summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--include/hardware_legacy/wifi_hal.h14
-rw-r--r--include/hardware_legacy/wifi_logger.h707
2 files changed, 389 insertions, 332 deletions
diff --git a/include/hardware_legacy/wifi_hal.h b/include/hardware_legacy/wifi_hal.h
index 9a3fd21..68c80d0 100644
--- a/include/hardware_legacy/wifi_hal.h
+++ b/include/hardware_legacy/wifi_hal.h
@@ -212,17 +212,17 @@ typedef struct {
wifi_ring_buffer_data_handler handler);
wifi_error (* wifi_set_alert_handler)(wifi_request_id id, wifi_interface_handle iface,
wifi_alert_handler handler);
- wifi_error (* wifi_get_firmware_version)( wifi_interface_handle iface, char **buffer,
- int *buffer_size);
+ wifi_error (* wifi_get_firmware_version)(wifi_interface_handle iface, char *buffer,
+ int buffer_size);
wifi_error (* wifi_get_ring_buffers_status)(wifi_interface_handle iface,
- u32 *num_rings, wifi_ring_buffer_status **status);
+ u32 *num_rings, wifi_ring_buffer_status *status);
wifi_error (* wifi_get_logger_supported_feature_set)(wifi_interface_handle iface,
- unsigned int *support);
+ unsigned int *support);
wifi_error (* wifi_get_ring_data)(wifi_interface_handle iface, char *ring_name);
- wifi_error (* wifi_get_driver_version)(wifi_interface_handle iface, char **buffer,
- int *buffer_size);
+ wifi_error (* wifi_get_driver_version)(wifi_interface_handle iface, char *buffer,
+ int buffer_size);
wifi_error (* wifi_set_passpoint_list)(wifi_request_id id, wifi_interface_handle iface,
- int num, wifi_passpoint_network *networks, wifi_passpoint_event_handler handler);
+ int num, wifi_passpoint_network *networks, wifi_passpoint_event_handler handler);
wifi_error (* wifi_reset_passpoint_list)(wifi_request_id id, wifi_interface_handle iface);
wifi_error (*wifi_set_bssid_blacklist)(wifi_request_id id, wifi_interface_handle iface,
wifi_bssid_params params);
diff --git a/include/hardware_legacy/wifi_logger.h b/include/hardware_legacy/wifi_logger.h
index b91bfa2..b61632a 100644
--- a/include/hardware_legacy/wifi_logger.h
+++ b/include/hardware_legacy/wifi_logger.h
@@ -1,325 +1,382 @@
-#include "wifi_hal.h"
-
-#ifndef __WIFI_HAL_LOGGER_H
-#define __WIFI_HAL_LOGGER_H
-
-#ifdef __cplusplus
-extern "C"
-{
-#endif /* __cplusplus */
-
-#define LOGGER_MAJOR_VERSION 1
-#define LOGGER_MINOR_VERSION 0
-#define LOGGER_MICRO_VERSION 0
-
-
-
-/**
- * WiFi logger life cycle is as follow:
- *
- * - at initialization time, framework will call wifi_get_ring_buffers_status so as to obtain the
- * names and list of supported buffers
- * - when WiFi operation start framework will call wifi_start_logging so as to trigger log collection
- * - Developper UI will provide an option to the user, so as it can set the verbose level of individual buffer
- * as reported by wifi_get_ring_buffers_status
- * - during wifi operations, driver will periodically report per ring data to framework by invoking the
- * on_ring_buffer_data call back
- * - when capturing a bug report, framework will indicate to driver that all the data has to be uploaded,
- * urgently, by calling wifi_get_ring_data
- *
- * The data uploaded by driver will be stored by framework in separate files, with one stream of file per ring.
- * Framework will store the files in pcapng format, allowing for easy merging and parsing with network
- * analyzer tools.
- */
-
-
-typedef int wifi_radio;
-typedef int wifi_ring_buffer_id;
-
-#define PER_PACKET_ENTRY_FLAGS_DIRECTION_TX 1 // 0: TX, 1: RX
-#define PER_PACKET_ENTRY_FLAGS_TX_SUCCESS 2 // whether packet was transmitted or received/decrypted successfully
-#define PER_PACKET_ENTRY_FLAGS_80211_HEADER 4 // has full 802.11 header, else has 802.3 header
-#define PER_PACKET_ENTRY_FLAGS_PROTECTED 8 // whether packet was encrypted
-
-typedef struct {
- u8 flags;
- u8 tid; // transmit or received tid
- u16 MCS; // modulation and bandwidth
- u8 rssi; // TX: RSSI of ACK for that packet
- // RX: RSSI of packet
- u8 num_retries; // number of attempted retries
- u16 last_transmit_rate; // last transmit rate in .5 mbps
- u16 link_layer_transmit_sequence; // transmit/reeive sequence for that MPDU packet
- u64 firmware_entry_timestamp; // TX: firmware timestamp (us) when packet is queued within firmware buffer
- // for SDIO/HSIC or into PCIe buffer
- // RX : firmware receive timestamp
- u64 start_contention_timestamp; // firmware timestamp (us) when packet start contending for the
- // medium for the first time, at head of its AC queue,
- // or as part of an MPDU or A-MPDU. This timestamp is not updated
- // for each retry, only the first transmit attempt.
