/* Transport & Protocol Driver for In-System Design, Inc. ISD200 ASIC * * Current development and maintenance: * (C) 2001-2002 Björn Stenberg (bjorn@haxx.se) * * Developed with the assistance of: * (C) 2002 Alan Stern <stern@rowland.org> * * Initial work: * (C) 2000 In-System Design, Inc. (support@in-system.com) * * The ISD200 ASIC does not natively support ATA devices. The chip * does implement an interface, the ATA Command Block (ATACB) which provides * a means of passing ATA commands and ATA register accesses to a device. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * History: * * 2002-10-19: Removed the specialized transfer routines. * (Alan Stern <stern@rowland.harvard.edu>) * 2001-02-24: Removed lots of duplicate code and simplified the structure. * (bjorn@haxx.se) * 2002-01-16: Fixed endianness bug so it works on the ppc arch. * (Luc Saillard <luc@saillard.org>) * 2002-01-17: All bitfields removed. * (bjorn@haxx.se) */ /* Include files */ #include <linux/jiffies.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/hdreg.h> #include <linux/scatterlist.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include "usb.h" #include "transport.h" #include "protocol.h" #include "debug.h" #include "scsiglue.h" #include "isd200.h" /* Timeout defines (in Seconds) */ #define ISD200_ENUM_BSY_TIMEOUT 35 #define ISD200_ENUM_DETECT_TIMEOUT 30 #define ISD200_DEFAULT_TIMEOUT 30 /* device flags */ #define DF_ATA_DEVICE 0x0001 #define DF_MEDIA_STATUS_ENABLED 0x0002 #define DF_REMOVABLE_MEDIA 0x0004 /* capability bit definitions */ #define CAPABILITY_DMA 0x01 #define CAPABILITY_LBA 0x02 /* command_setX bit definitions */ #define COMMANDSET_REMOVABLE 0x02 #define COMMANDSET_MEDIA_STATUS 0x10 /* ATA Vendor Specific defines */ #define ATA_ADDRESS_DEVHEAD_STD 0xa0 #define ATA_ADDRESS_DEVHEAD_LBA_MODE 0x40 #define ATA_ADDRESS_DEVHEAD_SLAVE 0x10 /* Action Select bits */ #define ACTION_SELECT_0 0x01 #define ACTION_SELECT_1 0x02 #define ACTION_SELECT_2 0x04 #define ACTION_SELECT_3 0x08 #define ACTION_SELECT_4 0x10 #define ACTION_SELECT_5 0x20 #define ACTION_SELECT_6 0x40 #define ACTION_SELECT_7 0x80 /* Register Select bits */ #define REG_ALTERNATE_STATUS 0x01 #define REG_DEVICE_CONTROL 0x01 #define REG_ERROR 0x02 #define REG_FEATURES 0x02 #define REG_SECTOR_COUNT 0x04 #define REG_SECTOR_NUMBER 0x08 #define REG_CYLINDER_LOW 0x10 #define REG_CYLINDER_HIGH 0x20 #define REG_DEVICE_HEAD 0x40 #define REG_STATUS 0x80 #define REG_COMMAND 0x80 /* ATA registers offset definitions */ #define ATA_REG_ERROR_OFFSET 1 #define ATA_REG_LCYL_OFFSET 4 #define ATA_REG_HCYL_OFFSET 5 #define ATA_REG_STATUS_OFFSET 7 /* ATA error definitions not in <linux/hdreg.h> */ #define ATA_ERROR_MEDIA_CHANGE 0x20 /* ATA command definitions not in <linux/hdreg.h> */ #define ATA_COMMAND_GET_MEDIA_STATUS 0xDA #define ATA_COMMAND_MEDIA_EJECT 0xED /* ATA drive control definitions */ #define ATA_DC_DISABLE_INTERRUPTS 0x02 #define ATA_DC_RESET_CONTROLLER 0x04 #define ATA_DC_REENABLE_CONTROLLER 0x00 /* * General purpose return codes */ #define ISD200_ERROR -1 #define ISD200_GOOD 0 /* * Transport return codes */ #define ISD200_TRANSPORT_GOOD 0 /* Transport good, command good */ #define ISD200_TRANSPORT_FAILED 1 /* Transport good, command failed */ #define ISD200_TRANSPORT_ERROR 2 /* Transport bad (i.e. device dead) */ /* driver action codes */ #define ACTION_READ_STATUS 0 #define ACTION_RESET 1 #define ACTION_REENABLE 2 #define ACTION_SOFT_RESET 3 #define ACTION_ENUM 4 #define ACTION_IDENTIFY 5 /* * ata_cdb struct */ union ata_cdb { struct { unsigned char SignatureByte0; unsigned char SignatureByte1; unsigned char ActionSelect; unsigned char RegisterSelect; unsigned char TransferBlockSize; unsigned char WriteData3F6; unsigned char WriteData1F1; unsigned char WriteData1F2; unsigned char WriteData1F3; unsigned