/* * lm90.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003-2010 Jean Delvare <khali@linux-fr.org> * * Based on the lm83 driver. The LM90 is a sensor chip made by National * Semiconductor. It reports up to two temperatures (its own plus up to * one external one) with a 0.125 deg resolution (1 deg for local * temperature) and a 3-4 deg accuracy. * * This driver also supports the LM89 and LM99, two other sensor chips * made by National Semiconductor. Both have an increased remote * temperature measurement accuracy (1 degree), and the LM99 * additionally shifts remote temperatures (measured and limits) by 16 * degrees, which allows for higher temperatures measurement. * Note that there is no way to differentiate between both chips. * When device is auto-detected, the driver will assume an LM99. * * This driver also supports the LM86, another sensor chip made by * National Semiconductor. It is exactly similar to the LM90 except it * has a higher accuracy. * * This driver also supports the ADM1032, a sensor chip made by Analog * Devices. That chip is similar to the LM90, with a few differences * that are not handled by this driver. Among others, it has a higher * accuracy than the LM90, much like the LM86 does. * * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor * chips made by Maxim. These chips are similar to the LM86. * Note that there is no easy way to differentiate between the three * variants. We use the device address to detect MAX6659, which will result * in a detection as max6657 if it is on address 0x4c. The extra address * and features of the MAX6659 are only supported if the chip is configured * explicitly as max6659, or if its address is not 0x4c. * These chips lack the remote temperature offset feature. * * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and * MAX6692 chips made by Maxim. These are again similar to the LM86, * but they use unsigned temperature values and can report temperatures * from 0 to 145 degrees. * * This driver also supports the MAX6680 and MAX6681, two other sensor * chips made by Maxim. These are quite similar to the other Maxim * chips. The MAX6680 and MAX6681 only differ in the pinout so they can * be treated identically. * * This driver also supports the MAX6695 and MAX6696, two other sensor * chips made by Maxim. These are also quite similar to other Maxim * chips, but support three temperature sensors instead of two. MAX6695 * and MAX6696 only differ in the pinout so they can be treated identically. * * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as * NCT1008 from ON Semiconductor. The chips are supported in both compatibility * and extended mode. They are mostly compatible with LM90 except for a data * format difference for the temperature value registers. * * This driver also supports the SA56004 from Philips. This device is * pin-compatible with the LM86, the ED/EDP parts are also address-compatible. * * This driver also supports the G781 from GMT. This device is compatible * with the ADM1032. * * Since the LM90 was the first chipset supported by this driver, most * comments will refer to this chipset, but are actually general and * concern all supported chipsets, unless mentioned otherwise. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/sysfs.h> /* * Addresses to scan * Address is fully defined internally and cannot be changed except for * MAX6659, MAX6680 and MAX6681. * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649, * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c. * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D * have address 0x4d. * MAX6647 has address 0x4e. * MAX6659 can have address 0x4c, 0x4d or 0x4e. * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, * 0x4c, 0x4d or 0x4e. * SA56004 can have address 0x48 through 0x4F. */ static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, I2C_CLIENT_END }; enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680, max6646, w83l771, max6696, sa56004, g781 }; /* * The LM90 registers */ #define LM90_REG_R_MAN_ID 0xFE #define LM90_REG_R_CHIP_ID 0xFF #define LM90_REG_R_CONFIG1 0x03 #define LM90_REG_W_CONFIG1 0x09 #define LM90_REG_R_CONFIG2 0xBF #define LM90_REG_W_CONFIG2 0xBF #define LM90_REG_R_CONVRATE 0x04 #define LM90_REG_W_CONVRATE 0x0A #define LM90_REG_R_STATUS 0x02 #define LM90_REG_R_LOCAL_TEMP 0x00 #define LM90_REG_R_LOCAL_HIGH 0x05 #define LM90_REG_W_LOCAL_HIGH 0x0B #define LM90_REG_R_LOCAL_LOW 0x06 #define LM90_REG_W_LOCAL_LOW 0x0C #define LM90_REG_R_LOCAL_CRIT 0x20 #define LM90_REG_W_LOCAL_CRIT 0x20 #define LM90_REG_R_REMOTE_TEMPH 0x01 #define LM90_REG_R_REMOTE_TEMPL 0x10 #define LM90_REG_R_REMOTE_OFFSH 0x11 #define LM90_REG_W_REMOTE_OFFSH 0x11 #define LM90_REG_R_REMOTE_OFFSL 0x12 #define LM90_REG_W_REMOTE_OFFSL 0x12 #define LM90_REG_R_REMOTE_HIGHH 0x07 #define LM90_REG_W_REMOTE_HIGHH 0x0D #define LM90_REG_R_REMOTE_HIGHL 0x13 #define