/* * Based on arch/arm/mm/mmu.c * * Copyright (C) 1995-2005 Russell King * Copyright (C) 2012 ARM Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/mman.h> #include <linux/nodemask.h> #include <linux/memblock.h> #include <linux/fs.h> #include <linux/io.h> #include <asm/cputype.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/sizes.h> #include <asm/tlb.h> #include <asm/mmu_context.h> #include "mm.h" /* * Empty_zero_page is a special page that is used for zero-initialized data * and COW. */ struct page *empty_zero_page; EXPORT_SYMBOL(empty_zero_page); pgprot_t pgprot_default; EXPORT_SYMBOL(pgprot_default); static pmdval_t prot_sect_kernel; struct cachepolicy { const char policy[16]; u64 mair; u64 tcr; }; static struct cachepolicy cache_policies[] __initdata = { { .policy = "uncached", .mair = 0x44, /* inner, outer non-cacheable */ .tcr = TCR_IRGN_NC | TCR_ORGN_NC, }, { .policy = "writethrough", .mair = 0xaa, /* inner, outer write-through, read-allocate */ .tcr = TCR_IRGN_WT | TCR_ORGN_WT, }, { .policy = "writeback", .mair = 0xee, /* inner, outer write-back, read-allocate */ .tcr = TCR_IRGN_WBnWA | TCR_ORGN_WBnWA, } }; /* * These are useful for identifying cache coherency problems by allowing the * cache or the cache and writebuffer to be turned off. It changes the Normal * memory caching attributes in the MAIR_EL1 register. */ static int __init early_cachepolicy(char *p) { int i; u64 tmp; for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { int len = strlen(cache_policies[i].policy); if (memcmp(p, cache_policies[i].policy, len) == 0) break; } if (i == ARRAY_SIZE(cache_policies)) { pr_err("ERROR: unknown or unsupported cache policy: %s\n", p); return 0; } flush_cache_all(); /* * Modify MT_NORMAL attributes in MAIR_EL1. */ asm volatile( " mrs %0, mair_el1\n" " bfi %0, %1, #%2, #8\n" " msr mair_el1, %0\n" " isb\n" : "=&r" (tmp) : "r" (cache_policies[i].mair), "i" (MT_NORMAL * 8)); /* * Modify TCR PTW cacheability attributes. */ asm volatile( " mrs %0, tcr_el1\n" " bic %0, %0, %2\n" " orr %0, %0, %1\n" " msr tcr_el1, %0\n" " isb\n" : "=&r" (tmp) : "r" (cache_policies[i].tcr), "r" (TCR_IRGN_MASK | TCR_ORGN_MASK)); flush_cache_all(); return 0; } early_param("cachepolicy", early_cachepolicy); /* * Adjust the PMD section entries according to the CPU in use. */ static void __init init_mem_pgprot(void) { pteval_t default_pgprot; int i; default_pgprot = PTE_ATTRINDX(MT_NORMAL); prot_sect_kernel = PMD_TYPE_SECT | PMD_SECT_AF | PMD_ATTRINDX(MT_NORMAL); #ifdef CONFIG_SMP /* * Mark memory with the "shared" attribute for SMP systems */ default_pgprot |= PTE_SHARED; prot_sect_kernel |= PMD_SECT_S; #endif for (i = 0; i < 16; i++) { unsigned long v = pgprot_val(protection_map[i]); protection_map[i] = __pgprot(v | default_pgprot); } pgprot_default = __pgprot(PTE_TYPE_PAGE | PTE_AF | default_pgprot); } pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot) { if (!pfn_valid(pfn)) return pgprot_noncached(vma_prot); else if (file->f_flags & O_SYNC) return pgprot_writecombine(vma_prot); return vma_prot; } EXPORT_SYMBOL(phys_mem_access_prot); static void __init *early_alloc(unsigned long sz) { void *ptr = __va(memblock_alloc(sz, sz)); memset(ptr, 0, sz); return ptr; } static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, unsigned long end, unsigned long pfn) { pte_t *pte; if (pmd_none(*pmd)) { pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t)); __pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE); } BUG_ON(pmd_bad(*pmd)); pte = pte_offset_kernel(pmd, addr); do { set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC)); pfn++; } while (pte++, addr += PAGE_SIZE, addr != end); } static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, unsigned long end, phys_addr_t phys) { pmd_t *pmd; unsigned long next; /* * Check for initial section mappings in the pgd/pud and remove them. */ if (pud_none(*pud) || pud_bad(*pud)) { pmd = early_alloc(PTRS_PER_PMD * sizeof(pmd_t)); pud_populate(&init_mm, pud, pmd); } pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); /* try section mapping first */ if (((addr | next | phys) & ~SECTION_MASK) == 0) set_pmd(pmd, __pmd(phys | prot_sect_kernel)); else alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys)); phys += next - addr; } while (pmd++, addr = next, addr != end); } static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, unsigned long end, unsigned long phys) { pud_t *pud = pud_offset(pgd, addr); unsigned long next; do { next = pud_addr_end(addr, end); alloc_init_pmd(pud, addr, next, phys); phys += next - addr; } while (pud++, addr = next, addr != end); } /* * Create the page directory entries and any necessary page tables for the * mapping specified by 'md'. */ static void __init create_mapping(phys_addr_t phys, unsigned long virt, phys_addr_t size) { unsigned long addr, length, end, next; pgd_t *pgd; if (virt < VMALLOC_START) { pr_warning("BUG: not creating mapping for 0x%016llx at 0x%016lx - outside kernel range\n", phys, virt); return; } addr = virt & PAGE_MASK; length = PAGE_ALIGN(size + (virt & ~PAGE_MASK)); pgd = pgd_offset_k(addr); end = addr + length; do { next = pgd_addr_end(addr, end); alloc_init_pud(pgd, addr, next, phys); phys += next - addr; } while (pgd++, addr = next, addr != end); } #ifdef CONFIG_EARLY_PRINTK /* * Create an early I/O mapping using the pgd/pmd entries already populated * in head.S as this function is called too early to allocated any memory. The * mapping size is 2MB with 4KB pages or 64KB or 64KB pages. */ void __iomem * __init early_io_map(phys_addr_t phys, unsigned long virt) { unsigned long size, mask; bool page64k = IS_ENABLED(CONFIG_ARM64_64K_PAGES); pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; /* * No early pte entries with !ARM64_64K_PAGES configuration, so using * sections (pmd). */ size = page64k ? PAGE_SIZE : SECTION_SIZE; mask = ~(size - 1); pgd = pgd_offset_k(virt); pud = pud_offset(pgd, virt); if (pud_none(*pud)) return NULL; pmd = pmd_offset(pud, virt); if (page64k) { if (pmd_none(*pmd)) return NULL; pte = pte_offset_kernel(pmd, virt); set_pte(pte, __pte((phys & mask) | PROT_DEVICE_nGnRE)); } else { set_pmd(pmd, __pmd((phys & mask) | PROT_SECT_DEVICE_nGnRE)); } return (void __iomem *)((virt & mask) + (phys & ~mask)); } #endif static void __init map_mem(void) { struct memblock_region *reg; /* map all the memory banks */ for_each_memblock(memory, reg) { phys_addr_t start = reg->base; phys_addr_t end = start + reg->size; if (start >= end) break; create_mapping(start, __phys_to_virt(start), end - start); } } /* * paging_init() sets up the page tables, initialises the zone memory * maps and sets up the zero page. */ void __init paging_init(void) { void *zero_page; /* * Maximum PGDIR_SIZE addressable via the initial direct kernel * mapping in swapper_pg_dir. */ memblock_set_current_limit((PHYS_OFFSET & PGDIR_MASK) + PGDIR_SIZE); init_mem_pgprot(); map_mem(); /* * Finally flush the caches and tlb to ensure that we're in a * consistent state. */ flush_cache_all(); flush_tlb_all(); /* allocate the zero page. */ zero_page = early_alloc(PAGE_SIZE); bootmem_init(); empty_zero_page = virt_to_page(zero_page); __flush_dcache_page(empty_zero_page); /* * TTBR0 is only used for the identity mapping at this stage. Make it * point to zero page to avoid speculatively fetching new entries. */ cpu_set_reserved_ttbr0(); flush_tlb_all(); } /* * Enable the identity mapping to allow the MMU disabling. */ void setup_mm_for_reboot(void) { cpu_switch_mm(idmap_pg_dir, &init_mm); flush_tlb_all(); } /* * Check whether a kernel address is valid (derived from arch/x86/). */ int kern_addr_valid(unsigned long addr) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; if ((((long)addr) >> VA_BITS) != -1UL) return 0; pgd = pgd_offset_k(addr); if (pgd_none(*pgd)) return 0; pud = pud_offset(pgd, addr); if (pud_none(*pud)) return 0; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) return 0; pte = pte_offset_kernel(pmd, addr); if (pte_none(*pte)) return 0; return pfn_valid(pte_pfn(*pte)); } #ifdef CONFIG_SPARSEMEM_VMEMMAP #ifdef CONFIG_ARM64_64K_PAGES int __meminit vmemmap_populate(struct page *start_page, unsigned long size, int node) { return vmemmap_populate_basepages(start_page, size, node); } #else /* !CONFIG_ARM64_64K_PAGES */ int __meminit vmemmap_populate(struct page *start_page, unsigned long size, int node) { unsigned long addr = (unsigned long)start_page; unsigned long end = (unsigned long)(start_page + size); unsigned long next; pgd_t *pgd; pud_t *pud; pmd_t *pmd; do { next = pmd_addr_end(addr, end); pgd = vmemmap_pgd_populate(addr, node); if (!pgd) return -ENOMEM; pud = vmemmap_pud_populate(pgd, addr, node); if (!pud) return -ENOMEM; pmd = pmd_offset(pud, addr); if (pmd_none(*pmd)) { void *p = NULL; p = vmemmap_alloc_block_buf(PMD_SIZE, node); if (!p) return -ENOMEM; set_pmd(pmd, __pmd(__pa(p) | prot_sect_kernel)); } else vmemmap_verify((pte_t *)pmd, node, addr, next); } while (addr = next, addr != end); return 0; } #endif /* CONFIG_ARM64_64K_PAGES */ void vmemmap_free(struct page *memmap, unsigned long nr_pages) { } #endif /* CONFIG_SPARSEMEM_VMEMMAP */