#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) || \
    defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_SB1)

#define M_CONFIG1_PC	(1 << 4)

#define M_PERFCTL_EXL			(1UL      <<  0)
#define M_PERFCTL_KERNEL		(1UL      <<  1)
#define M_PERFCTL_SUPERVISOR		(1UL      <<  2)
#define M_PERFCTL_USER			(1UL      <<  3)
#define M_PERFCTL_INTERRUPT_ENABLE	(1UL      <<  4)
#define M_PERFCTL_EVENT(event)		(((event) & 0x3ff)  << 5)
#define M_PERFCTL_VPEID(vpe)		((vpe)    << 16)
#define M_PERFCTL_MT_EN(filter)		((filter) << 20)
#define    M_TC_EN_ALL			M_PERFCTL_MT_EN(0)
#define    M_TC_EN_VPE			M_PERFCTL_MT_EN(1)
#define    M_TC_EN_TC			M_PERFCTL_MT_EN(2)
#define M_PERFCTL_TCID(tcid)		((tcid)   << 22)
#define M_PERFCTL_WIDE			(1UL      << 30)
#define M_PERFCTL_MORE			(1UL      << 31)

#define M_PERFCTL_COUNT_EVENT_WHENEVER	(M_PERFCTL_EXL |		\
					M_PERFCTL_KERNEL |		\
					M_PERFCTL_USER |		\
					M_PERFCTL_SUPERVISOR |		\
					M_PERFCTL_INTERRUPT_ENABLE)

#ifdef CONFIG_MIPS_MT_SMP
#define M_PERFCTL_CONFIG_MASK		0x3fff801f
#else
#define M_PERFCTL_CONFIG_MASK		0x1f
#endif
#define M_PERFCTL_EVENT_MASK		0xfe0

#define M_COUNTER_OVERFLOW		(1UL      << 31)

#ifdef CONFIG_MIPS_MT_SMP
static int cpu_has_mipsmt_pertccounters;

/*
 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
 */
#if defined(CONFIG_HW_PERF_EVENTS)
#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
			0 : smp_processor_id())
#else
#define vpe_id()	(cpu_has_mipsmt_pertccounters ? \
			0 : cpu_data[smp_processor_id()].vpe_id)
#endif

/* Copied from op_model_mipsxx.c */
static inline unsigned int vpe_shift(void)
{
	if (num_possible_cpus() > 1)
		return 1;

	return 0;
}
#else /* !CONFIG_MIPS_MT_SMP */
#define vpe_id()	0

static inline unsigned int vpe_shift(void)
{
	return 0;
}
#endif /* CONFIG_MIPS_MT_SMP */

static inline unsigned int
counters_total_to_per_cpu(unsigned int counters)
{
	return counters >> vpe_shift();
}

static inline unsigned int
counters_per_cpu_to_total(unsigned int counters)
{
	return counters << vpe_shift();
}

#define __define_perf_accessors(r, n, np)				\
									\
static inline unsigned int r_c0_ ## r ## n(void)			\
{									\
	unsigned int cpu = vpe_id();					\
									\
	switch (cpu) {							\
	case 0:								\
		return read_c0_ ## r ## n();				\
	case 1:								\
		return read_c0_ ## r ## np();				\
	default:							\
		BUG();							\
	}								\
	return 0;							\
}									\
									\
static inline void w_c0_ ## r ## n(unsigned int value)			\
{									\
	unsigned int cpu = vpe_id();					\
									\
	switch (cpu) {							\
	case 0:								\
		write_c0_ ## r ## n(value);				\
		return;							\
	case 1:								\
		write_c0_ ## r ## np(value);				\
		return;							\
	default:							\
		BUG();							\
	}								\
	return;								\
}									\

__define_perf_accessors(perfcntr, 0, 2)
__define_perf_accessors(perfcntr, 1, 3)
__define_perf_accessors(perfcntr, 2, 0)
__define_perf_accessors(perfcntr, 3, 1)

