/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #define LOG_TAG "CameraBurstTest" //#define LOG_NDEBUG 0 #include #include #include "CameraStreamFixture.h" #include "TestExtensions.h" #define CAMERA_FRAME_TIMEOUT 1000000000 //nsecs (1 secs) #define CAMERA_HEAP_COUNT 2 //HALBUG: 1 means registerBuffers fails #define CAMERA_BURST_DEBUGGING 0 #define CAMERA_FRAME_BURST_COUNT 10 /* constants for the exposure test */ #define CAMERA_EXPOSURE_DOUBLE 2 #define CAMERA_EXPOSURE_DOUBLING_THRESHOLD 1.0f #define CAMERA_EXPOSURE_DOUBLING_COUNT 4 #define CAMERA_EXPOSURE_FORMAT HAL_PIXEL_FORMAT_YCrCb_420_SP #define CAMERA_EXPOSURE_STARTING 100000 // 1/10ms, up to 51.2ms with 10 steps #if CAMERA_BURST_DEBUGGING #define dout std::cout #else #define dout if (0) std::cout #endif using namespace android; using namespace android::camera2; namespace android { namespace camera2 { namespace tests { static CameraStreamParams STREAM_PARAMETERS = { /*mFormat*/ CAMERA_EXPOSURE_FORMAT, /*mHeapCount*/ CAMERA_HEAP_COUNT }; class CameraBurstTest : public ::testing::Test, public CameraStreamFixture { public: CameraBurstTest() : CameraStreamFixture(STREAM_PARAMETERS) { TEST_EXTENSION_FORKING_CONSTRUCTOR; if (HasFatalFailure()) { return; } CreateStream(); } ~CameraBurstTest() { TEST_EXTENSION_FORKING_DESTRUCTOR; if (mDevice.get()) { mDevice->waitUntilDrained(); } DeleteStream(); } virtual void SetUp() { TEST_EXTENSION_FORKING_SET_UP; } virtual void TearDown() { TEST_EXTENSION_FORKING_TEAR_DOWN; } /* this assumes the format is YUV420sp */ long long TotalBrightness(const CpuConsumer::LockedBuffer& imgBuffer, int *underexposed, int *overexposed) const { const uint8_t* buf = imgBuffer.data; size_t stride = imgBuffer.stride; /* iterate over the Y plane only */ long long acc = 0; *underexposed = 0; *overexposed = 0; for (size_t y = 0; y < imgBuffer.height; ++y) { for (size_t x = 0; x < imgBuffer.width; ++x) { const uint8_t p = buf[y * stride + x]; if (p == 0) { if (underexposed) { ++*underexposed; } continue; } else if (p == 255) { if (overexposed) { ++*overexposed; } continue; } acc += p; } } return acc; } protected: camera_metadata_ro_entry GetStaticEntry(uint32_t tag) const { const CameraMetadata& staticInfo = mDevice->info(); camera_metadata_ro_entry entry = staticInfo.find(tag); return entry; } }; TEST_F(CameraBurstTest, ManualExposureControl) { TEST_EXTENSION_FORKING_INIT; // Range of valid exposure times, in nanoseconds int64_t minExp, maxExp; { camera_metadata_ro_entry exposureTimeRange = GetStaticEntry(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE); ASSERT_EQ(2u, exposureTimeRange.count); minExp = exposureTimeRange.data.i64[0]; maxExp = exposureTimeRange.data.i64[1]; } dout << "Min exposure is " << minExp; dout << " max exposure is " << maxExp << std::endl; // Calculate some set of valid exposure times for each request int64_t exposures[CAMERA_FRAME_BURST_COUNT]; exposures[0] = CAMERA_EXPOSURE_STARTING; for (int i = 1; i < CAMERA_FRAME_BURST_COUNT; ++i) { exposures[i] = exposures[i-1] * CAMERA_EXPOSURE_DOUBLE; } // Our calculated exposure times should be in [minExp, maxExp] EXPECT_LE(minExp, exposures[0]) << "Minimum exposure range is too high, wanted at most " << exposures[0] << "ns"; EXPECT_GE(maxExp, exposures[CAMERA_FRAME_BURST_COUNT-1]) << "Maximum