char WriteData1F4; unsigned char WriteData1F5; unsigned char WriteData1F6; unsigned char WriteData1F7; unsigned char Reserved[3]; } generic; struct { unsigned char SignatureByte0; unsigned char SignatureByte1; unsigned char ActionSelect; unsigned char RegisterSelect; unsigned char TransferBlockSize; unsigned char AlternateStatusByte; unsigned char ErrorByte; unsigned char SectorCountByte; unsigned char SectorNumberByte; unsigned char CylinderLowByte; unsigned char CylinderHighByte; unsigned char DeviceHeadByte; unsigned char StatusByte; unsigned char Reserved[3]; } read; struct { unsigned char SignatureByte0; unsigned char SignatureByte1; unsigned char ActionSelect; unsigned char RegisterSelect; unsigned char TransferBlockSize; unsigned char DeviceControlByte; unsigned char FeaturesByte; unsigned char SectorCountByte; unsigned char SectorNumberByte; unsigned char CylinderLowByte; unsigned char CylinderHighByte; unsigned char DeviceHeadByte; unsigned char CommandByte; unsigned char Reserved[3]; } write; }; /* * Inquiry data structure. This is the data returned from the target * after it receives an inquiry. * * This structure may be extended by the number of bytes specified * in the field AdditionalLength. The defined size constant only * includes fields through ProductRevisionLevel. */ /* * DeviceType field */ #define DIRECT_ACCESS_DEVICE 0x00 /* disks */ #define DEVICE_REMOVABLE 0x80 struct inquiry_data { unsigned char DeviceType; unsigned char DeviceTypeModifier; unsigned char Versions; unsigned char Format; unsigned char AdditionalLength; unsigned char Reserved[2]; unsigned char Capability; unsigned char VendorId[8]; unsigned char ProductId[16]; unsigned char ProductRevisionLevel[4]; unsigned char VendorSpecific[20]; unsigned char Reserved3[40]; } __attribute__ ((packed)); /* * INQUIRY data buffer size */ #define INQUIRYDATABUFFERSIZE 36 /* * ISD200 CONFIG data struct */ #define ATACFG_TIMING 0x0f #define ATACFG_ATAPI_RESET 0x10 #define ATACFG_MASTER 0x20 #define ATACFG_BLOCKSIZE 0xa0 #define ATACFGE_LAST_LUN 0x07 #define ATACFGE_DESC_OVERRIDE 0x08 #define ATACFGE_STATE_SUSPEND 0x10 #define ATACFGE_SKIP_BOOT 0x20 #define ATACFGE_CONF_DESC2 0x40 #define ATACFGE_INIT_STATUS 0x80 #define CFG_CAPABILITY_SRST 0x01 struct isd200_config { unsigned char EventNotification; unsigned char ExternalClock; unsigned char ATAInitTimeout; unsigned char ATAConfig; unsigned char ATAMajorCommand; unsigned char ATAMinorCommand; unsigned char ATAExtraConfig; unsigned char Capability; }__attribute__ ((packed)); /* * ISD200 driver information struct */ struct isd200_info { struct inquiry_data InquiryData; struct hd_driveid *id; struct isd200_config ConfigData; unsigned char *RegsBuf; unsigned char ATARegs[8]; unsigned char DeviceHead; unsigned char DeviceFlags; /* maximum number of LUNs supported */ unsigned char MaxLUNs; unsigned char cmnd[BLK_MAX_CDB]; struct scsi_cmnd srb; struct scatterlist sg; }; /* * Read Capacity Data - returned in Big Endian format */ struct read_capacity_data { __be32 LogicalBlockAddress; __be32 BytesPerBlock; }; /* * Read Block Limits Data - returned in Big Endian format * This structure returns the maximum and minimum block * size for a TAPE device. */ struct read_block_limits { unsigned char Reserved; unsigned char BlockMaximumSize[3]; unsigned char BlockMinimumSize[2]; }; /* * Sense Data Format */ #define SENSE_ERRCODE 0x7f #define SENSE_ERRCODE_VALID 0x80 #define SENSE_FLAG_SENSE_KEY 0x0f #define SENSE_FLAG_BAD_LENGTH 0x20 #define SENSE_FLAG_END_OF_MEDIA 0x40 #define SENSE_FLAG_FILE_MARK 0x80 struct sense_data { unsigned char ErrorCode; unsigned char SegmentNumber; unsigned char Flags; unsigned char Information[4]; unsigned char AdditionalSenseLength; unsigned char CommandSpecificInformation[4]; unsigned char