__define_perf_accessors(perfctrl, 0, 2)
__define_perf_accessors(perfctrl, 1, 3)
__define_perf_accessors(perfctrl, 2, 0)
__define_perf_accessors(perfctrl, 3, 1)

static inline int __n_counters(void)
{
	if (!(read_c0_config1() & M_CONFIG1_PC))
		return 0;
	if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
		return 1;
	if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
		return 2;
	if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
		return 3;

	return 4;
}

static inline int n_counters(void)
{
	int counters;

	switch (current_cpu_type()) {
	case CPU_R10000:
		counters = 2;
		break;

	case CPU_R12000:
	case CPU_R14000:
		counters = 4;
		break;

	default:
		counters = __n_counters();
	}

	return counters;
}

static void reset_counters(void *arg)
{
	int counters = (int)(long)arg;
	switch (counters) {
	case 4:
		w_c0_perfctrl3(0);
		w_c0_perfcntr3(0);
	case 3:
		w_c0_perfctrl2(0);
		w_c0_perfcntr2(0);
	case 2:
		w_c0_perfctrl1(0);
		w_c0_perfcntr1(0);
	case 1:
		w_c0_perfctrl0(0);
		w_c0_perfcntr0(0);
	}
}

static inline u64
mipsxx_pmu_read_counter(unsigned int idx)
{
	switch (idx) {
	case 0:
		return r_c0_perfcntr0();
	case 1:
		return r_c0_perfcntr1();
	case 2:
		return r_c0_perfcntr2();
	case 3:
		return r_c0_perfcntr3();
	default:
		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
		return 0;
	}
}

static inline void
mipsxx_pmu_write_counter(unsigned int idx, u64 val)
{
	switch (idx) {
	case 0:
		w_c0_perfcntr0(val);
		return;
	case 1:
		w_c0_perfcntr1(val);
		return;
	case 2:
		w_c0_perfcntr2(val);
		return;
	case 3:
		w_c0_perfcntr3(val);
		return;
	}
}

static inline unsigned int
mipsxx_pmu_read_control(unsigned int idx)
{
	switch (idx) {
	case 0:
		return r_c0_perfctrl0();
	case 1:
		return r_c0_perfctrl1();
	case 2:
		return r_c0_perfctrl2();
	case 3:
		return r_c0_perfctrl3();
	default:
		WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
		return 0;
	}
}

static inline void
mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
{
	switch (idx) {
	case 0:
		w_c0_perfctrl0(val);
		return;
	case 1:
		w_c0_perfctrl1(val);
		return;
	case 2:
		w_c0_perfctrl2(val);
		return;
	case 3:
		w_c0_perfctrl3(val);
		return;
	}
}

#ifdef CONFIG_MIPS_MT_SMP
static DEFINE_RWLOCK(pmuint_rwlock);
#endif

/* 24K/34K/1004K cores can share the same event map. */
static const struct mips_perf_event mipsxxcore_event_map
				[PERF_COUNT_HW_MAX] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
};

/* 74K core has different branch event code. */
static const struct mips_perf_event mipsxx74Kcore_event_map
				[PERF_COUNT_HW_MAX] = {
	[PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
	[PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
	[PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
	[PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
	[PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
	[PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
};

/* 24K/34K/1004K cores can share the same cache event map. */
static const struct mips_perf_event mipsxxcore_cache_map
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	/*
	 * Like some other architectures (e.g. ARM), the performance
	 * counters don't differentiate between read and write
	 * accesses/misses, so this isn't strictly correct, but it's the
	 * best we can do. Writes and reads get combined.
	 */
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x0a, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x0b, CNTR_EVEN | CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x09, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x09, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { 0x14, CNTR_EVEN, T },
		/*
		 * Note that MIPS has only "hit" events countable for
		 * the prefetch operation.
		 */
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x15, CNTR_ODD, P },
		[C(RESULT_MISS)]	= { 0x16, CNTR_EVEN, P },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x05, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x05, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(BPU)] = {
	/* Using the same code for *HW_BRANCH* */
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x02, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x02, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
};

/* 74K core has completely different cache event map. */
static const struct mips_perf_event mipsxx74Kcore_cache_map
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	/*
	 * Like some other architectures (e.g. ARM), the performance
	 * counters don't differentiate between read and write
	 * accesses/misses, so this isn't strictly correct, but it's the
	 * best we can do. Writes and reads get combined.
	 */
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x17, CNTR_ODD, T },
		[C(RESULT_MISS)]	= { 0x18, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x06, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x06, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { 0x34, CNTR_EVEN, T },
		/*
		 * Note that MIPS has only "hit" events countable for
		 * the prefetch operation.
		 */
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x1c, CNTR_ODD, P },
		[C(RESULT_MISS)]	= { 0x1d, CNTR_EVEN | CNTR_ODD, P },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(DTLB)] = {
	/* 74K core does not have specific DTLB events. */
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x04, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x04, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
[C(BPU)] = {
	/* Using the same code for *HW_BRANCH* */
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)]	= { 0x27, CNTR_EVEN, T },
		[C(RESULT_MISS)]	= { 0x27, CNTR_ODD, T },
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)]	= { UNSUPPORTED_PERF_EVENT_ID },
		[C(RESULT_MISS)]	= { UNSUPPORTED_PERF_EVENT_ID },
	},
},
};

