#include "wifi_hal.h" #ifndef __WIFI_HAL_GSCAN_H__ #define __WIFI_HAL_GSCAN_H__ /* AP Scans */ typedef enum { WIFI_BAND_UNSPECIFIED, WIFI_BAND_BG = 1, // 2.4 GHz WIFI_BAND_A = 2, // 5 GHz without DFS WIFI_BAND_A_DFS = 4, // 5 GHz DFS only WIFI_BAND_A_WITH_DFS = 6, // 5 GHz with DFS WIFI_BAND_ABG = 3, // 2.4 GHz + 5 GHz; no DFS WIFI_BAND_ABG_WITH_DFS = 7, // 2.4 GHz + 5 GHz with DFS } wifi_band; #define MAX_CHANNELS 16 #define MAX_BUCKETS 16 #define MAX_HOTLIST_APS 128 #define MAX_SIGNIFICANT_CHANGE_APS 64 #define MAX_PNO_SSID 128; wifi_error wifi_get_valid_channels(wifi_interface_handle handle, int band, int max_channels, wifi_channel *channels, int *num_channels); typedef struct { int max_scan_cache_size; // total space allocated for scan (in bytes) int max_scan_buckets; // maximum number of channel buckets int max_ap_cache_per_scan; // maximum number of APs that can be stored per scan int max_rssi_sample_size; // number of RSSI samples used for averaging RSSI int max_scan_reporting_threshold; // max possible report_threshold as described // in wifi_scan_cmd_params int max_hotlist_aps; // maximum number of entries for hotlist APs int max_significant_wifi_change_aps; // maximum number of entries for // significant wifi change APs int max_bssid_history_entries; // number of BSSID/RSSI entries that device can hold } wifi_gscan_capabilities; wifi_error wifi_get_gscan_capabilities(wifi_interface_handle handle, wifi_gscan_capabilities *capabilities); typedef enum { WIFI_SCAN_BUFFER_FULL, WIFI_SCAN_COMPLETE, } wifi_scan_event; /* Format of information elements found in the beacon */ typedef struct { byte id; // element identifier byte len; // number of bytes to follow byte data[]; } wifi_information_element; typedef struct { wifi_timestamp ts; // time since boot (in microsecond) when the result was // retrieved char ssid[32+1]; // null terminated mac_addr bssid; wifi_channel channel; // channel frequency in MHz wifi_rssi rssi; // in db wifi_timespan rtt; // in nanoseconds wifi_timespan rtt_sd; // standard deviation in rtt unsigned short beacon_period; // period advertised in the beacon unsigned short capability; // capabilities advertised in the beacon unsigned int ie_length; // size of the ie_data blob char ie_data[1]; // blob of all the information elements found in the // beacon; this data should be a packed list of // wifi_information_element objects, one after the other. // other fields } wifi_scan_result; typedef struct { /* reported when report_threshold is reached in scan cache */ void (*on_scan_results_available) (wifi_request_id id, unsigned num_results_available); /* reported when each probe response is received, if report_events * enabled in wifi_scan_cmd_params */ void (*on_full_scan_result) (wifi_request_id id, wifi_scan_result *result); /* optional event - indicates progress of scanning statemachine */ void (*on_scan_event) (wifi_scan_event event, unsigned status); } wifi_scan_result_handler; typedef struct { wifi_channel channel; // frequency int dwellTimeMs; // dwell time hint int passive; // 0 => active, 1 => passive scan; ignored for DFS /* Add channel class */ } wifi_scan_channel_spec; typedef struct { int bucket; // bucket index, 0 based wifi_band band; // when UNSPECIFIED, use channel list int period; // desired period, in millisecond; if this is too // low, the firmware should choose to generate results as // fast as it can instead of failing the command. // for exponential backoff bucket this is the min_period /* report_events semantics - * 0 => report only when scan history is % full * 1 => same as 0 + report a scan completion event after scanning this bucket * 2 => same as 1 + forward scan results (beacons/probe responses + IEs) in real time to HAL * 3 => same as 2 + forward scan results (beacons/probe