AdditionalSenseCode; unsigned char AdditionalSenseCodeQualifier; unsigned char FieldReplaceableUnitCode; unsigned char SenseKeySpecific[3]; } __attribute__ ((packed)); /* * Default request sense buffer size */ #define SENSE_BUFFER_SIZE 18 /*********************************************************************** * Helper routines ***********************************************************************/ /************************************************************************** * isd200_build_sense * * Builds an artificial sense buffer to report the results of a * failed command. * * RETURNS: * void */ static void isd200_build_sense(struct us_data *us, struct scsi_cmnd *srb) { struct isd200_info *info = (struct isd200_info *)us->extra; struct sense_data *buf = (struct sense_data *) &srb->sense_buffer[0]; unsigned char error = info->ATARegs[ATA_REG_ERROR_OFFSET]; if(error & ATA_ERROR_MEDIA_CHANGE) { buf->ErrorCode = 0x70 | SENSE_ERRCODE_VALID; buf->AdditionalSenseLength = 0xb; buf->Flags = UNIT_ATTENTION; buf->AdditionalSenseCode = 0; buf->AdditionalSenseCodeQualifier = 0; } else if(error & MCR_ERR) { buf->ErrorCode = 0x70 | SENSE_ERRCODE_VALID; buf->AdditionalSenseLength = 0xb; buf->Flags = UNIT_ATTENTION; buf->AdditionalSenseCode = 0; buf->AdditionalSenseCodeQualifier = 0; } else if(error & TRK0_ERR) { buf->ErrorCode = 0x70 | SENSE_ERRCODE_VALID; buf->AdditionalSenseLength = 0xb; buf->Flags = NOT_READY; buf->AdditionalSenseCode = 0; buf->AdditionalSenseCodeQualifier = 0; } else if(error & ECC_ERR) { buf->ErrorCode = 0x70 | SENSE_ERRCODE_VALID; buf->AdditionalSenseLength = 0xb; buf->Flags = DATA_PROTECT; buf->AdditionalSenseCode = 0; buf->AdditionalSenseCodeQualifier = 0; } else { buf->ErrorCode = 0; buf->AdditionalSenseLength = 0; buf->Flags = 0; buf->AdditionalSenseCode = 0; buf->AdditionalSenseCodeQualifier = 0; } } /*********************************************************************** * Transport routines ***********************************************************************/ /************************************************************************** * isd200_set_srb(), isd200_srb_set_bufflen() * * Two helpers to facilitate in initialization of scsi_cmnd structure * Will need to change when struct scsi_cmnd changes */ static void isd200_set_srb(struct isd200_info *info, enum dma_data_direction dir, void* buff, unsigned bufflen) { struct scsi_cmnd *srb = &info->srb; if (buff) sg_init_one(&info->sg, buff, bufflen); srb->sc_data_direction = dir; srb->sdb.table.sgl = buff ? &info->sg : NULL; srb->sdb.length = bufflen; srb->sdb.table.nents = buff ? 1 : 0; } static void isd200_srb_set_bufflen(struct scsi_cmnd *srb, unsigned bufflen) { srb->sdb.length = bufflen; } /************************************************************************** * isd200_action * * Routine for sending commands to the isd200 * * RETURNS: * ISD status code */ static int isd200_action( struct us_data *us, int action, void* pointer, int value ) { union ata_cdb ata; struct scsi_device srb_dev; struct isd200_info *info = (struct isd200_info *)us->extra; struct scsi_cmnd *srb = &info->srb; int status; memset(&ata, 0, sizeof(ata)); memset(&srb_dev, 0, sizeof(srb_dev)); srb->cmnd = info->cmnd; srb->device = &srb_dev; ++srb->serial_number; ata.generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ata.generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ata.generic.TransferBlockSize = 1; switch ( action ) { case ACTION_READ_STATUS: US_DEBUGP(" isd200_action(READ_STATUS)\n"); ata.generic.ActionSelect = ACTION_SELECT_0|ACTION_SELECT_2; ata.generic.RegisterSelect = REG_CYLINDER_LOW | REG_CYLINDER_HIGH | REG_STATUS | REG_ERROR; isd200_set_srb(info, DMA_FROM_DEVICE, pointer, value); break; case ACTION_ENUM: US_DEBUGP(" isd200_action(ENUM,0x%02x)\n",value); ata.generic.ActionSelect = ACTION_SELECT_1|ACTION_SELECT_2| ACTION_SELECT_3|ACTION_SELECT_4| ACTION_SELECT_5; ata.generic.RegisterSelect = REG_DEVICE_HEAD; ata.write.DeviceHeadByte = value; isd200_set_srb(info, DMA_NONE, NULL, 0); break; case ACTION_RESET: US_DEBUGP(" isd200_action(RESET)\n"); ata.generic.ActionSelect = ACTION_SELECT_1|ACTION_SELECT_2| ACTION_SELECT_3|ACTION_SELECT_4; ata.generic.RegisterSelect = REG_DEVICE_CONTROL; ata.write.DeviceControlByte = ATA_DC_RESET_CONTROLLER; isd200_set_srb(info, DMA_NONE, NULL, 0); break; case ACTION_REENABLE: US_DEBUGP(" isd200_action(REENABLE)\n"); ata.generic.ActionSelect = ACTION_SELECT_1|ACTION_SELECT_2| ACTION_SELECT_3|ACTION_SELECT_4; ata.generic.RegisterSelect = REG_DEVICE_CONTROL; ata.write.DeviceControlByte = ATA_DC_REENABLE_CONTROLLER; isd200_set_srb(info, DMA_NONE, NULL, 0); break; case ACTION_SOFT_RESET: US_DEBUGP(" isd200_action(SOFT_RESET)\n"); ata.generic.ActionSelect = ACTION_SELECT_1|ACTION_SELECT_5; ata.generic.RegisterSelect = REG_DEVICE_HEAD | REG_COMMAND; ata.write.DeviceHeadByte = info->DeviceHead; ata.write.CommandByte = WIN_SRST; isd200_set_srb(info, DMA_NONE, NULL, 0); break; case ACTION_IDENTIFY: US_DEBUGP(" isd200_action(IDENTIFY)\n"); ata.generic.RegisterSelect = REG_COMMAND; ata.write.CommandByte = WIN_IDENTIFY; isd200_set_srb(info, DMA_FROM_DEVICE, info->id, sizeof(struct hd_driveid)); break; default: US_DEBUGP("Error: Undefined action %d\n",action); return ISD200_ERROR; } memcpy(srb->cmnd, &ata, sizeof(ata.generic)); srb->cmd_len = sizeof(ata.generic); status = usb_stor_Bulk_transport(srb, us); if (status == USB_STOR_TRANSPORT_GOOD) status = ISD200_GOOD; else { US_DEBUGP(" isd200_action(0x%02x) error: %d\n",action,status); status = ISD200_ERROR; /* need to reset device here */ } return status; } /************************************************************************** * isd200_read_regs * * Read ATA Registers * * RETURNS: * ISD status code */ static int isd200_read_regs( struct us_data *us ) { struct isd200_info *info = (struct isd200_info *)us->extra; int retStatus = ISD200_GOOD; int transferStatus; US_DEBUGP("Entering isd200_IssueATAReadRegs\n"); transferStatus = isd200_action( us, ACTION_READ_STATUS, info->RegsBuf, sizeof(info->ATARegs) ); if (transferStatus != ISD200_TRANSPORT_GOOD) { US_DEBUGP(" Error reading ATA registers\n"); retStatus = ISD200_ERROR; } else { memcpy(info->ATARegs, info->RegsBuf, sizeof(info->ATARegs)); US_DEBUGP(" Got ATA Register[ATA_REG_ERROR_OFFSET] = 0x%x\n", info->ATARegs[ATA_REG_ERROR_OFFSET]); } return retStatus; } /************************************************************************** * Invoke the transport and basic error-handling/recovery methods * * This is used by the protocol layers to actually send the message to * the device and receive the response. */ static void isd200_invoke_transport( struct us_data *us, struct scsi_cmnd *srb, union ata_cdb *ataCdb ) { int need_auto_sense = 0; int transferStatus; int result; /* send the command to the transport layer */ memcpy(srb->cmnd, ataCdb, sizeof(ataCdb->generic)); srb->cmd_len = sizeof(ataCdb->generic); transferStatus = usb_stor_Bulk_transport(srb, us); /* if the command gets aborted by the higher layers, we need to * short-circuit all other processing */ if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { US_DEBUGP("-- command was aborted\n"); goto Handle_Abort; } switch (transferStatus) { case USB_STOR_TRANSPORT_GOOD: /* Indicate a good result */ srb->result = SAM_STAT_GOOD; break; case USB_STOR_TRANSPORT_NO_SENSE: US_DEBUGP("-- transport indicates protocol failure\n"); srb->result = SAM_STAT_CHECK_CONDITION; return; case USB_STOR_TRANSPORT_FAILED: US_DEBUGP("-- transport indicates command failure\n"); need_auto_sense = 1; break; case USB_STOR_TRANSPORT_ERROR: US_DEBUGP("-- transport indicates transport error\n"); srb->result = DID_ERROR << 16; /* Need reset here */ return; default: US_DEBUGP("-- transport indicates unknown error\n"); srb->result = DID_ERROR << 16; /* Need reset here */ return; } if ((scsi_get_resid(srb) > 0) && !