LM90_REG_W_REMOTE_HIGHL 0x13 #define LM90_REG_R_REMOTE_LOWH 0x08 #define LM90_REG_W_REMOTE_LOWH 0x0E #define LM90_REG_R_REMOTE_LOWL 0x14 #define LM90_REG_W_REMOTE_LOWL 0x14 #define LM90_REG_R_REMOTE_CRIT 0x19 #define LM90_REG_W_REMOTE_CRIT 0x19 #define LM90_REG_R_TCRIT_HYST 0x21 #define LM90_REG_W_TCRIT_HYST 0x21 /* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */ #define MAX6657_REG_R_LOCAL_TEMPL 0x11 #define MAX6696_REG_R_STATUS2 0x12 #define MAX6659_REG_R_REMOTE_EMERG 0x16 #define MAX6659_REG_W_REMOTE_EMERG 0x16 #define MAX6659_REG_R_LOCAL_EMERG 0x17 #define MAX6659_REG_W_LOCAL_EMERG 0x17 /* SA56004 registers */ #define SA56004_REG_R_LOCAL_TEMPL 0x22 #define LM90_DEF_CONVRATE_RVAL 6 /* Def conversion rate register value */ #define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */ /* * Device flags */ #define LM90_FLAG_ADT7461_EXT (1 << 0) /* ADT7461 extended mode */ /* Device features */ #define LM90_HAVE_OFFSET (1 << 1) /* temperature offset register */ #define LM90_HAVE_REM_LIMIT_EXT (1 << 3) /* extended remote limit */ #define LM90_HAVE_EMERGENCY (1 << 4) /* 3rd upper (emergency) limit */ #define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm */ #define LM90_HAVE_TEMP3 (1 << 6) /* 3rd temperature sensor */ #define LM90_HAVE_BROKEN_ALERT (1 << 7) /* Broken alert */ /* * Driver data (common to all clients) */ static const struct i2c_device_id lm90_id[] = { { "adm1032", adm1032 }, { "adt7461", adt7461 }, { "adt7461a", adt7461 }, { "g781", g781 }, { "lm90", lm90 }, { "lm86", lm86 }, { "lm89", lm86 }, { "lm99", lm99 }, { "max6646", max6646 }, { "max6647", max6646 }, { "max6649", max6646 }, { "max6657", max6657 }, { "max6658", max6657 }, { "max6659", max6659 }, { "max6680", max6680 }, { "max6681", max6680 }, { "max6695", max6696 }, { "max6696", max6696 }, { "nct1008", adt7461 }, { "w83l771", w83l771 }, { "sa56004", sa56004 }, { } }; MODULE_DEVICE_TABLE(i2c, lm90_id); /* * chip type specific parameters */ struct lm90_params { u32 flags; /* Capabilities */ u16 alert_alarms; /* Which alarm bits trigger ALERT# */ /* Upper 8 bits for max6695/96 */ u8 max_convrate; /* Maximum conversion rate register value */ u8 reg_local_ext; /* Extended local temp register (optional) */ }; static const struct lm90_params lm90_params[] = { [adm1032] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 10, }, [adt7461] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 10, }, [g781] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_BROKEN_ALERT, .alert_alarms = 0x7c, .max_convrate = 8, }, [lm86] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, }, [lm90] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, }, [lm99] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, }, [max6646] = { .alert_alarms = 0x7c, .max_convrate = 6, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6657] = { .alert_alarms = 0x7c, .max_convrate = 8, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6659] = { .flags = LM90_HAVE_EMERGENCY, .alert_alarms = 0x7c, .max_convrate = 8, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [max6680] = { .flags = LM90_HAVE_OFFSET, .alert_alarms = 0x7c, .max_convrate = 7, }, [max6696] = { .flags = LM90_HAVE_EMERGENCY | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3, .alert_alarms = 0x187c, .max_convrate = 6, .reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL, }, [w83l771] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7c, .max_convrate = 8, }, [sa56004] = { .flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT, .alert_alarms = 0x7b, .max_convrate = 9, .reg_local_ext = SA56004_REG_R_LOCAL_TEMPL, }, }; /* * Client data (each client gets its own) */ struct lm90_data { struct device *hwmon_dev; struct mutex update_lock; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ int kind; u32 flags; int update_interval; /* in milliseconds */ u8 config_orig; /* Original configuration register value */ u8 convrate_orig; /* Original conversion rate register value */ u16 alert_alarms; /* Which alarm bits trigger ALERT# */ /* Upper 8 bits for max6695/96 */ u8 max_convrate; /* Maximum conversion rate */ u8 reg_local_ext; /* local extension register offset */ /* registers values */ s8 temp8[8]; /* 0: local low limit * 1: local high limit * 2: local critical limit * 3: remote critical limit * 4: local emergency limit (max6659 and max6695/96) * 5: remote emergency limit (max6659 and max6695/96) * 6: remote 2 critical limit (max6695/96 only) * 7: remote 2 emergency limit (max6695/96 only) */ s16 temp11[8]; /* 0: remote input * 1: remote low limit * 2: remote high limit * 3: remote offset (except max6646, max6657/58/59, * and max6695/96) * 4: local input * 5: remote 2 input (max6695/96 only) * 6: remote 2 low limit (max6695/96 only) * 7: remote 2 high limit (max6695/96 only) */ u8 temp_hyst; u16 alarms; /* bitvector (upper 8 bits for max6695/96) */ }; /* * Support functions */ /* * The