exposure range is too low, wanted at least " << exposures[CAMERA_FRAME_BURST_COUNT-1] << "ns"; // Create a preview request, turning off all 3A CameraMetadata previewRequest; ASSERT_EQ(OK, mDevice->createDefaultRequest(CAMERA2_TEMPLATE_PREVIEW, &previewRequest)); { Vector outputStreamIds; outputStreamIds.push(mStreamId); ASSERT_EQ(OK, previewRequest.update(ANDROID_REQUEST_OUTPUT_STREAMS, outputStreamIds)); // Disable all 3A routines uint8_t cmOff = static_cast(ANDROID_CONTROL_MODE_OFF); ASSERT_EQ(OK, previewRequest.update(ANDROID_CONTROL_MODE, &cmOff, 1)); if (CAMERA_BURST_DEBUGGING) { int frameCount = 0; ASSERT_EQ(OK, previewRequest.update(ANDROID_REQUEST_FRAME_COUNT, &frameCount, 1)); } } if (CAMERA_BURST_DEBUGGING) { previewRequest.dump(STDOUT_FILENO); } // Submit capture requests for (int i = 0; i < CAMERA_FRAME_BURST_COUNT; ++i) { CameraMetadata tmpRequest = previewRequest; ASSERT_EQ(OK, tmpRequest.update(ANDROID_SENSOR_EXPOSURE_TIME, &exposures[i], 1)); ALOGV("Submitting capture request %d with exposure %lld", i, exposures[i]); dout << "Capture request " << i << " exposure is " << (exposures[i]/1e6f) << std::endl; ASSERT_EQ(OK, mDevice->capture(tmpRequest)); } dout << "Buffer dimensions " << mWidth << "x" << mHeight << std::endl; float brightnesses[CAMERA_FRAME_BURST_COUNT]; // Get each frame (metadata) and then the buffer. Calculate brightness. for (int i = 0; i < CAMERA_FRAME_BURST_COUNT; ++i) { ALOGV("Reading capture request %d with exposure %lld", i, exposures[i]); ASSERT_EQ(OK, mDevice->waitForNextFrame(CAMERA_FRAME_TIMEOUT)); ALOGV("Reading capture request-1 %d", i); CameraMetadata frameMetadata; ASSERT_EQ(OK, mDevice->getNextFrame(&frameMetadata)); ALOGV("Reading capture request-2 %d", i); ASSERT_EQ(OK, mFrameListener->waitForFrame(CAMERA_FRAME_TIMEOUT)); ALOGV("We got the frame now"); CpuConsumer::LockedBuffer imgBuffer; ASSERT_EQ(OK, mCpuConsumer->lockNextBuffer(&imgBuffer)); int underexposed, overexposed; long long brightness = TotalBrightness(imgBuffer, &underexposed, &overexposed); float avgBrightness = brightness * 1.0f / (mWidth * mHeight - (underexposed + overexposed)); ALOGV("Total brightness for frame %d was %lld (underexposed %d, " "overexposed %d), avg %f", i, brightness, underexposed, overexposed, avgBrightness); dout << "Average brightness (frame " << i << ") was " << avgBrightness << " (underexposed " << underexposed << ", overexposed " << overexposed << ")" << std::endl; ASSERT_EQ(OK, mCpuConsumer->unlockBuffer(imgBuffer)); brightnesses[i] = avgBrightness; } // Calculate max consecutive frame exposure doubling float prev = brightnesses[0]; int doubling_count = 1; int max_doubling_count = 0; for (int i = 1; i < CAMERA_FRAME_BURST_COUNT; ++i) { if (fabs(brightnesses[i] - prev*CAMERA_EXPOSURE_DOUBLE) <= CAMERA_EXPOSURE_DOUBLING_THRESHOLD) { doubling_count++; } else { max_doubling_count = std::max(max_doubling_count, doubling_count); doubling_count = 1; } prev = brightnesses[i]; } dout << "max doubling count: " << max_doubling_count << std::endl; EXPECT_LE(CAMERA_EXPOSURE_DOUBLING_COUNT, max_doubling_count) << "average brightness should double at least " << CAMERA_EXPOSURE_DOUBLING_COUNT << " times over each consecutive frame as the exposure is doubled"; } } } }