aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/scsi_tgt_if.c
Commit message (Collapse)AuthorAgeFilesLines
* scsi: Add export.h for EXPORT_SYMBOL/THIS_MODULE as requiredPaul Gortmaker2011-10-311-0/+1
| | | | | | | | For the basic SCSI infrastructure files that are exporting symbols but not modules themselves, add in the basic export.h header file to allow the exports. Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
* Merge branch 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bklLinus Torvalds2010-10-221-0/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | * 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl: vfs: make no_llseek the default vfs: don't use BKL in default_llseek llseek: automatically add .llseek fop libfs: use generic_file_llseek for simple_attr mac80211: disallow seeks in minstrel debug code lirc: make chardev nonseekable viotape: use noop_llseek raw: use explicit llseek file operations ibmasmfs: use generic_file_llseek spufs: use llseek in all file operations arm/omap: use generic_file_llseek in iommu_debug lkdtm: use generic_file_llseek in debugfs net/wireless: use generic_file_llseek in debugfs drm: use noop_llseek
| * llseek: automatically add .llseek fopArnd Bergmann2010-10-151-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
* | scsi: autoconvert trivial BKL users to private mutexArnd Bergmann2010-09-151-2/+0
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | All these files use the big kernel lock in a trivial way to serialize their private file operations, typically resulting from an earlier semi-automatic pushdown from VFS. None of these drivers appears to want to lock against other code, and they all use the BKL as the top-level lock in their file operations, meaning that there is no lock-order inversion problem. Consequently, we can remove the BKL completely, replacing it with a per-file mutex in every case. Using a scripted approach means we can avoid typos. file=$1 name=$2 if grep -q lock_kernel ${file} ; then if grep -q 'include.*linux.mutex.h' ${file} ; then sed -i '/include.*<linux\/smp_lock.h>/d' ${file} else sed -i 's/include.*<linux\/smp_lock.h>.*$/include <linux\/mutex.h>/g' ${file} fi sed -i ${file} \ -e "/^#include.*linux.mutex.h/,$ { 1,/^\(static\|int\|long\)/ { /^\(static\|int\|long\)/istatic DEFINE_MUTEX(${name}_mutex); } }" \ -e "s/\(un\)*lock_kernel\>[ ]*()/mutex_\1lock(\&${name}_mutex)/g" \ -e '/[ ]*cycle_kernel_lock();/d' else sed -i -e '/include.*\<smp_lock.h\>/d' ${file} \ -e '/cycle_kernel_lock()/d' fi Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: linux-scsi@vger.kernel.org Cc: "James E.J. Bottomley" <James.Bottomley@suse.de>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* scsi-tgt: BKL pushdownArnd Bergmann2008-07-021-0/+2
| | | | Signed-off-by: Arnd Bergmann <arnd@arndb.de>
* [SCSI] tgt: convert to use the data buffer accessorsFUJITA Tomonori2008-01-111-1/+1
| | | | | | | | - convert to use the new accessors for the sg lists and the parameters. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
* [SCSI] tgt: add I_T nexus supportFUJITA Tomonori2007-10-121-4/+38
| | | | | | | | | | | | | | | | | | | | | | tgt uses scsi_host as I_T nexus. This works for ibmvstgt because it creates one scsi_host for one initiator. However, other target drivers don't work like that. This adds I_T nexus support, which enable one scsi_host to handle multiple initiators. New scsi_tgt_it_nexus_create/destroy functions are expected be called transport classes. For example, ibmvstgt creates an initiator remote port, then the srp transport calls tgt_it_nexus_create. tgt doesn't manages I_T nexus, instead it tells tgtd, user-space daemon, to create a new I_T nexus. On the receiving the response from tgtd, tgt calls shost->transportt->it_nexus_response. transports should notify a lld. The srp transport uses it_nexus_response callback in srp_function_template to do that. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Mike Christie <michaelc@cs.wisc.edu> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
* [SCSI] tgt: fix sesnse buffer problemsFUJITA Tomonori2007-03-111-2/+4
| | | | | | | | | | | | | | | | This patch simplify the way to notify LLDs of the command completion and addresses the following sense buffer problems: - can't handle both data and sense. - forces user-space to use aligned sense buffer tgt copies sense_data from userspace to cmnd->sense_buffer (if necessary), maps user-space pages (if necessary) and then calls host->transfer_response (host->transfer_data is removed). Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Mike Christie <michaelc@cs.wisc.edu> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
* [SCSI] tgt: fix the user/kernel ring buffer interfaceFUJITA Tomonori2007-02-161-0/+8
| | | | | | | | | | | | | | | This patches fixes two bugs in the scsi target infrastructure's user/kernel interface. - It wrongly assumes that the ring buffer size of the interface (64KB) is larger than or equal to the system page size. This patch sets the ring buffer size to PAGE_SIZE if the system page size is larger. - It uses PAGE_SIZE in the header file exported to userspace. This patch removes it. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
* [PATCH] mark struct file_operations const 6Arjan van de Ven2007-02-121-1/+1
| | | | | | | | | | | Many struct file_operations in the kernel can be "const". Marking them const moves these to the .rodata section, which avoids false sharing with potential dirty data. In addition it'll catch accidental writes at compile time to these shared resources. Signed-off-by: Arjan van de Ven <arjan@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* [SCSI] tgt: fix undefined flush_dcache_page() problemakpm@osdl.org2006-12-051-0/+2
| | | | | | | | drivers/scsi/scsi_tgt_if.c: In function 'tgt_uspace_send_event': drivers/scsi/scsi_tgt_if.c:88: warning: implicit declaration of function 'flush_dcache_page' Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
* [SCSI] scsi tgt: scsi target user and kernel communication interfaceFUJITA Tomonori2006-11-251-0/+350
The user-space daemon and tgt kernel module need bi-directional kernel/user high-performance interface, however, mainline provides no standard interface like that. This patch adds shared memory interface between kernel and user spaces like some other drivers do by using own character device. The user-space daemon and tgt kernel module creates shared memory via mmap and use it like ring buffer. poll (kernel to user) and write (user to kernel) system calls are used for notification. Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> Signed-off-by: Mike Christie <michaelc@cs.wisc.edu> Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>