#ifdef CONFIG_MIPS_MT_SMP
static void
check_and_calc_range(struct perf_event *event,
			const struct mips_perf_event *pev)
{
	struct hw_perf_event *hwc = &event->hw;

	if (event->cpu >= 0) {
		if (pev->range > V) {
			/*
			 * The user selected an event that is processor
			 * wide, while expecting it to be VPE wide.
			 */
			hwc->config_base |= M_TC_EN_ALL;
		} else {
			/*
			 * FIXME: cpu_data[event->cpu].vpe_id reports 0
			 * for both CPUs.
			 */
			hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
			hwc->config_base |= M_TC_EN_VPE;
		}
	} else
		hwc->config_base |= M_TC_EN_ALL;
}
#else
static void
check_and_calc_range(struct perf_event *event,
			const struct mips_perf_event *pev)
{
}
#endif

static int __hw_perf_event_init(struct perf_event *event)
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
	const struct mips_perf_event *pev;
	int err;

	/* Returning MIPS event descriptor for generic perf event. */
	if (PERF_TYPE_HARDWARE == event->attr.type) {
		if (event->attr.config >= PERF_COUNT_HW_MAX)
			return -EINVAL;
		pev = mipspmu_map_general_event(event->attr.config);
	} else if (PERF_TYPE_HW_CACHE == event->attr.type) {
		pev = mipspmu_map_cache_event(event->attr.config);
	} else if (PERF_TYPE_RAW == event->attr.type) {
		/* We are working on the global raw event. */
		mutex_lock(&raw_event_mutex);
		pev = mipspmu->map_raw_event(event->attr.config);
	} else {
		/* The event type is not (yet) supported. */
		return -EOPNOTSUPP;
	}

	if (IS_ERR(pev)) {
		if (PERF_TYPE_RAW == event->attr.type)
			mutex_unlock(&raw_event_mutex);
		return PTR_ERR(pev);
	}

	/*
	 * We allow max flexibility on how each individual counter shared
	 * by the single CPU operates (the mode exclusion and the range).
	 */
	hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;

	/* Calculate range bits and validate it. */
	if (num_possible_cpus() > 1)
		check_and_calc_range(event, pev);

	hwc->event_base = mipspmu_perf_event_encode(pev);
	if (PERF_TYPE_RAW == event->attr.type)
		mutex_unlock(&raw_event_mutex);

	if (!attr->exclude_user)
		hwc->config_base |= M_PERFCTL_USER;
	if (!attr->exclude_kernel) {
		hwc->config_base |= M_PERFCTL_KERNEL;
		/* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
		hwc->config_base |= M_PERFCTL_EXL;
	}
	if (!attr->exclude_hv)
		hwc->config_base |= M_PERFCTL_SUPERVISOR;

	hwc->config_base &= M_PERFCTL_CONFIG_MASK;
	/*
	 * The event can belong to another cpu. We do not assign a local
	 * counter for it for now.
	 */
	hwc->idx = -1;
	hwc->config = 0;

	if (!hwc->sample_period) {
		hwc->sample_period  = MAX_PERIOD;
		hwc->last_period    = hwc->sample_period;
		local64_set(&hwc->period_left, hwc->sample_period);
	}

	err = 0;
	if (event->group_leader != event) {
		err = validate_group(event);
		if (err)
			return -EINVAL;
	}

	event->destroy = hw_perf_event_destroy;

	return err;
}

static void pause_local_counters(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int counters = mipspmu->num_counters;
	unsigned long flags;

	local_irq_save(flags);
	switch (counters) {
	case 4:
		cpuc->saved_ctrl[3] = r_c0_perfctrl3();
		w_c0_perfctrl3(cpuc->saved_ctrl[3] &
			~M_PERFCTL_COUNT_EVENT_WHENEVER);
	case 3:
		cpuc->saved_ctrl[2] = r_c0_perfctrl2();
		w_c0_perfctrl2(cpuc->saved_ctrl[2] &
			~M_PERFCTL_COUNT_EVENT_WHENEVER);
	case 2:
		cpuc->saved_ctrl[1] = r_c0_perfctrl1();
		w_c0_perfctrl1(cpuc->saved_ctrl[1] &
			~M_PERFCTL_COUNT_EVENT_WHENEVER);
	case 1:
		cpuc->saved_ctrl[0] = r_c0_perfctrl0();
		w_c0_perfctrl0(cpuc->saved_ctrl[0] &
			~M_PERFCTL_COUNT_EVENT_WHENEVER);
	}
	local_irq_restore(flags);
}