((srb->cmnd[0] == REQUEST_SENSE) || (srb->cmnd[0] == INQUIRY) || (srb->cmnd[0] == MODE_SENSE) || (srb->cmnd[0] == LOG_SENSE) || (srb->cmnd[0] == MODE_SENSE_10))) { US_DEBUGP("-- unexpectedly short transfer\n"); need_auto_sense = 1; } if (need_auto_sense) { result = isd200_read_regs(us); if (test_bit(US_FLIDX_TIMED_OUT, &us->dflags)) { US_DEBUGP("-- auto-sense aborted\n"); goto Handle_Abort; } if (result == ISD200_GOOD) { isd200_build_sense(us, srb); srb->result = SAM_STAT_CHECK_CONDITION; /* If things are really okay, then let's show that */ if ((srb->sense_buffer[2] & 0xf) == 0x0) srb->result = SAM_STAT_GOOD; } else { srb->result = DID_ERROR << 16; /* Need reset here */ } } /* Regardless of auto-sense, if we _know_ we have an error * condition, show that in the result code */ if (transferStatus == USB_STOR_TRANSPORT_FAILED) srb->result = SAM_STAT_CHECK_CONDITION; return; /* abort processing: the bulk-only transport requires a reset * following an abort */ Handle_Abort: srb->result = DID_ABORT << 16; /* permit the reset transfer to take place */ clear_bit(US_FLIDX_ABORTING, &us->dflags); /* Need reset here */ } #ifdef CONFIG_USB_STORAGE_DEBUG static void isd200_log_config( struct isd200_info* info ) { US_DEBUGP(" Event Notification: 0x%x\n", info->ConfigData.EventNotification); US_DEBUGP(" External Clock: 0x%x\n", info->ConfigData.ExternalClock); US_DEBUGP(" ATA Init Timeout: 0x%x\n", info->ConfigData.ATAInitTimeout); US_DEBUGP(" ATAPI Command Block Size: 0x%x\n", (info->ConfigData.ATAConfig & ATACFG_BLOCKSIZE) >> 6); US_DEBUGP(" Master/Slave Selection: 0x%x\n", info->ConfigData.ATAConfig & ATACFG_MASTER); US_DEBUGP(" ATAPI Reset: 0x%x\n", info->ConfigData.ATAConfig & ATACFG_ATAPI_RESET); US_DEBUGP(" ATA Timing: 0x%x\n", info->ConfigData.ATAConfig & ATACFG_TIMING); US_DEBUGP(" ATA Major Command: 0x%x\n", info->ConfigData.ATAMajorCommand); US_DEBUGP(" ATA Minor Command: 0x%x\n", info->ConfigData.ATAMinorCommand); US_DEBUGP(" Init Status: 0x%x\n", info->ConfigData.ATAExtraConfig & ATACFGE_INIT_STATUS); US_DEBUGP(" Config Descriptor 2: 0x%x\n", info->ConfigData.ATAExtraConfig & ATACFGE_CONF_DESC2); US_DEBUGP(" Skip Device Boot: 0x%x\n", info->ConfigData.ATAExtraConfig & ATACFGE_SKIP_BOOT); US_DEBUGP(" ATA 3 State Supsend: 0x%x\n", info->ConfigData.ATAExtraConfig & ATACFGE_STATE_SUSPEND); US_DEBUGP(" Descriptor Override: 0x%x\n", info->ConfigData.ATAExtraConfig & ATACFGE_DESC_OVERRIDE); US_DEBUGP(" Last LUN Identifier: 0x%x\n", info->ConfigData.ATAExtraConfig & ATACFGE_LAST_LUN); US_DEBUGP(" SRST Enable: 0x%x\n", info->ConfigData.ATAExtraConfig & CFG_CAPABILITY_SRST); } #endif /************************************************************************** * isd200_write_config * * Write the ISD200 Configuration data * * RETURNS: * ISD status code */ static int isd200_write_config( struct us_data *us ) { struct isd200_info *info = (struct isd200_info *)us->extra; int retStatus = ISD200_GOOD; int result; #ifdef CONFIG_USB_STORAGE_DEBUG US_DEBUGP("Entering isd200_write_config\n"); US_DEBUGP(" Writing the following ISD200 Config Data:\n"); isd200_log_config(info); #endif /* let's send the command via the control pipe */ result = usb_stor_ctrl_transfer( us, us->send_ctrl_pipe, 0x01, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT, 0x0000, 0x0002, (void *) &info->ConfigData, sizeof(info->ConfigData)); if (result >= 0) { US_DEBUGP(" ISD200 Config Data was written successfully\n"); } else { US_DEBUGP(" Request to write ISD200 Config Data failed!