- u64 transmit_success_timestamp; // fimrware timestamp (us) when packet is successfully transmitted
- // or aborted because it has exhausted its maximum number of retries
- u8 data[0]; // packet data. The length of packet data is determined by the entry_size field of
- // the wifi_ring_buffer_entry structure. It is expected that first bytes of the
- // packet, or packet headers only (up to TCP or RTP/UDP headers) will be copied into the ring
-} __attribute__((packed)) wifi_ring_per_packet_status_entry;
-
-
-// Below events refer to the wifi_connectivity_event ring and shall be supported
-
-#define WIFI_EVENT_ASSOCIATION_REQUESTED 0 // driver receive association command from kernel
-#define WIFI_EVENT_AUTH_COMPLETE 1
-#define WIFI_EVENT_ASSOC_COMPLETE 2
-#define WIFI_EVENT_FW_AUTH_STARTED 3 // received firmware event indicating auth frames are sent
-#define WIFI_EVENT_FW_ASSOC_STARTED 4 // received firmware event indicating assoc frames are sent
-#define WIFI_EVENT_FW_RE_ASSOC_STARTED 5 // received firmware event indicating reassoc frames are sent
-#define WIFI_EVENT_DRIVER_SCAN_REQUESTED 6
-#define WIFI_EVENT_DRIVER_SCAN_RESULT_FOUND 7
-#define WIFI_EVENT_DRIVER_SCAN_COMPLETE 8
-#define WIFI_EVENT_G_SCAN_STARTED 9
-#define WIFI_EVENT_G_SCAN_COMPLETE 10
-#define WIFI_EVENT_DISASSOCIATION_REQUESTED 11
-#define WIFI_EVENT_RE_ASSOCIATION_REQUESTED 12
-#define WIFI_EVENT_ROAM_REQUESTED 13
-#define WIFI_EVENT_BEACON_RECEIVED 14 // received beacon from AP (event enabled only in verbose mode)
-#define WIFI_EVENT_ROAM_SCAN_STARTED 15 // firmware has triggered a roam scan (not g-scan)
-#define WIFI_EVENT_ROAM_SCAN_COMPLETE 16 // firmware has completed a roam scan (not g-scan)
-#define WIFI_EVENT_ROAM_SEARCH_STARTED 17 // firmware has started searching for roam candidates (with reason =xx)
-#define WIFI_EVENT_ROAM_SEARCH_STOPPED 18 // firmware has stopped searching for roam candidates (with reason =xx)
-#define WIFI_EVENT_CHANNEL_SWITCH_ANOUNCEMENT 20 // received channel switch anouncement from AP
-#define WIFI_EVENT_FW_EAPOL_FRAME_TRANSMIT_START 21 // fw start transmit eapol frame, with EAPOL index 1-4
-#define WIFI_EVENT_FW_EAPOL_FRAME_TRANSMIT_STOP 22 // fw gives up eapol frame, with rate, success/failure and number retries
-#define WIFI_EVENT_DRIVER_EAPOL_FRAME_TRANSMIT_REQUESTED 23 // kernel queue EAPOL for transmission in tdriver
- // with EAPOL index 1-4
-#define WIFI_EVENT_FW_EAPOL_FRAME_RECEIVED 24 // with rate, regardless of the fact that EAPOL frame
- // is accepted or rejected by firmware
-#define WIFI_EVENT_DRIVER_EAPOL_FRAME_RECEIVED 26 // with rate, and eapol index, driver has received
- // EAPOL frame and will queue it up to wpa_supplicant
-#define WIFI_EVENT_BLOCK_ACK_NEGOTIATION_COMPLETE 27 // with success/failure, parameters
-#define WIFI_EVENT_BT_COEX_BT_SCO_START 28
-#define WIFI_EVENT_BT_COEX_BT_SCO_STOP 29
-#define WIFI_EVENT_BT_COEX_BT_SCAN_START 30 // for paging/scan etc..., when BT starts transmiting
- // twice per BT slot
-#define WIFI_EVENT_BT_COEX_BT_SCAN_STOP 31
-#define WIFI_EVENT_BT_COEX_BT_HID_START 32
-#define WIFI_EVENT_BT_COEX_BT_HID_STOP 33
-#define WIFI_EVENT_ROAM_AUTH_STARTED 34 // firmware sends auth frame in roaming to next candidate
-#define WIFI_EVENT_ROAM_AUTH_COMPLETE 35 // firmware receive auth confirm from ap
-#define WIFI_EVENT_ROAM_ASSOC_STARTED 36 // firmware sends assoc/reassoc frame in
- // roaming to next candidate
-#define WIFI_EVENT_ROAM_ASSOC_COMPLETE 37 // firmware receive assoc/reassoc confirm from ap
-
-
-
-// Parameters of wifi logger events are TLVs
-// Event parameters tags are defined as:
-#define WIFI_TAG_VENDOR_SPECIFIC 0 // take a byte stream as parameter
-#define WIFI_TAG_BSSID 1 // takes a 6 bytes MAC address as parameter
-#define WIFI_TAG_ADDR 2 // takes a 6 bytes MAC address as parameter
-#define WIFI_TAG_SSID 3 // takes a 32 bytes SSID address as parameter
-#define WIFI_TAG_STATUS 4 // takes an integer as parameter
-#define WIFI_TAG_CHANNEL_SPEC 5 // takes one or more wifi_channel_spec as parameter
-#define WIFI_TAG_WAKE_LOCK_EVENT 6 // takes a wake_lock_event struct as parameter
-#define WIFI_TAG_ADDR1 7 // takes a 6 bytes MAC address as parameter
-#define WIFI_TAG_ADDR2 8 // takes a 6 bytes MAC address as parameter
-#define WIFI_TAG_ADDR3 9 // takes a 6 bytes MAC address as parameter
-#define WIFI_TAG_ADDR4 10 // takes a 6 bytes MAC address as parameter