static void resume_local_counters(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int counters = mipspmu->num_counters;
	unsigned long flags;

	local_irq_save(flags);
	switch (counters) {
	case 4:
		w_c0_perfctrl3(cpuc->saved_ctrl[3]);
	case 3:
		w_c0_perfctrl2(cpuc->saved_ctrl[2]);
	case 2:
		w_c0_perfctrl1(cpuc->saved_ctrl[1]);
	case 1:
		w_c0_perfctrl0(cpuc->saved_ctrl[0]);
	}
	local_irq_restore(flags);
}

static int mipsxx_pmu_handle_shared_irq(void)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_sample_data data;
	unsigned int counters = mipspmu->num_counters;
	unsigned int counter;
	int handled = IRQ_NONE;
	struct pt_regs *regs;

	if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
		return handled;

	/*
	 * First we pause the local counters, so that when we are locked
	 * here, the counters are all paused. When it gets locked due to
	 * perf_disable(), the timer interrupt handler will be delayed.
	 *
	 * See also mipsxx_pmu_start().
	 */
	pause_local_counters();
#ifdef CONFIG_MIPS_MT_SMP
	read_lock(&pmuint_rwlock);
#endif

	regs = get_irq_regs();

	perf_sample_data_init(&data, 0);

	switch (counters) {
#define HANDLE_COUNTER(n)						\
	case n + 1:							\
		if (test_bit(n, cpuc->used_mask)) {			\
			counter = r_c0_perfcntr ## n();			\
			if (counter & M_COUNTER_OVERFLOW) {		\
				w_c0_perfcntr ## n(counter &		\
						VALID_COUNT);		\
				if (test_and_change_bit(n, cpuc->msbs))	\
					handle_associated_event(cpuc,	\
						n, &data, regs);	\
				handled = IRQ_HANDLED;			\
			}						\
		}
	HANDLE_COUNTER(3)
	HANDLE_COUNTER(2)
	HANDLE_COUNTER(1)
	HANDLE_COUNTER(0)
	}

	/*
	 * Do all the work for the pending perf events. We can do this
	 * in here because the performance counter interrupt is a regular
	 * interrupt, not NMI.
	 */
	if (handled == IRQ_HANDLED)
		perf_event_do_pending();

#ifdef CONFIG_MIPS_MT_SMP
	read_unlock(&pmuint_rwlock);
#endif
	resume_local_counters();
	return handled;
}

static irqreturn_t
mipsxx_pmu_handle_irq(int irq, void *dev)
{
	return mipsxx_pmu_handle_shared_irq();
}

static void mipsxx_pmu_start(void)
{
#ifdef CONFIG_MIPS_MT_SMP
	write_unlock(&pmuint_rwlock);
#endif
	resume_local_counters();
}

/*
 * MIPS performance counters can be per-TC. The control registers can
 * not be directly accessed accross CPUs. Hence if we want to do global
 * control, we need cross CPU calls. on_each_cpu() can help us, but we
 * can not make sure this function is called with interrupts enabled. So
 * here we pause local counters and then grab a rwlock and leave the
 * counters on other CPUs alone. If any counter interrupt raises while
 * we own the write lock, simply pause local counters on that CPU and
 * spin in the handler. Also we know we won't be switched to another
 * CPU after pausing local counters and before grabbing the lock.
 */
static void mipsxx_pmu_stop(void)
{
	pause_local_counters();
#ifdef CONFIG_MIPS_MT_SMP
	write_lock(&pmuint_rwlock);
#endif
}

static int
mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
			struct hw_perf_event *hwc)
{
	int i;

	/*
	 * We only need to care the counter mask. The range has been
	 * checked definitely.
	 */
	unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;

	for (i = mipspmu->num_counters - 1; i >= 0; i--) {
		/*
		 * Note that some MIPS perf events can be counted by both
		 * even and odd counters, wheresas many other are only by
		 * even _or_ odd counters. This introduces an issue that
		 * when the former kind of event takes the counter the
		 * latter kind of event wants to use, then the "counter
		 * allocation" for the latter event will fail. In fact if
		 * they can be dynamically swapped, they both feel happy.
		 * But here we leave this issue alone for now.
		 */
		if (test_bit(i, &cntr_mask) &&
			!test_and_set_bit(i, cpuc->used_mask))
			return i;
	}

	return -EAGAIN;
}

static void
mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	unsigned long flags;