\n"); retStatus = ISD200_ERROR; } US_DEBUGP("Leaving isd200_write_config %08X\n", retStatus); return retStatus; } /************************************************************************** * isd200_read_config * * Reads the ISD200 Configuration data * * RETURNS: * ISD status code */ static int isd200_read_config( struct us_data *us ) { struct isd200_info *info = (struct isd200_info *)us->extra; int retStatus = ISD200_GOOD; int result; US_DEBUGP("Entering isd200_read_config\n"); /* read the configuration information from ISD200. Use this to */ /* determine what the special ATA CDB bytes are. */ result = usb_stor_ctrl_transfer( us, us->recv_ctrl_pipe, 0x02, USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN, 0x0000, 0x0002, (void *) &info->ConfigData, sizeof(info->ConfigData)); if (result >= 0) { US_DEBUGP(" Retrieved the following ISD200 Config Data:\n"); #ifdef CONFIG_USB_STORAGE_DEBUG isd200_log_config(info); #endif } else { US_DEBUGP(" Request to get ISD200 Config Data failed!\n"); retStatus = ISD200_ERROR; } US_DEBUGP("Leaving isd200_read_config %08X\n", retStatus); return retStatus; } /************************************************************************** * isd200_atapi_soft_reset * * Perform an Atapi Soft Reset on the device * * RETURNS: * NT status code */ static int isd200_atapi_soft_reset( struct us_data *us ) { int retStatus = ISD200_GOOD; int transferStatus; US_DEBUGP("Entering isd200_atapi_soft_reset\n"); transferStatus = isd200_action( us, ACTION_SOFT_RESET, NULL, 0 ); if (transferStatus != ISD200_TRANSPORT_GOOD) { US_DEBUGP(" Error issuing Atapi Soft Reset\n"); retStatus = ISD200_ERROR; } US_DEBUGP("Leaving isd200_atapi_soft_reset %08X\n", retStatus); return retStatus; } /************************************************************************** * isd200_srst * * Perform an SRST on the device * * RETURNS: * ISD status code */ static int isd200_srst( struct us_data *us ) { int retStatus = ISD200_GOOD; int transferStatus; US_DEBUGP("Entering isd200_SRST\n"); transferStatus = isd200_action( us, ACTION_RESET, NULL, 0 ); /* check to see if this request failed */ if (transferStatus != ISD200_TRANSPORT_GOOD) { US_DEBUGP(" Error issuing SRST\n"); retStatus = ISD200_ERROR; } else { /* delay 10ms to give the drive a chance to see it */ msleep(10); transferStatus = isd200_action( us, ACTION_REENABLE, NULL, 0 ); if (transferStatus != ISD200_TRANSPORT_GOOD) { US_DEBUGP(" Error taking drive out of reset\n"); retStatus = ISD200_ERROR; } else { /* delay 50ms to give the drive a chance to recover after SRST */ msleep(50); } } US_DEBUGP("Leaving isd200_srst %08X\n", retStatus); return retStatus; } /************************************************************************** * isd200_try_enum * * Helper function for isd200_manual_enum(). Does ENUM and READ_STATUS * and tries to analyze the status registers * * RETURNS: * ISD status code */ static int isd200_try_enum(struct us_data *us, unsigned char master_slave, int detect ) { int status = ISD200_GOOD; unsigned long endTime; struct isd200_info *info = (struct isd200_info *)us->extra; unsigned char *regs = info->RegsBuf; int recheckAsMaster = 0; if ( detect ) endTime = jiffies + ISD200_ENUM_DETECT_TIMEOUT * HZ; else endTime = jiffies + ISD200_ENUM_BSY_TIMEOUT * HZ; /* loop until we detect !BSY or timeout */ while(1) { #ifdef CONFIG_USB_STORAGE_DEBUG char* mstr = master_slave == ATA_ADDRESS_DEVHEAD_STD ? "Master" : "Slave"; #endif status = isd200_action( us, ACTION_ENUM, NULL, master_slave ); if ( status != ISD200_GOOD ) break; status = isd200_action( us, ACTION_READ_STATUS, regs, 8 ); if ( status != ISD200_GOOD ) break; if (!detect) { if (regs[ATA_REG_STATUS_OFFSET] & BUSY_STAT) { US_DEBUGP(" %s status is still BSY, try again...