-#define WIFI_TAG_TSF 11 // take a 64 bits TSF value as parameter
-#define WIFI_TAG_IE 12 // take one or more specific 802.11 IEs parameter, IEs are in turn indicated
- // in TLV format as per 802.11 spec
-#define WIFI_TAG_INTERFACE 13 // take interface name as parameter
-#define WIFI_TAG_REASON_CODE 14 // take a reason code as per 802.11 as parameter
-#define WIFI_TAG_RATE_MBPS 15 // take a wifi rate in 0.5 mbps
-
-typedef struct {
- u16 tag;
- u16 length; // length of value
- u8 value[0];
-} __attribute__((packed)) tlv_log;
-
-typedef struct {
- u16 event;
- tlv_log tlvs[0]; // separate parameter structure per event to be provided and optional data
- // the event_data is expected to include an official android part, with some
- // parameter as transmit rate, num retries, num scan result found etc...
- // as well, event_data can include a vendor proprietary part which is
- // understood by the developer only.
-} __attribute__((packed)) wifi_ring_buffer_driver_connectivity_event;
-
-
-// Ring buffer name for power events ring. note that power event are extremely frequents
-// and thus should be stored in their own ring/file so as not to clobber connectivity events
-
-typedef struct {
- int status; // 0 taken, 1 released
- int reason; // reason why this wake lock is taken
- char name[0]; // null terminated
-} __attribute__((packed)) wake_lock_event;
-
-typedef struct {
- u16 event;
- tlv_log tlvs[0];
-} __attribute__((packed)) wifi_power_event;
-
-/**
- * This structure represent a logger entry within a ring buffer.
- * Wifi driver are responsible to manage the ring buffer and write the debug
- * information into those rings.
- *
- * In general, the debug entries can be used to store meaningful 802.11 information (SME, MLME,
- * connection and packet statistics) as well as vendor proprietary data that is specific to a
- * specific driver or chipset.
- * Binary entries can be used so as to store packet data or vendor specific information and
- * will be treated as blobs of data by android.
- *
- * A user land process will be started by framework so as to periodically retrieve the
- * data logged by drivers into their ring buffer, store the data into log files and include
- * the logs into android bugreports.
- */
-enum {
- RING_BUFFER_ENTRY_FLAGS_HAS_BINARY = (1 << (0)), // set for binary entries
- RING_BUFFER_ENTRY_FLAGS_HAS_TIMESTAMP = (1 << (1)) // set if 64 bits timestamp is present
-};
-
-enum {
- ENTRY_TYPE_CONNECT_EVENT = 1,
- ENTRY_TYPE_PKT,
- ENTRY_TYPE_WAKE_LOCK,
- ENTRY_TYPE_POWER_EVENT,
- ENTRY_TYPE_DATA
-};
-
-typedef struct {
- u16 entry_size; // the size of payload excluding the header.
- u8 flags;
- u8 type; // Entry type
- u64 timestamp; //present if has_timestamp bit is set.
-} __attribute__((packed)) wifi_ring_buffer_entry;
-
-#define WIFI_RING_BUFFER_FLAG_HAS_BINARY_ENTRIES 0x00000001 // set if binary entries are present
-#define WIFI_RING_BUFFER_FLAG_HAS_ASCII_ENTRIES 0x00000002 // set if ascii entries are present
-
-/* ring buffer params */
-/**
- * written_bytes and read_bytes implement a producer consumer API
- * hence written_bytes >= read_bytes
- * a modulo arithmetic of the buffer size has to be applied to those counters:
- * actual offset into ring buffer = written_bytes % ring_buffer_byte_size
- *
- */
-typedef struct {
- u8 name[32];
- u32 flags;
- wifi_ring_buffer_id ring_id; // unique integer representing the ring
- u32 ring_buffer_byte_size; // total memory size allocated for the buffer
- u32 verbose_level; //
- u32 written_bytes; // number of bytes that was written to the buffer by driver, monotonously increasing integer
- u32 read_bytes; // number of bytes that was read from the buffer by user land, monotonously increasing integer
- u32 written_records; // number of records that was written to the buffer by driver, monotonously increasing integer
-
-} wifi_ring_buffer_status;
-
-/**
- * Callback for reporting ring data
- *
- * The ring buffer data collection is event based:
- * - driver calls on_ring_buffer_data when new records are available, the wifi_ring_buffer_status
- * passed up to framework in the call back indicates to framework if more data is available in
- * the ring buffer. It is not expected that driver will necessarily always empty the ring
- * immediately as data is available, instead driver will report data every X seconds or if
- * N bytes are available.