responses + IEs) in real time to supplicant as well (optional) . */ byte report_events; int max_period; // if max_period is non zero or different than period, then this bucket is // an exponential backoff bucket and the scan period will grow exponentially // as per formula: actual_period(N) = period ^ (N/(step_count+1)) // to a maximum period of max_period int exponent; // for exponential back off bucket: multiplier: new_period = old_period * exponent int step_count; // for exponential back off bucket, number of scans performed at a given // period and until the exponent is applied int num_channels; // channels to scan; these may include DFS channels // Note that a given channel may appear in multiple buckets wifi_scan_channel_spec channels[MAX_CHANNELS]; } wifi_scan_bucket_spec; typedef struct { int base_period; // base timer period in ms int max_ap_per_scan; // number of APs to store in each scan ientryn the // BSSID/RSSI history buffer (keep the highest RSSI APs) int report_threshold_percent; // in %, when scan buffer is this much full, wake up AP int report_threshold_num_scans; // in number of scans, wake up AP after these many scans int num_buckets; wifi_scan_bucket_spec buckets[MAX_BUCKETS]; } wifi_scan_cmd_params; /* Start periodic GSCAN */ wifi_error wifi_start_gscan(wifi_request_id id, wifi_interface_handle iface, wifi_scan_cmd_params params, wifi_scan_result_handler handler); /* Stop periodic GSCAN */ wifi_error wifi_stop_gscan(wifi_request_id id, wifi_interface_handle iface); typedef enum { WIFI_SCAN_FLAG_INTERRUPTED = 1 // Indicates that scan results are not complete because // probes were not sent on some channels } wifi_scan_flags; /* Get the GSCAN cached scan results */ typedef struct { int scan_id; // a unique identifier for the scan unit int flags; // a bitmask with additional information about scan int num_results; // number of bssids retrieved by the scan wifi_scan_result *results; // scan results - one for each bssid } wifi_cached_scan_results; wifi_error wifi_get_cached_gscan_results(wifi_interface_handle iface, byte flush, int max, wifi_cached_scan_results *results, int *num); /* BSSID Hotlist */ typedef struct { void (*on_hotlist_ap_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); void (*on_hotlist_ap_lost)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_hotlist_ap_found_handler; typedef struct { mac_addr bssid; // AP BSSID wifi_rssi low; // low threshold wifi_rssi high; // high threshold } ap_threshold_param; typedef struct { int lost_ap_sample_size; int num_ap; // number of hotlist APs ap_threshold_param ap[MAX_HOTLIST_APS]; // hotlist APs } wifi_bssid_hotlist_params; /* Set the BSSID Hotlist */ wifi_error wifi_set_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface, wifi_bssid_hotlist_params params, wifi_hotlist_ap_found_handler handler); /* Clear the BSSID Hotlist */ wifi_error wifi_reset_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface); /* Significant wifi change */ typedef struct { mac_addr bssid; // BSSID wifi_channel channel; // channel frequency in MHz int num_rssi; // number of rssi samples wifi_rssi rssi[]; // RSSI history in db } wifi_significant_change_result; typedef struct { void (*on_significant_change)(wifi_request_id id, unsigned num_results, wifi_significant_change_result **results); } wifi_significant_change_handler; // The sample size parameters in the wifi_significant_change_params structure // represent the number of occurence of a g-scan where the BSSID was seen and RSSI was // collected for that BSSID, or, the BSSID was expected to be seen and didn't. // for instance: lost_ap_sample_size : number of time a g-scan was performed on the // channel the BSSID was seen last, and the BSSID was not seen during those g-scans typedef struct { int