	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);

	local_irq_save(flags);
	cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
		(evt->config_base & M_PERFCTL_CONFIG_MASK) |
		/* Make sure interrupt enabled. */
		M_PERFCTL_INTERRUPT_ENABLE;
	/*
	 * We do not actually let the counter run. Leave it until start().
	 */
	local_irq_restore(flags);
}

static void
mipsxx_pmu_disable_event(int idx)
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	unsigned long flags;

	WARN_ON(idx < 0 || idx >= mipspmu->num_counters);

	local_irq_save(flags);
	cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
		~M_PERFCTL_COUNT_EVENT_WHENEVER;
	mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
	local_irq_restore(flags);
}

/* 24K */
#define IS_UNSUPPORTED_24K_EVENT(r, b)					\
	((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 ||		\
	 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 ||		\
	 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 ||		\
	 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) ||		\
	 ((b) >= 68 && (b) <= 127))
#define IS_BOTH_COUNTERS_24K_EVENT(b)					\
	((b) == 0 || (b) == 1 || (b) == 11)

/* 34K */
#define IS_UNSUPPORTED_34K_EVENT(r, b)					\
	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 ||		\
	 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) ||		\
	 ((b) >= 68 && (b) <= 127))
#define IS_BOTH_COUNTERS_34K_EVENT(b)					\
	((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_34K_EVENT(r, b)					\
	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
	 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||		\
	 (r) == 176 || ((b) >= 50 && (b) <= 55) ||			\
	 ((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_34K_EVENT(r)	((r) == 47)
#endif

/* 74K */
#define IS_UNSUPPORTED_74K_EVENT(r, b)					\
	((r) == 5 || ((r) >= 135 && (r) <= 137) ||			\
	 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 ||		\
	 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) ||		\
	 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 ||		\
	 (b) == 61 || (r) == 62 || (r) == 191 ||			\
	 ((b) >= 64 && (b) <= 127))
#define IS_BOTH_COUNTERS_74K_EVENT(b)					\
	((b) == 0 || (b) == 1)

/* 1004K */
#define IS_UNSUPPORTED_1004K_EVENT(r, b)				\
	((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 ||		\
	 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
#define IS_BOTH_COUNTERS_1004K_EVENT(b)					\
	((b) == 0 || (b) == 1 || (b) == 11)
#ifdef CONFIG_MIPS_MT_SMP
#define IS_RANGE_P_1004K_EVENT(r, b)					\
	((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||		\
	 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||		\
	 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||	\
	 (r) == 188 || (b) == 61 || (b) == 62 ||			\
	 ((b) >= 64 && (b) <= 67))
#define IS_RANGE_V_1004K_EVENT(r)	((r) == 47)
#endif

/*
 * User can use 0-255 raw events, where 0-127 for the events of even
 * counters, and 128-255 for odd counters. Note that bit 7 is used to
 * indicate the parity. So, for example, when user wants to take the
 * Event Num of 15 for odd counters (by referring to the user manual),
 * then 128 needs to be added to 15 as the input for the event config,
 * i.e., 143 (0x8F) to be used.
 */
static const struct mips_perf_event *
mipsxx_pmu_map_raw_event(u64 config)
{
	unsigned int raw_id = config & 0xff;
	unsigned int base_id = raw_id & 0x7f;

	switch (current_cpu_type()) {
	case CPU_24K:
		if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
			return ERR_PTR(-EOPNOTSUPP);
		raw_event.event_id = base_id;
		if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
		else
			raw_event.cntr_mask =
				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
		/*
		 * This is actually doing nothing. Non-multithreading
		 * CPUs will not check and calculate the range.
		 */
		raw_event.range = P;
#endif
		break;
	case CPU_34K:
		if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
			return ERR_PTR(-EOPNOTSUPP);
		raw_event.event_id = base_id;
		if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
		else
			raw_event.cntr_mask =
				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
		if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
			raw_event.range = P;
		else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
			raw_event.range = V;
		else
			raw_event.range = T;
#endif
		break;
	case CPU_74K:
		if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
			return ERR_PTR(-EOPNOTSUPP);
		raw_event.event_id = base_id;
		if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
		else
			raw_event.cntr_mask =
				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
		raw_event.range = P;
#endif
		break;
	case CPU_1004K:
		if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
			return ERR_PTR(-EOPNOTSUPP);
		raw_event.event_id = base_id;
		if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
			raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
		else
			raw_event.cntr_mask =
				raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
#ifdef CONFIG_MIPS_MT_SMP
		if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
			raw_event.range = P;
		else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
			raw_event.range = V;
		else
			raw_event.range = T;
#endif
		break;
	}