- * - in the case where a bug report has to be captured, framework will require driver to upload
- * all data immediately. This is indicated to driver when framework calls wifi_get_ringdata.
- * When framework calls wifi_get_ring_data, driver will start sending all available data in the
- * indicated ring by repeatedly invoking the on_ring_buffer_data callback
- *
- * The callback is called by driver whenever new data is
- */
-typedef struct {
- void (*on_ring_buffer_data) (char *ring_name, char *buffer, int buffer_size,
- wifi_ring_buffer_status *status);
-} wifi_ring_buffer_data_handler;
-
-/* api to set the log handler for getting ring data */
-wifi_error wifi_set_log_handler(wifi_request_id id, wifi_interface_handle iface,
- wifi_ring_buffer_data_handler handler);
-
-/* api to reset the log handler */
-wifi_error wifi_reset_log_handler(wifi_request_id id, wifi_interface_handle iface);
-
-
-typedef struct {
- void (*on_alert) (wifi_request_id id, char *buffer, int buffer_size, int err_code);
-} wifi_alert_handler;
-
-/* api to set the alert handler for the alert case in Wi-Fi Chip */
-wifi_error wifi_set_alert_handler(wifi_request_id id, wifi_interface_handle iface,
- wifi_alert_handler handler);
-
-
-/* api to reset the alert handler */
-wifi_error wifi_reset_alert_handler(wifi_request_id id, wifi_interface_handle iface);
-
-
-/* api for framework to indicate driver has to upload and drain all data of a given ring */
-wifi_error wifi_get_ring_data(wifi_interface_handle iface, char *ring_name);
-
-
-/**
- * API to trigger the debug collection.
- * Unless his API is invoked - logging is not triggered.
- * - verbose_level 0 corresponds to no collection
- * - verbose_level 1 correspond to normal log level, with minimal user impact. this is the default value
- * - verbose_level 2 are enabled when user is lazily trying to reproduce a problem, wifi performances and power
- * can be impacted but device should not otherwise be significantly impacted
- * - verbose_level 3+ are used when trying to actively debug a problem
- *
- * ring_name represent the name of the ring for which data collection shall start.
- *
- * flags: TBD parameter used to enable/disable specific events on a ring
- * max_interval: maximum interval in seconds for driver to invoke on_ring_buffer_data, ignore if zero
- * min_data_size: minimum data size in buffer for driver to invoke on_ring_buffer_data, ignore if zero
- */
-
-wifi_error wifi_start_logging(wifi_interface_handle iface, u32 verbose_level, u32 flags,
- u32 max_interval_sec, u32 min_data_size, char *ring_name);
-
-/* api to get the status of all ring buffers supported by driver */
-wifi_error wifi_get_ring_buffers_status(wifi_interface_handle iface, u32 *num_rings,
- wifi_ring_buffer_status **status);
-
-typedef struct {
- void (*on_firmware_memory_dump) (char *buffer, int buffer_size);
-} wifi_firmware_memory_dump_handler;
-
-
-/* api to collect a firmware memory dump for a given iface */
-wifi_error wifi_get_firmware_memory_dump(wifi_interface_handle iface,
- wifi_firmware_memory_dump_handler handler);
-
-/* api to collect a firmware version string */
-wifi_error wifi_get_firmware_version(wifi_interface_handle iface, char **buffer, int *buffer_size);
-
-/* api to collect a driver version string */
-wifi_error wifi_get_driver_version(wifi_interface_handle iface, char **buffer, int *buffer_size);
-
-
-/* Feature set */
-enum {
- WIFI_LOGGER_MEMORY_DUMP_SUPPORTED = (1 << (0)), // Memory dump of FW
- WIFI_LOGGER_PER_PACKET_TX_RX_STATUS_SUPPORTED = (1 << (1)), // PKT status
- WIFI_LOGGER_CONNECT_EVENT_SUPPORTED = (1 << (2)), // Connectivity event
- WIFI_LOGGER_POWER_EVENT_SUPPORTED = (1 << (3)), // POWER of Driver
- WIFI_LOGGER_WAKE_LOCK_SUPPORTED = (1 << (4)), // WAKE LOCK of Driver
- WIFI_LOGGER_VERBOSE_SUPPORTED = (1 << (5)), // verbose log of FW
- WIFI_LOGGER_WATCHDOG_TIMER_SUPPORTED = (1 << (6)) // monitor the health of FW
-};
-wifi_error wifi_get_logger_supported_feature_set(wifi_interface_handle iface, unsigned int *support);
-
-
-#ifdef __cplusplus
-}
-#endif /* __cplusplus */
-
-#endif /*__WIFI_HAL_STATS_ */
-
+#include "wifi_hal.h"
+
+#ifndef __WIFI_HAL_LOGGER_H
+#define __WIFI_HAL_LOGGER_H
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif /* __cplusplus */
+
+#define LOGGER_MAJOR_VERSION 1
+#define LOGGER_MINOR_VERSION 0
+#define LOGGER_MICRO_VERSION 0
+
+
+
+/**
+ * WiFi logger life cycle is as follow:
+ *
+ * - At initialization time, framework will call wifi_get_ring_buffers_status
+ * so as to obtain the names and list of supported buffers.