ADM1032 supports PEC but not on write byte transactions, so we need * to explicitly ask for a transaction without PEC. */ static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value) { return i2c_smbus_xfer(client->adapter, client->addr, client->flags & ~I2C_CLIENT_PEC, I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL); } /* * It is assumed that client->update_lock is held (unless we are in * detection or initialization steps). This matters when PEC is enabled, * because we don't want the address pointer to change between the write * byte and the read byte transactions. */ static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value) { int err; if (client->flags & I2C_CLIENT_PEC) { err = adm1032_write_byte(client, reg); if (err >= 0) err = i2c_smbus_read_byte(client); } else err = i2c_smbus_read_byte_data(client, reg); if (err < 0) { dev_warn(&client->dev, "Register %#02x read failed (%d)\n", reg, err); return err; } *value = err; return 0; } static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value) { int err; u8 oldh, newh, l; /* * There is a trick here. We have to read two registers to have the * sensor temperature, but we have to beware a conversion could occur * between the readings. The datasheet says we should either use * the one-shot conversion register, which we don't want to do * (disables hardware monitoring) or monitor the busy bit, which is * impossible (we can't read the values and monitor that bit at the * exact same time). So the solution used here is to read the high * byte once, then the low byte, then the high byte again. If the new * high byte matches the old one, then we have a valid reading. Else * we have to read the low byte again, and now we believe we have a * correct reading. */ if ((err = lm90_read_reg(client, regh, &oldh)) || (err = lm90_read_reg(client, regl, &l)) || (err = lm90_read_reg(client, regh, &newh))) return err; if (oldh != newh) { err = lm90_read_reg(client, regl, &l); if (err) return err; } *value = (newh << 8) | l; return 0; } /* * client->update_lock must be held when calling this function (unless we are * in detection or initialization steps), and while a remote channel other * than channel 0 is selected. Also, calling code must make sure to re-select * external channel 0 before releasing the lock. This is necessary because * various registers have different meanings as a result of selecting a * non-default remote channel. */ static inline void lm90_select_remote_channel(struct i2c_client *client, struct lm90_data *data, int channel) { u8 config; if (data->kind == max6696) { lm90_read_reg(client, LM90_REG_R_CONFIG1, &config); config &= ~0x08; if (channel) config |= 0x08; i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config); } } /* * Set conversion rate. * client->update_lock must be held when calling this function (unless we are * in detection or initialization steps). */ static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data, unsigned int interval) { int i; unsigned int update_interval; /* Shift calculations to avoid rounding errors */ interval <<= 6; /* find the nearest update rate */ for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6; i < data->max_convrate; i++, update_interval >>= 1) if (interval >= update_interval * 3 / 4) break; i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i); data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64); } static struct lm90_data *lm90_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); unsigned long next_update; mutex_lock(&data->update_lock); next_update = data->last_updated + msecs_to_jiffies(data->update_interval) + 1; if (time_after(jiffies, next_update) || !data->valid) { u8 h, l; u8 alarms; dev_dbg(&client->dev, "Updating lm90 data.\n"); lm90_read_reg(client, LM90_REG_R_LOCAL_LOW, &data->temp8[0]); lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH, &data->temp8[1]); lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT, &data->temp8[2]); lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[3]); lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst); if (data->reg_local_ext) { lm90_read16(client, LM90_REG_R_LOCAL_TEMP, data->reg_local_ext, &data->temp11[4]); } else { if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP, &h) == 0) data->temp11[4] = h << 8; } lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, LM90_REG_R_REMOTE_TEMPL, &data->temp11[0]); if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) { data->temp11[1] = h << 8; if ((data->flags & LM90_HAVE_REM_LIMIT_EXT) && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL, &l) == 0) data->temp11[1] |= l; } if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) { data->temp11[2] = h << 8; if ((data->flags & LM90_HAVE_REM_LIMIT_EXT) && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL, &l) == 0) data->temp11[2] |= l; } if (data->flags & LM90_HAVE_OFFSET) { if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH, &h) == 0 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL, &l) == 0) data->temp11[3] = (h << 8) | l; } if (data->flags & LM90_HAVE_EMERGENCY) { lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG, &data->temp8[4]); lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG, &data->temp8[5]); } lm90_read_reg(client, LM90_REG_R_STATUS, &alarms); data->alarms = alarms; /* save as 16 bit value */ if (data->kind == max6696) { lm90_select_remote_channel(client, data, 1); lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT, &data->temp8[6]); lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG, &data->temp8[7]); lm90_read16(client, LM90_REG_R_REMOTE_TEMPH, LM90_REG_R_REMOTE_TEMPL, &data->temp11[5]); if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h)) data->temp11[6] = h << 8; if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h)) data->temp11[7] = h << 8; lm90_select_remote_channel(client, data, 0); if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms)) data->alarms |= alarms << 8; } /* * Re-enable ALERT# output if it was originally enabled and * relevant alarms are all clear */ if ((data->config_orig & 0x80) == 0 && (data->alarms & data->alert_alarms) == 0) { u8 config; lm90_read_reg(client, LM90_REG_R_CONFIG1, &config); if (config & 0x80) { dev_dbg(&client->dev, "Re-enabling ALERT#\n"); i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config & ~0x80); } } data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } /* * Conversions * For local temperatures and limits, critical limits and the hysteresis * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius. * For remote temperatures and limits, it uses signed 11-bit values with * LSB = 0.125 degree Celsius, left-justified in 16-bit registers. Some * Maxim chips use unsigned values. */ static inline int temp_from_s8(s8 val) { return val * 1000; } static inline int temp_from_u8(u8 val) { return val * 1000; } static inline int temp_from_s16(s16 val) { return val / 32 * 125; } static inline int temp_from_u16(u16 val) { return val / 32 * 125; } static s8 temp_to_s8(long val) { if (val <= -128000) return -128; if (val >= 127000) return 127; if (val < 0) return (val - 500) / 1000; return (val + 500) / 1000; } static u8 temp_to_u8(long val) { if (val <= 0) return 0; if (val >= 255000) return 255; return (val + 500) / 1000; } static s16 temp_to_s16(long val) { if (val <= -128000) return 0x8000; if (val >= 127875) return 0x7FE0; if (val < 0) return (val - 62) / 125 * 32; return (val + 62) / 125 * 32; } static u8 hyst_to_reg(long val) { if (val <= 0) return 0; if (val >= 30500) return 31; return (val + 500) / 1000; } /* * ADT7461 in compatibility mode is almost identical to LM90 except that * attempts to write values that are outside the range 0 < temp < 127 are * treated as the boundary value. * * ADT7461 in "extended mode" operation uses unsigned integers offset by * 64 (e.g., 0 -> -64 degC). The range is restricted to -64..191 degC. */ static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val) { if (data->flags & LM90_FLAG_ADT7461_EXT) return (val - 64) * 1000; else return temp_from_s8(val); } static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val) { if (data->flags & LM90_FLAG_ADT7461_EXT) return (val - 0x4000) / 64 * 250; else return temp_from_s16(val); } static u8 temp_to_u8_adt7461(struct lm90_data *data, long val) { if (data->flags & LM90_FLAG_ADT7461_EXT) { if (val <= -64000) return 0; if (val >= 191000) return 0xFF; return (val + 500 + 64000) / 1000; } else { if (val <= 0) return 0; if (val >= 127000) return 127; return (val + 500) / 1000; } } static u16 temp_to_u16_adt7461(struct lm90_data *data, long val) { if (data->flags & LM90_FLAG_ADT7461_EXT) { if (val <= -64000) return 0; if (val >= 191750) return 0xFFC0; return (val + 64000 + 125) / 250 * 64; } else { if (val <= 0) return 0; if (val >= 127750) return 0x7FC0; return (val + 125) / 250 * 64; } } /* * Sysfs stuff */ static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm90_data *data = lm90_update_device(dev); int temp; if (data->kind == adt7461) temp = temp_from_u8_adt7461(data, data->temp8[attr->index]); else if (data->kind == max6646) temp = temp_from_u8(data->temp8[attr->index]); else temp = temp_from_s8(data->temp8[attr->index]); /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && attr->index == 3) temp += 16000; return sprintf(buf, "%d\n", temp); } static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { static const u8 reg[8] = { LM90_REG_W_LOCAL_LOW, LM90_REG_W_LOCAL_HIGH, LM90_REG_W_LOCAL_CRIT, LM90_REG_W_REMOTE_CRIT, MAX6659_REG_W_LOCAL_EMERG, MAX6659_REG_W_REMOTE_EMERG, LM90_REG_W_REMOTE_CRIT, MAX6659_REG_W_REMOTE_EMERG, }; struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); int nr = attr->index; long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && attr->index == 3) val -= 16000; mutex_lock(&data->update_lock); if (data->kind == adt7461) data->temp8[nr] = temp_to_u8_adt7461(data, val); else if (data->kind == max6646) data->temp8[nr] = temp_to_u8(val); else data->temp8[nr] = temp_to_s8(val); lm90_select_remote_channel(client, data, nr >= 6); i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]); lm90_select_remote_channel(client, data, 0); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct lm90_data *data = lm90_update_device(dev); int temp; if (data->kind == adt7461) temp = temp_from_u16_adt7461(data, data->temp11[attr->index]); else if (data->kind == max6646) temp = temp_from_u16(data->temp11[attr->index]); else temp = temp_from_s16(data->temp11[attr->index]); /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && attr->index <= 2) temp += 16000; return sprintf(buf, "%d\n", temp); } static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct { u8 high; u8 low; int channel; } reg[5] = { { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 }, { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 }, { LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 }, { LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 }, { LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 } }; struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr); struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); int nr = attr->nr; int index = attr->index; long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && index <= 2) val -= 16000; mutex_lock(&data->update_lock); if (data->kind == adt7461) data->temp11[index] = temp_to_u16_adt7461(data, val); else if (data->kind == max6646) data->temp11[index] = temp_to_u8(val) << 8; else if (data->flags & LM90_HAVE_REM_LIMIT_EXT) data->temp11[index] = temp_to_s16(val); else data->temp11[index] = temp_to_s8(val) << 8; lm90_select_remote_channel(client, data, reg[nr].channel); i2c_smbus_write_byte_data(client, reg[nr].high, data->temp11[index] >> 8); if (data->flags & LM90_HAVE_REM_LIMIT_EXT) i2c_smbus_write_byte_data(client, reg[nr].low, data->temp11[index] & 0xff); lm90_select_remote_channel(client, data, 0); mutex_unlock(&data->update_lock); return count; } static ssize_t show_temphyst(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm90_data *data = lm90_update_device(dev); int temp; if (data->kind == adt7461) temp = temp_from_u8_adt7461(data, data->temp8[attr->index]); else if (data->kind == max6646) temp = temp_from_u8(data->temp8[attr->index]); else temp = temp_from_s8(data->temp8[attr->index]); /* +16 degrees offset for temp2 for the LM99 */ if (data->kind == lm99 && attr->index == 3) temp += 16000; return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst)); } static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); long val; int err; int temp; err = kstrtol(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); if (data->kind == adt7461) temp = temp_from_u8_adt7461(data, data->temp8[2]); else if (data->kind == max6646) temp = temp_from_u8(data->temp8[2]); else temp = temp_from_s8(data->temp8[2]); data->temp_hyst = hyst_to_reg(temp - val); i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST, data->temp_hyst); mutex_unlock(&data->update_lock); return count; } static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm90_data *data = lm90_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm90_data *data = lm90_update_device(dev); int bitnr = attr->index; return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); } static ssize_t show_update_interval(struct device *dev, struct device_attribute *attr, char *buf) { struct lm90_data *data = dev_get_drvdata(dev); return sprintf(buf, "%u\n", data->update_interval); } static ssize_t set_update_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct lm90_data *data = i2c_get_clientdata(client); unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); lm90_set_convrate(client, data, clamp_val(val, 0, 100000)); mutex_unlock(&data->update_lock); return count; } static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL, 0, 4); static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL, 0, 0); static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 0); static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 0, 1); static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 1); static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 1, 2); static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 2); static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 3); static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst, set_temphyst, 2); static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL, 3); static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 2, 3); /* Individual alarm files */ static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0); static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1); static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2); static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3); static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4); static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5); static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6); /* Raw alarm file for compatibility */ static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL); static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval, set_update_interval); static struct attribute *lm90_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &dev_attr_alarms.attr, &dev_attr_update_interval.attr, NULL }; static const struct attribute_group lm90_group = { .attrs = lm90_attributes, }; /* * Additional attributes for devices with emergency sensors */ static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 4); static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 5); static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst, NULL, 4); static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst, NULL, 5); static struct attribute *lm90_emergency_attributes[] = { &sensor_dev_attr_temp1_emergency.dev_attr.attr, &sensor_dev_attr_temp2_emergency.dev_attr.attr, &sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr, &sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr, NULL }; static const struct attribute_group lm90_emergency_group = { .attrs = lm90_emergency_attributes, }; static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15); static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13); static struct attribute *lm90_emergency_alarm_attributes[] = { &sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr, &sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm90_emergency_alarm_group = { .attrs = lm90_emergency_alarm_attributes, }; /* * Additional attributes for devices with 3 temperature sensors */ static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL, 0, 5); static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 3, 6); static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11, set_temp11, 4, 7); static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 6); static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL, 6); static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8, set_temp8, 7); static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst, NULL, 7); static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9); static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10); static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11); static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12); static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14); static struct attribute *lm90_temp3_attributes[] = { &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp3_emergency.dev_attr.attr, &sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm90_temp3_group = { .attrs = lm90_temp3_attributes, }; /* pec used for ADM1032 only */ static ssize_t show_pec(struct device *dev, struct device_attribute *dummy, char *buf) { struct i2c_client *client = to_i2c_client(dev); return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC)); } static ssize_t set_pec(struct device *dev, struct device_attribute *dummy, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); long val; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; switch (val) { case 0: client->flags &= ~I2C_CLIENT_PEC; break; case 1: client->flags |= I2C_CLIENT_PEC; break; default: return -EINVAL; } return count; } static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec); /* * Real code */ /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; int address = client->addr; const char *name = NULL; int man_id, chip_id, config1, config2, convrate; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* detection and identification */ man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID); config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1); convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE); if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0) return -ENODEV; if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) { config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2); if (config2 < 0) return -ENODEV; } else config2 = 0; /* Make compiler happy */ if ((address == 0x4C || address == 0x4D) && man_id == 0x01) { /* National Semiconductor */ if ((config1 & 0x2A) == 0x00 && (config2 & 0xF8) == 0x00 && convrate <= 0x09) { if (address == 0x4C && (chip_id & 0xF0) == 0x20) { /* LM90 */ name = "lm90"; } else if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */ name = "lm99"; dev_info(&adapter->dev, "Assuming LM99 chip at 0x%02x\n", address); dev_info(&adapter->dev, "If it is an LM89, instantiate it " "with the new_device sysfs " "interface\n"); } else if (address == 0x4C && (chip_id & 0xF0) == 0x10) { /* LM86 */ name = "lm86"; } } } else if ((address == 0x4C || address == 0x4D) && man_id == 0x41) { /* Analog Devices */ if ((chip_id & 0xF0) == 0x40 /* ADM1032 */ && (config1 & 0x3F) == 0x00 && convrate <= 0x0A) { name = "adm1032"; /* * The ADM1032 supports PEC, but only if combined * transactions are not used. */ if (i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) info->flags |= I2C_CLIENT_PEC; } else if (chip_id == 0x51 /* ADT7461 */ && (config1 & 0x1B) == 0x00 && convrate <= 0x0A) { name = "adt7461"; } else if (chip_id == 0x57 /* ADT7461A, NCT1008 */ && (config1 & 0x1B) == 0x00 && convrate <= 0x0A) { name = "adt7461a"; } } else if (man_id == 0x4D) { /* Maxim */ int emerg, emerg2, status2; /* * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG * exists, both readings will reflect the same value. Otherwise, * the readings will be different. */ emerg = i2c_smbus_read_byte_data(client, MAX6659_REG_R_REMOTE_EMERG); man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID); emerg2 = i2c_smbus_read_byte_data(client, MAX6659_REG_R_REMOTE_EMERG); status2 = i2c_smbus_read_byte_data(client, MAX6696_REG_R_STATUS2); if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0) return -ENODEV; /* * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id * register. Reading from that address will return the last * read value, which in our case is those of the man_id * register. Likewise, the config1 register seems to lack a * low nibble, so the value will be those of the previous * read, so in our case those of the man_id register. * MAX6659 has a third set of upper temperature limit registers. * Those registers also return values on MAX6657 and MAX6658, * thus the only way to detect MAX6659 is by its address. * For this reason it will be mis-detected as MAX6657 if its * address is 0x4C. */ if (chip_id == man_id && (address == 0x4C || address == 0x4D || address == 0x4E) && (config1 & 0x1F) == (man_id & 0x0F) && convrate <= 0x09) { if (address == 0x4C) name = "max6657"; else name = "max6659"; } else /* * Even though MAX6695 and MAX6696 do not have a chip ID * register, reading it returns 0x01. Bit 4 of the config1 * register is unused and should return zero when read. Bit 0 of * the status2 register is unused and should return zero when * read. * * MAX6695 and MAX6696 have an additional set of temperature * limit registers. We can detect those chips by checking if * one of those registers exists. */ if (chip_id == 0x01 && (config1 & 0x10) == 0x00 && (status2 & 0x01) == 0x00 && emerg == emerg2 && convrate <= 0x07) { name = "max6696"; } else /* * The chip_id register of the MAX6680 and MAX6681 holds the * revision of the chip. The lowest bit of the config1 register * is unused and should return zero when read, so should the * second to last bit of config1 (software reset). */ if (chip_id == 0x01 && (config1 & 0x03) == 0x00 && convrate <= 0x07) { name = "max6680"; } else /* * The chip_id register of the MAX6646/6647/6649 holds the * revision of the chip. The lowest 6 bits of the config1 * register are unused and should return zero when read. */ if (chip_id == 0x59 && (config1 & 0x3f) == 0x00 && convrate <= 0x07) { name = "max6646"; } } else if (address == 0x4C && man_id == 0x5C) { /* Winbond/Nuvoton */ if ((config1 & 0x2A) == 0x00 && (config2 & 0xF8) == 0x00) { if (chip_id == 0x01 /* W83L771W/G */ && convrate <= 0x09) { name = "w83l771"; } else if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */ && convrate <= 0x08) { name = "w83l771"; } } } else if (address >= 0x48 && address <= 0x4F && man_id == 0xA1) { /* NXP Semiconductor/Philips */ if (chip_id == 0x00 && (config1 & 0x2A) == 0x00 && (config2 & 0xFE) == 0x00 && convrate <= 0x09) { name = "sa56004"; } } else if ((address == 0x4C || address == 0x4D) && man_id == 0x47) { /* GMT */ if (chip_id == 0x01 /* G781 */ && (config1 & 0x3F) == 0x00 && convrate <= 0x08) name = "g781"; } if (!name) { /* identification failed */ dev_dbg(&adapter->dev, "Unsupported chip at 0x%02x (man_id=0x%02X, " "chip_id=0x%02X)\n", address, man_id, chip_id); return -ENODEV; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static void lm90_remove_files(struct i2c_client *client, struct lm90_data *data) { struct device *dev = &client->dev; if (data->flags & LM90_HAVE_TEMP3) sysfs_remove_group(&dev->kobj, &lm90_temp3_group); if (data->flags & LM90_HAVE_EMERGENCY_ALARM) sysfs_remove_group(&dev->kobj, &lm90_emergency_alarm_group); if (data->flags & LM90_HAVE_EMERGENCY) sysfs_remove_group(&dev->kobj, &lm90_emergency_group); if (data->flags & LM90_HAVE_OFFSET) device_remove_file(dev, &sensor_dev_attr_temp2_offset.dev_attr); device_remove_file(dev, &dev_attr_pec); sysfs_remove_group(&dev->kobj, &lm90_group); } static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data) { /* Restore initial configuration */ i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, data->convrate_orig); i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, data->config_orig); } static void lm90_init_client(struct i2c_client *client) { u8 config, convrate; struct lm90_data *data = i2c_get_clientdata(client); if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) { dev_warn(&client->dev, "Failed to read convrate register!