rssi_sample_size; // number of samples for averaging RSSI int lost_ap_sample_size; // number of samples to confirm AP loss int min_breaching; // number of APs breaching threshold int num_ap; // max 64 ap_threshold_param ap[MAX_SIGNIFICANT_CHANGE_APS]; } wifi_significant_change_params; /* Set the Signifcant AP change list */ wifi_error wifi_set_significant_change_handler(wifi_request_id id, wifi_interface_handle iface, wifi_significant_change_params params, wifi_significant_change_handler handler); /* Clear the Signifcant AP change list */ wifi_error wifi_reset_significant_change_handler(wifi_request_id id, wifi_interface_handle iface); /* Random MAC OUI for PNO */ wifi_error wifi_set_scanning_mac_oui(wifi_interface_handle handle, oui scan_oui); #define WIFI_PNO_FLAG_DIRECTED_SCAN = 1 // whether directed scan needs to be performed (for hidden SSIDs) #define WIFI_PNO_FLAG_HASH_PROVIDED = 2 // whether a crc32 hash of the ssid is provided instead of the ssid // Code for matching the beacon AUTH IE - additional codes TBD #define WIFI_PNO_AUTH_CODE_OPEN 1 // open #define WIFI_PNO_AUTH_CODE_PSK 2 // WPA_PSK or WPA2PSK #define WIFI_PNO_AUTH_CODE_EAPOL 4 // any EAPOL // Enhanced PNO: // for each network framework will either specify a ssid or a crc32 // if ssid is specified (i.e. ssid[0] != 0) then crc32 field shall be ignored. // A PNO network shall be reported once, that is, once a network is reported by firmware // its entry shall be marked as "done" until framework call wifi_set_epno_list. // Calling wifi_set_epno_list shall reset the "done" status of pno networks in firmware. typedef struct { char ssid[32]; char rssi_threshold; // threshold for considering this SSID as found char flags; int crc32; // crc32 of the SSID, this allows for memory size optimization // i.e. not passing the whole SSID // in firmware and instead storing a shorter string char auth_bit_field; // auth bitfield for matching WPA IE } wifi_epno_network; /* PNO list */ typedef struct { int num_networks; // number of SSIDs wifi_epno_network networks[]; // PNO networks } wifi_epno_params; typedef struct { int network_index; // index of the network found in the pno list char ssid[32+1]; // null terminated wifi_channel channel; int rssi; } wifi_epno_result; typedef struct { // on results void (*on_network_found)(wifi_request_id id, unsigned num_results, wifi_epno_result *results); } wifi_epno_handler; /* Set the PNO list */ wifi_error wifi_set_epno_list(wifi_request_id id, wifi_interface_handle iface, int num_networks, wifi_epno_network *networks, wifi_epno_handler handler); /* SSID white list */ /* Note that this feature requires firmware to be able to indicate to kernel sme and wpa_supplicant * that the SSID of the network has changed * and thus requires further changed in cfg80211 stack, for instance, the below function would change: void __cfg80211_roamed(struct wireless_dev *wdev, struct cfg80211_bss *bss, const u8 *req_ie, size_t req_ie_len, const u8 *resp_ie, size_t resp_ie_len) * when firmware roam to a new SSID the corresponding link layer stats info need to be updated: struct wifi_interface_link_layer_info; */ typedef struct { char ssid[32+1]; // null terminated } wifi_ssid; wifi_error wifi_set_ssid_white_list(wifi_request_id id, wifi_interface_handle iface, int num_networks, wifi_ssid *ssids); typedef struct { int max_number_epno_networks_by_crc32; //max number of epno entries if crc32 is specified int max_number_epno_networks_by_ssid; //max number of epno entries if ssid is specified int max_number_of_white_losted_ssid; //max number of white listed SSIDs, M target is 2 to 4 */ } wifi_roam_autojoin_offload_capabilities; wifi_error wifi_get_roam_autojoin_offload_capabilities(wifi_interface_handle handle, wifi_roam_autojoin_offload_capabilities *capabilities); #endif