+ * - When WiFi operation start framework will call wifi_start_logging
+ * so as to trigger log collection.
+ * - Developper UI will provide an option to the user, so as it can set the verbose level
+ * of individual buffer as reported by wifi_get_ring_buffers_status.
+ * - During wifi operations, driver will periodically report per ring data to framework
+ * by invoking the on_ring_buffer_data call back.
+ * - when capturing a bug report, framework will indicate to driver that all the data
+ * has to be uploaded, urgently, by calling wifi_get_ring_data.
+ *
+ * The data uploaded by driver will be stored by framework in separate files, with one stream
+ * of file per ring.
+ * Framework will store the files in pcapng format, allowing for easy merging and parsing
+ * with network analyzer tools.
+ */
+
+
+typedef int wifi_radio;
+typedef int wifi_ring_buffer_id;
+
+#define PER_PACKET_ENTRY_FLAGS_DIRECTION_TX 1 // 0: TX, 1: RX
+#define PER_PACKET_ENTRY_FLAGS_TX_SUCCESS 2 // whether packet was transmitted or
+ // received/decrypted successfully
+#define PER_PACKET_ENTRY_FLAGS_80211_HEADER 4 // has full 802.11 header, else has 802.3 header
+#define PER_PACKET_ENTRY_FLAGS_PROTECTED 8 // whether packet was encrypted
+
+typedef struct {
+ u8 flags;
+ u8 tid; // transmit or received tid
+ u16 MCS; // modulation and bandwidth
+ u8 rssi; // TX: RSSI of ACK for that packet
+ // RX: RSSI of packet
+ u8 num_retries; // number of attempted retries
+ u16 last_transmit_rate; // last transmit rate in .5 mbps
+ u16 link_layer_transmit_sequence; // transmit/reeive sequence for that MPDU packet
+ u64 firmware_entry_timestamp; // TX: firmware timestamp (us) when packet is queued within
+ // firmware buffer for SDIO/HSIC or into PCIe buffer
+ // RX: firmware receive timestamp
+ u64 start_contention_timestamp; // firmware timestamp (us) when packet start contending for the
+ // medium for the first time, at head of its AC queue,
+ // or as part of an MPDU or A-MPDU. This timestamp is
+ // not updated for each retry, only the first transmit attempt.
+ u64 transmit_success_timestamp; // fimrware timestamp (us) when packet is successfully
+ // transmitted or aborted because it has exhausted
+ // its maximum number of retries.
+ u8 data[0]; // packet data. The length of packet data is determined by the entry_size field of
+ // the wifi_ring_buffer_entry structure. It is expected that first bytes of the
+ // packet, or packet headers only (up to TCP or RTP/UDP headers)
+ // will be copied into the ring
+} __attribute__((packed)) wifi_ring_per_packet_status_entry;
+
+
+/* Below events refer to the wifi_connectivity_event ring and shall be supported */
+#define WIFI_EVENT_ASSOCIATION_REQUESTED 0 // driver receives association command from kernel
+#define WIFI_EVENT_AUTH_COMPLETE 1
+#define WIFI_EVENT_ASSOC_COMPLETE 2
+#define WIFI_EVENT_FW_AUTH_STARTED 3 // fw event indicating auth frames are sent
+#define WIFI_EVENT_FW_ASSOC_STARTED 4 // fw event indicating assoc frames are sent
+#define WIFI_EVENT_FW_RE_ASSOC_STARTED 5 // fw event indicating reassoc frames are sent
+#define WIFI_EVENT_DRIVER_SCAN_REQUESTED 6
+#define WIFI_EVENT_DRIVER_SCAN_RESULT_FOUND 7
+#define WIFI_EVENT_DRIVER_SCAN_COMPLETE 8
+#define WIFI_EVENT_G_SCAN_STARTED 9
+#define WIFI_EVENT_G_SCAN_COMPLETE 10
+#define WIFI_EVENT_DISASSOCIATION_REQUESTED 11
+#define WIFI_EVENT_RE_ASSOCIATION_REQUESTED 12
+#define WIFI_EVENT_ROAM_REQUESTED 13
+#define WIFI_EVENT_BEACON_RECEIVED 14 // received beacon from AP (event enabled
+ // only in verbose mode)
+#define WIFI_EVENT_ROAM_SCAN_STARTED 15 // firmware has triggered a roam scan (not g-scan)