\n"); convrate = LM90_DEF_CONVRATE_RVAL; } data->convrate_orig = convrate; /* * Start the conversions. */ lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */ if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) { dev_warn(&client->dev, "Initialization failed!\n"); return; } data->config_orig = config; /* Check Temperature Range Select */ if (data->kind == adt7461) { if (config & 0x04) data->flags |= LM90_FLAG_ADT7461_EXT; } /* * Put MAX6680/MAX8881 into extended resolution (bit 0x10, * 0.125 degree resolution) and range (0x08, extend range * to -64 degree) mode for the remote temperature sensor. */ if (data->kind == max6680) config |= 0x18; /* * Select external channel 0 for max6695/96 */ if (data->kind == max6696) config &= ~0x08; config &= 0xBF; /* run */ if (config != data->config_orig) /* Only write if changed */ i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config); } static int lm90_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct i2c_adapter *adapter = to_i2c_adapter(dev->parent); struct lm90_data *data; int err; data = devm_kzalloc(&client->dev, sizeof(struct lm90_data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); mutex_init(&data->update_lock); /* Set the device type */ data->kind = id->driver_data; if (data->kind == adm1032) { if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE)) client->flags &= ~I2C_CLIENT_PEC; } /* * Different devices have different alarm bits triggering the * ALERT# output */ data->alert_alarms = lm90_params[data->kind].alert_alarms; /* Set chip capabilities */ data->flags = lm90_params[data->kind].flags; data->reg_local_ext = lm90_params[data->kind].reg_local_ext; /* Set maximum conversion rate */ data->max_convrate = lm90_params[data->kind].max_convrate; /* Initialize the LM90 chip */ lm90_init_client(client); /* Register sysfs hooks */ err = sysfs_create_group(&dev->kobj, &lm90_group); if (err) goto exit_restore; if (client->flags & I2C_CLIENT_PEC) { err = device_create_file(dev, &dev_attr_pec); if (err) goto exit_remove_files; } if (data->flags & LM90_HAVE_OFFSET) { err = device_create_file(dev, &sensor_dev_attr_temp2_offset.dev_attr); if (err) goto exit_remove_files; } if (data->flags & LM90_HAVE_EMERGENCY) { err = sysfs_create_group(&dev->kobj, &lm90_emergency_group); if (err) goto exit_remove_files; } if (data->flags & LM90_HAVE_EMERGENCY_ALARM) { err = sysfs_create_group(&dev->kobj, &lm90_emergency_alarm_group); if (err) goto exit_remove_files; } if (data->flags & LM90_HAVE_TEMP3) { err = sysfs_create_group(&dev->kobj, &lm90_temp3_group); if (err) goto exit_remove_files; } data->hwmon_dev = hwmon_device_register(dev); if (IS_ERR(data->hwmon_dev)) { err = PTR_ERR(data->hwmon_dev); goto exit_remove_files; } return 0; exit_remove_files: lm90_remove_files(client, data); exit_restore: lm90_restore_conf(client, data); return err; } static int lm90_remove(struct i2c_client *client) { struct lm90_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); lm90_remove_files(client, data); lm90_restore_conf(client, data); return 0; } static void lm90_alert(struct i2c_client *client, unsigned int flag) { struct lm90_data *data = i2c_get_clientdata(client); u8 config, alarms, alarms2 = 0; lm90_read_reg(client, LM90_REG_R_STATUS, &alarms); if (data->kind == max6696) lm90_read_reg(client, MAX6696_REG_R_STATUS2, &alarms2); if ((alarms & 0x7f) == 0 && (alarms2 & 0xfe) == 0) { dev_info(&client->dev, "Everything OK\n"); } else { if (alarms & 0x61) dev_warn(&client->dev, "temp%d out of range, please check!\n", 1); if (alarms & 0x1a) dev_warn(&client->dev, "temp%d out of range, please check!\n", 2); if (alarms & 0x04) dev_warn(&client->dev, "temp%d diode open, please check!\n", 2); if (alarms2 & 0x18) dev_warn(&client->dev, "temp%d out of range, please check!\n", 3); /* * Disable ALERT# output, because these chips don't implement * SMBus alert correctly; they should only hold the alert line * low briefly. */ if ((data->flags & LM90_HAVE_BROKEN_ALERT) && (alarms & data->alert_alarms)) { dev_dbg(&client->dev, "Disabling ALERT#\n"); lm90_read_reg(client, LM90_REG_R_CONFIG1, &config); i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config | 0x80); } } } static struct i2c_driver lm90_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm90", }, .probe = lm90_probe, .remove = lm90_remove, .alert = lm90_alert, .id_table = lm90_id, .detect = lm90_detect, .address_list = normal_i2c, }; module_i2c_driver(lm90_driver); MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>"); MODULE_DESCRIPTION("LM90/ADM1032 driver"); MODULE_LICENSE("GPL");