	return &raw_event;
}

static struct mips_pmu mipsxxcore_pmu = {
	.handle_irq = mipsxx_pmu_handle_irq,
	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
	.start = mipsxx_pmu_start,
	.stop = mipsxx_pmu_stop,
	.alloc_counter = mipsxx_pmu_alloc_counter,
	.read_counter = mipsxx_pmu_read_counter,
	.write_counter = mipsxx_pmu_write_counter,
	.enable_event = mipsxx_pmu_enable_event,
	.disable_event = mipsxx_pmu_disable_event,
	.map_raw_event = mipsxx_pmu_map_raw_event,
	.general_event_map = &mipsxxcore_event_map,
	.cache_event_map = &mipsxxcore_cache_map,
};

static struct mips_pmu mipsxx74Kcore_pmu = {
	.handle_irq = mipsxx_pmu_handle_irq,
	.handle_shared_irq = mipsxx_pmu_handle_shared_irq,
	.start = mipsxx_pmu_start,
	.stop = mipsxx_pmu_stop,
	.alloc_counter = mipsxx_pmu_alloc_counter,
	.read_counter = mipsxx_pmu_read_counter,
	.write_counter = mipsxx_pmu_write_counter,
	.enable_event = mipsxx_pmu_enable_event,
	.disable_event = mipsxx_pmu_disable_event,
	.map_raw_event = mipsxx_pmu_map_raw_event,
	.general_event_map = &mipsxx74Kcore_event_map,
	.cache_event_map = &mipsxx74Kcore_cache_map,
};

static int __init
init_hw_perf_events(void)
{
	int counters, irq;

	pr_info("Performance counters: ");

	counters = n_counters();
	if (counters == 0) {
		pr_cont("No available PMU.\n");
		return -ENODEV;
	}

#ifdef CONFIG_MIPS_MT_SMP
	cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
	if (!cpu_has_mipsmt_pertccounters)
		counters = counters_total_to_per_cpu(counters);
#endif

#ifdef MSC01E_INT_BASE
	if (cpu_has_veic) {
		/*
		 * Using platform specific interrupt controller defines.
		 */
		irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
	} else {
#endif
		if (cp0_perfcount_irq >= 0)
			irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
		else
			irq = -1;
#ifdef MSC01E_INT_BASE
	}
#endif

	on_each_cpu(reset_counters, (void *)(long)counters, 1);

	switch (current_cpu_type()) {
	case CPU_24K:
		mipsxxcore_pmu.name = "mips/24K";
		mipsxxcore_pmu.num_counters = counters;
		mipsxxcore_pmu.irq = irq;
		mipspmu = &mipsxxcore_pmu;
		break;
	case CPU_34K:
		mipsxxcore_pmu.name = "mips/34K";
		mipsxxcore_pmu.num_counters = counters;
		mipsxxcore_pmu.irq = irq;
		mipspmu = &mipsxxcore_pmu;
		break;
	case CPU_74K:
		mipsxx74Kcore_pmu.name = "mips/74K";
		mipsxx74Kcore_pmu.num_counters = counters;
		mipsxx74Kcore_pmu.irq = irq;
		mipspmu = &mipsxx74Kcore_pmu;
		break;
	case CPU_1004K:
		mipsxxcore_pmu.name = "mips/1004K";
		mipsxxcore_pmu.num_counters = counters;
		mipsxxcore_pmu.irq = irq;
		mipspmu = &mipsxxcore_pmu;
		break;
	default:
		pr_cont("Either hardware does not support performance "
			"counters, or not yet implemented.\n");
		return -ENODEV;
	}

	if (mipspmu)
		pr_cont("%s PMU enabled, %d counters available to each "
			"CPU, irq %d%s\n", mipspmu->name, counters, irq,
			irq < 0 ? " (share with timer interrupt)" : "");

	return 0;
}
early_initcall(init_hw_perf_events);

#endif /* defined(CONFIG_CPU_MIPS32)... */