+#define WIFI_EVENT_ROAM_SCAN_COMPLETE 16 // firmware has completed a roam scan (not g-scan)
+#define WIFI_EVENT_ROAM_SEARCH_STARTED 17 // firmware has started searching for roam
+ // candidates (with reason =xx)
+#define WIFI_EVENT_ROAM_SEARCH_STOPPED 18 // firmware has stopped searching for roam
+ // candidates (with reason =xx)
+#define WIFI_EVENT_CHANNEL_SWITCH_ANOUNCEMENT 20 // received channel switch anouncement from AP
+#define WIFI_EVENT_FW_EAPOL_FRAME_TRANSMIT_START 21 // fw start transmit eapol frame, with
+ // EAPOL index 1-4
+#define WIFI_EVENT_FW_EAPOL_FRAME_TRANSMIT_STOP 22 // fw gives up eapol frame, with rate,
+ // success/failure and number retries
+#define WIFI_EVENT_DRIVER_EAPOL_FRAME_TRANSMIT_REQUESTED 23 // kernel queue EAPOL for transmission
+ // in driver with EAPOL index 1-4
+#define WIFI_EVENT_FW_EAPOL_FRAME_RECEIVED 24 // with rate, regardless of the fact that
+ // EAPOL frame is accepted or rejected by fw
+#define WIFI_EVENT_DRIVER_EAPOL_FRAME_RECEIVED 26 // with rate, and eapol index, driver has
+ // received EAPOL frame and will queue it up
+ // to wpa_supplicant
+#define WIFI_EVENT_BLOCK_ACK_NEGOTIATION_COMPLETE 27 // with success/failure, parameters
+#define WIFI_EVENT_BT_COEX_BT_SCO_START 28
+#define WIFI_EVENT_BT_COEX_BT_SCO_STOP 29
+#define WIFI_EVENT_BT_COEX_BT_SCAN_START 30 // for paging/scan etc., when BT starts transmiting
+ // twice per BT slot
+#define WIFI_EVENT_BT_COEX_BT_SCAN_STOP 31
+#define WIFI_EVENT_BT_COEX_BT_HID_START 32
+#define WIFI_EVENT_BT_COEX_BT_HID_STOP 33
+#define WIFI_EVENT_ROAM_AUTH_STARTED 34 // fw sends auth frame in roaming to next candidate
+#define WIFI_EVENT_ROAM_AUTH_COMPLETE 35 // fw receive auth confirm from ap
+#define WIFI_EVENT_ROAM_ASSOC_STARTED 36 // firmware sends assoc/reassoc frame in
+ // roaming to next candidate
+#define WIFI_EVENT_ROAM_ASSOC_COMPLETE 37 // firmware receive assoc/reassoc confirm from ap
+
+
+/**
+ * Parameters of wifi logger events are TLVs
+ * Event parameters tags are defined as:
+ */
+#define WIFI_TAG_VENDOR_SPECIFIC 0 // take a byte stream as parameter
+#define WIFI_TAG_BSSID 1 // takes a 6 bytes MAC address as parameter
+#define WIFI_TAG_ADDR 2 // takes a 6 bytes MAC address as parameter
+#define WIFI_TAG_SSID 3 // takes a 32 bytes SSID address as parameter
+#define WIFI_TAG_STATUS 4 // takes an integer as parameter
+#define WIFI_TAG_CHANNEL_SPEC 5 // takes one or more wifi_channel_spec as parameter
+#define WIFI_TAG_WAKE_LOCK_EVENT 6 // takes a wake_lock_event struct as parameter
+#define WIFI_TAG_ADDR1 7 // takes a 6 bytes MAC address as parameter
+#define WIFI_TAG_ADDR2 8 // takes a 6 bytes MAC address as parameter
+#define WIFI_TAG_ADDR3 9 // takes a 6 bytes MAC address as parameter
+#define WIFI_TAG_ADDR4 10 // takes a 6 bytes MAC address as parameter
+#define WIFI_TAG_TSF 11 // take a 64 bits TSF value as parameter
+#define WIFI_TAG_IE 12 // take one or more specific 802.11 IEs parameter,
+ // IEs are in turn indicated in TLV format as per 802.11 spec
+#define WIFI_TAG_INTERFACE 13 // take interface name as parameter
+#define WIFI_TAG_REASON_CODE 14 // take a reason code as per 802.11 as parameter
+#define WIFI_TAG_RATE_MBPS 15 // take a wifi rate in 0.5 mbps
+
+typedef struct {
+ u16 tag;
+ u16 length; // length of value
+ u8 value[0];
+} __attribute__((packed)) tlv_log;
+
+typedef struct {
+ u16 event;
+ tlv_log tlvs[0]; // separate parameter structure per event to be provided and optional data
+ // the event_data is expected to include an official android part, with some
+ // parameter as transmit rate, num retries, num scan result found etc...
