv_sec = 3}; struct ucred cred; socklen_t size = sizeof(cred); int8_t request; setsockopt(the_socket, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)); setsockopt(the_socket, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv)); if (getsockopt(the_socket, SOL_SOCKET, SO_PEERCRED, &cred, &size)) { LOGW("getsockopt: %s", strerror(errno)); } else if (recv_code(&request)) { int8_t old_state = state; int8_t response; uid = cred.uid; if ((response = process(request)) > 0) { send_code(response); response = -response; } LOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d", cred.uid, request, -response, old_state, state, retry); } close(the_socket); } LOGE("accept: %s", strerror(errno)); return 1; }