+ // as well, event_data can include a vendor proprietary part which is
+ // understood by the developer only.
+} __attribute__((packed)) wifi_ring_buffer_driver_connectivity_event;
+
+
+/**
+ * Ring buffer name for power events ring. note that power event are extremely frequents
+ * and thus should be stored in their own ring/file so as not to clobber connectivity events.
+ */
+typedef struct {
+ int status; // 0 taken, 1 released
+ int reason; // reason why this wake lock is taken
+ char name[0]; // null terminated
+} __attribute__((packed)) wake_lock_event;
+
+typedef struct {
+ u16 event;
+ tlv_log tlvs[0];
+} __attribute__((packed)) wifi_power_event;
+
+
+/**
+ * This structure represent a logger entry within a ring buffer.
+ * Wifi driver are responsible to manage the ring buffer and write the debug
+ * information into those rings.
+ *
+ * In general, the debug entries can be used to store meaningful 802.11 information (SME, MLME,
+ * connection and packet statistics) as well as vendor proprietary data that is specific to a
+ * specific driver or chipset.
+ * Binary entries can be used so as to store packet data or vendor specific information and
+ * will be treated as blobs of data by android.
+ *
+ * A user land process will be started by framework so as to periodically retrieve the
+ * data logged by drivers into their ring buffer, store the data into log files and include
+ * the logs into android bugreports.
+ */
+enum {
+ RING_BUFFER_ENTRY_FLAGS_HAS_BINARY = (1 << (0)), // set for binary entries
+ RING_BUFFER_ENTRY_FLAGS_HAS_TIMESTAMP = (1 << (1)) // set if 64 bits timestamp is present
+};
+
+enum {
+ ENTRY_TYPE_CONNECT_EVENT = 1,
+ ENTRY_TYPE_PKT,
+ ENTRY_TYPE_WAKE_LOCK,
+ ENTRY_TYPE_POWER_EVENT,
+ ENTRY_TYPE_DATA
+};
+
+typedef struct {
+ u16 entry_size; // the size of payload excluding the header.
+ u8 flags;
+ u8 type; // entry type
+ u64 timestamp; // present if has_timestamp bit is set.
+} __attribute__((packed)) wifi_ring_buffer_entry;
+
+#define WIFI_RING_BUFFER_FLAG_HAS_BINARY_ENTRIES 0x00000001 // set if binary entries are present
+#define WIFI_RING_BUFFER_FLAG_HAS_ASCII_ENTRIES 0x00000002 // set if ascii entries are present
+
+
+/* ring buffer params */
+/**
+ * written_bytes and read_bytes implement a producer consumer API
+ * hence written_bytes >= read_bytes
+ * a modulo arithmetic of the buffer size has to be applied to those counters:
+ * actual offset into ring buffer = written_bytes % ring_buffer_byte_size
+ *
+ */
+typedef struct {
+ u8 name[32];
+ u32 flags;
+ wifi_ring_buffer_id ring_id; // unique integer representing the ring
+ u32 ring_buffer_byte_size; // total memory size allocated for the buffer
+ u32 verbose_level; // verbose level for ring buffer
+ u32 written_bytes; // number of bytes that was written to the buffer by driver,
+ // monotonously increasing integer
+ u32 read_bytes; // number of bytes that was read from the buffer by user land,
+ // monotonously increasing integer
+ u32 written_records; // number of records that was written to the buffer by driver,
+ // monotonously increasing integer
+} wifi_ring_buffer_status;
+
+
+/**
+ * Callback for reporting ring data
+ *
+ * The ring buffer data collection is event based:
+ * - Driver calls on_ring_buffer_data when new records are available, the wifi_ring_buffer_status
+ * passed up to framework in the call back indicates to framework if more data is available in
+ * the ring buffer. It is not expected that driver will necessarily always empty the ring
+ * immediately as data is available, instead driver will report data every X seconds or if
+ * N bytes are available.
+ * - In the case where a bug report has to be captured, framework will require driver to upload
+ * all data immediately. This is indicated to driver when framework calls wifi_get_ringdata.
+ * When framework calls wifi_get_ring_data, driver will start sending all available data in the
+ * indicated ring by repeatedly invoking the on_ring_buffer_data callback.
+ *
+ * The callback is called by log handler whenever ring data comes in driver.
+ */
+typedef struct {
+ void (*on_ring_buffer_data) (char *ring_name, char *buffer, int buffer_size,
+ wifi_ring_buffer_status *status);
+} wifi_ring_buffer_data_handler;
+
+/**
+ * API to set the log handler for getting ring data
+ * - Only a single instance of log handler can be instantiated for each ring buffer.
+ */
+wifi_error wifi_set_log_handler(wifi_request_id id, wifi_interface_handle iface,
+ wifi_ring_buffer_data_handler handler);
+
+/* api to reset the log handler */
+wifi_error wifi_reset_log_handler(wifi_request_id id, wifi_interface_handle iface);
+
+
+/**
+ * Callback for reporting FW dump
+ *
+ * The buffer data collection is event based such as FW health check or FW dump.
+ * The callback is called by alert handler.
+ */
+typedef struct {
+ void (*on_alert) (wifi_request_id id, char *buffer, int buffer_size, int err_code);
+} wifi_alert_handler;
+
+/*
+ * API to set the alert handler for the alert case in Wi-Fi Chip
+ * - Only a single instance of alert handler can be instantiated.
+ */
+wifi_error wifi_set_alert_handler(wifi_request_id id, wifi_interface_handle iface,
+ wifi_alert_handler handler);
+
+/* API to reset the alert handler */
+wifi_error wifi_reset_alert_handler(wifi_request_id id, wifi_interface_handle iface);
+
+/* API for framework to indicate driver has to upload and drain all data of a given ring */
+wifi_error wifi_get_ring_data(wifi_interface_handle iface, char *ring_name);
+
+
+/**
+ * API to trigger the debug collection.
+ * Unless his API is invoked - logging is not triggered.
+ * - Verbose_level 0 corresponds to no collection,
+ * and it makes log handler stop by no more events from driver.
+ * - Verbose_level 1 correspond to normal log level, with minimal user impact.
+ * This is the default value.
+ * - Verbose_level 2 are enabled when user is lazily trying to reproduce a problem,
+ * wifi performances and power can be impacted but device should not otherwise be
+ * significantly impacted.
+ * - Verbose_level 3+ are used when trying to actively debug a problem.
+ *
+ * ring_name represent the name of the ring for which data collection shall start.
+ *
+ * flags: TBD parameter used to enable/disable specific events on a ring
+ * max_interval: maximum interval in seconds for driver to invoke on_ring_buffer_data,
+ * ignore if zero
+ * min_data_size: minimum data size in buffer for driver to invoke on_ring_buffer_data,
+ * ignore if zero
+ */
+wifi_error wifi_start_logging(wifi_interface_handle iface, u32 verbose_level, u32 flags,
+ u32 max_interval_sec, u32 min_data_size, char *ring_name);
+
+/**
+ * API to get the status of all ring buffers supported by driver.
+ * - Caller is responsible to allocate / free ring buffer status.
+ * - Maximum no of ring buffer would be 10.
+ */
+wifi_error wifi_get_ring_buffers_status(wifi_interface_handle iface, u32 *num_rings,
+ wifi_ring_buffer_status *status);
+
+/**
+ * Synchronous memory dump by user request.
+ * - Caller is responsible to store memory dump data into a local,
+ * e.g., /data/misc/wifi/memdump.bin
+ */
+typedef struct {
+ void (*on_firmware_memory_dump) (char *buffer, int buffer_size);
+} wifi_firmware_memory_dump_handler;
+
+/**
+ * API to collect a firmware memory dump for a given iface by async memdump event.
+ * - Triggered by Alerthandler, esp. when FW problem or FW health check happens
+ * - Caller is responsible to store fw dump data into a local,
+ * e.g., /data/misc/wifi/alertdump-1.bin
+ */
+wifi_error wifi_get_firmware_memory_dump(wifi_interface_handle iface,
+ wifi_firmware_memory_dump_handler handler);
+
+/**
+ * API to collect a firmware version string.
+ * - Caller is responsible to allocate / free a buffer to retrieve firmware verion info.
+ * - Max string will be at most 256 bytes.
+ */
+wifi_error wifi_get_firmware_version(wifi_interface_handle iface, char *buffer, int buffer_size);
+
+/**
+ * API to collect a driver version string.
+ * - Caller is responsible to allocate / free a buffer to retrieve driver verion info.
+ * - Max string will be at most 256 bytes.
+ */
+wifi_error wifi_get_driver_version(wifi_interface_handle iface, char *buffer, int buffer_size);
+
+
+/* Feature set */
+enum {
+ WIFI_LOGGER_MEMORY_DUMP_SUPPORTED = (1 << (0)), // Memory dump of FW
+ WIFI_LOGGER_PER_PACKET_TX_RX_STATUS_SUPPORTED = (1 << (1)), // PKT status
+ WIFI_LOGGER_CONNECT_EVENT_SUPPORTED = (1 << (2)), // Connectivity event
+ WIFI_LOGGER_POWER_EVENT_SUPPORTED = (1 << (3)), // POWER of Driver
+ WIFI_LOGGER_WAKE_LOCK_SUPPORTED = (1 << (4)), // WAKE LOCK of Driver
+ WIFI_LOGGER_VERBOSE_SUPPORTED = (1 << (5)), // verbose log of FW
+ WIFI_LOGGER_WATCHDOG_TIMER_SUPPORTED = (1 << (6)) // monitor the health of FW
+};
+
+/**
+ * API to retrieve the current supportive features.
+ * - An integer variable is enough to have bit mapping info by caller.
+ */
+wifi_error wifi_get_logger_supported_feature_set(wifi_interface_handle iface,
+ unsigned int *support);
+
+
+#ifdef __cplusplus
+}
+#endif /* __cplusplus */
+
+#endif /*__WIFI_HAL_STATS_ */