\n",mstr); } else { US_DEBUGP(" %s status !BSY, continue with next operation\n",mstr); break; } } /* check for BUSY_STAT and */ /* WRERR_STAT (workaround ATA Zip drive) and */ /* ERR_STAT (workaround for Archos CD-ROM) */ else if (regs[ATA_REG_STATUS_OFFSET] & (BUSY_STAT | WRERR_STAT | ERR_STAT )) { US_DEBUGP(" Status indicates it is not ready, try again...\n"); } /* check for DRDY, ATA devices set DRDY after SRST */ else if (regs[ATA_REG_STATUS_OFFSET] & READY_STAT) { US_DEBUGP(" Identified ATA device\n"); info->DeviceFlags |= DF_ATA_DEVICE; info->DeviceHead = master_slave; break; } /* check Cylinder High/Low to determine if it is an ATAPI device */ else if (regs[ATA_REG_HCYL_OFFSET] == 0xEB && regs[ATA_REG_LCYL_OFFSET] == 0x14) { /* It seems that the RICOH MP6200A CD/RW drive will report itself okay as a slave when it is really a master. So this check again as a master device just to make sure it doesn't report itself okay as a master also */ if ((master_slave & ATA_ADDRESS_DEVHEAD_SLAVE) && !recheckAsMaster) { US_DEBUGP(" Identified ATAPI device as slave. Rechecking again as master\n"); recheckAsMaster = 1; master_slave = ATA_ADDRESS_DEVHEAD_STD; } else { US_DEBUGP(" Identified ATAPI device\n"); info->DeviceHead = master_slave; status = isd200_atapi_soft_reset(us); break; } } else { US_DEBUGP(" Not ATA, not ATAPI. Weird.\n"); break; } /* check for timeout on this request */ if (time_after_eq(jiffies, endTime)) { if (!detect) US_DEBUGP(" BSY check timeout, just continue with next operation...\n"); else US_DEBUGP(" Device detect timeout!\n"); break; } } return status; } /************************************************************************** * isd200_manual_enum * * Determines if the drive attached is an ATA or ATAPI and if it is a * master or slave. * * RETURNS: * ISD status code */ static int isd200_manual_enum(struct us_data *us) { struct isd200_info *info = (struct isd200_info *)us->extra; int retStatus = ISD200_GOOD; US_DEBUGP("Entering isd200_manual_enum\n"); retStatus = isd200_read_config(us); if (retStatus == ISD200_GOOD) { int isslave; /* master or slave? */ retStatus = isd200_try_enum( us, ATA_ADDRESS_DEVHEAD_STD, 0); if (retStatus == ISD200_GOOD) retStatus = isd200_try_enum( us, ATA_ADDRESS_DEVHEAD_SLAVE, 0); if (retStatus == ISD200_GOOD) { retStatus = isd200_srst(us); if (retStatus == ISD200_GOOD) /* ata or atapi? */ retStatus = isd200_try_enum( us, ATA_ADDRESS_DEVHEAD_STD, 1); } isslave = (info->DeviceHead & ATA_ADDRESS_DEVHEAD_SLAVE) ? 1 : 0; if (!(info->ConfigData.ATAConfig & ATACFG_MASTER)) { US_DEBUGP(" Setting Master/Slave selection to %d\n", isslave); info->ConfigData.ATAConfig &= 0x3f; info->ConfigData.ATAConfig |= (isslave<<6); retStatus = isd200_write_config(us); } } US_DEBUGP("Leaving isd200_manual_enum %08X\n", retStatus); return(retStatus); } static void isd200_fix_driveid (struct hd_driveid *id) { #ifndef __LITTLE_ENDIAN # ifdef __BIG_ENDIAN int i; u16 *stringcast; id->config = __le16_to_cpu(id->config); id->cyls = __le16_to_cpu(id->cyls); id->reserved2 = __le16_to_cpu(id->reserved2); id->heads = __le16_to_cpu(id->heads); id->track_bytes = __le16_to_cpu(id->track_bytes); id->sector_bytes = __le16_to_cpu(id->sector_bytes); id->sectors = __le16_to_cpu(id->sectors); id->vendor0 = __le16_to_cpu(id->vendor0); id->vendor1 = __le16_to_cpu(id->vendor1); id->vendor2 = __le16_to_cpu(id->vendor2); stringcast = (u16 *)&id->serial_no[0]; for (i = 0; i < (20/2); i++) stringcast[i] = __le16_to_cpu(stringcast[i]); id->buf_type = __le16_to_cpu(id->buf_type); id->buf_size = __le16_to_cpu(id->buf_size); id->ecc_bytes = __le16_to_cpu(id->ecc_bytes); stringcast = (u16 *)&id->fw_rev[0]; for (i = 0; i < (8/2); i++) stringcast[i] = __le16_to_cpu(stringcast[i]); stringcast = (u16 *)&id->model[0]; for (i = 0; i < (40/2); i++) stringcast[i] = __le16_to_cpu(stringcast[i]); id->dword_io = __le16_to_cpu(id->dword_io); id->reserved50 = __le16_to_cpu(id->reserved50); id->field_valid = __le16_to_cpu(id->field_valid); id->cur_cyls = __le16_to_cpu(id->cur_cyls); id->cur_heads = __le16_to_cpu(id->cur_heads); id->cur_sectors = __le16_to_cpu(id->cur_sectors); id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0); id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1); id->lba_capacity = __le32_to_cpu(id->lba_capacity); id->dma_1word = __le16_to_cpu(id->dma_1word); id->dma_mword = __le16_to_cpu(id->dma_mword); id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); id->eide_dma_min = __le16_to_cpu(id->eide_dma_min); id->eide_dma_time = __le16_to_cpu(id->eide_dma_time); id->eide_pio = __le16_to_cpu(id->eide_pio); id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); for (i = 0; i < 2; ++i) id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); for (i = 0; i < 4; ++i) id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); id->queue_depth = __le16_to_cpu(id->queue_depth); for (i = 0; i < 4; ++i) id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); id->major_rev_num = __le16_to_cpu(id->major_rev_num); id->minor_rev_num = __le16_to_cpu(id->minor_rev_num); id->command_set_1 = __le16_to_cpu(id->command_set_1); id->command_set_2 = __le16_to_cpu(id->command_set_2); id->cfsse = __le16_to_cpu(id->cfsse); id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1); id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2); id->csf_default = __le16_to_cpu(id->csf_default); id->dma_ultra = __le16_to_cpu(id->dma_ultra); id->trseuc = __le16_to_cpu(id->trseuc); id->trsEuc = __le16_to_cpu(id->trsEuc); id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues); id->mprc = __le16_to_cpu(id->mprc); id->hw_config = __le16_to_cpu(id->hw_config); id->acoustic = __le16_to_cpu(id->acoustic); id->msrqs = __le16_to_cpu(id->msrqs); id->sxfert = __le16_to_cpu(id->sxfert); id->sal = __le16_to_cpu(id->sal); id->spg = __le32_to_cpu(id->spg); id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); for (i = 0; i < 22; i++) id->words104_125[i] = __le16_to_cpu(id->words104_125[i]); id->last_lun = __le16_to_cpu(id->last_lun); id->word127 = __le16_to_cpu(id->word127); id->dlf = __le16_to_cpu(id->dlf); id->csfo = __le16_to_cpu(id->csfo); for (i = 0; i < 26; i++) id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); id->word156 = __le16_to_cpu(id->word156); for (i = 0; i < 3; i++) id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); id->cfa_power = __le16_to_cpu(id->cfa_power); for (i = 0; i < 14; i++) id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); for (i = 0; i < 31; i++) id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); for (i = 0; i < 48; i++) id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); id->integrity_word = __le16_to_cpu(id->integrity_word); # else # error "Please fix <asm/byteorder.h>" # endif #endif } /************************************************************************** * isd200_get_inquiry_data * * Get inquiry data * * RETURNS: * ISD status code */ static int isd200_get_inquiry_data( struct us_data *us ) { struct isd200_info *info = (struct isd200_info *)us->extra; int retStatus = ISD200_GOOD; struct hd_driveid *id = info->id; US_DEBUGP("Entering isd200_get_inquiry_data\n"); /* set default to Master */ info->DeviceHead = ATA_ADDRESS_DEVHEAD_STD; /* attempt to manually enumerate this device */ retStatus = isd200_manual_enum(us); if (retStatus == ISD200_GOOD) { int transferStatus; /* check for an ATA device */ if (info->DeviceFlags & DF_ATA_DEVICE) { /* this must be an ATA device */ /* perform an ATA Command Identify */ transferStatus = isd200_action( us, ACTION_IDENTIFY, id, sizeof(struct hd_driveid) ); if (transferStatus != ISD200_TRANSPORT_GOOD) { /* Error issuing ATA Command Identify */ US_DEBUGP(" Error issuing ATA Command Identify\n"); retStatus = ISD200_ERROR; } else { /* ATA Command Identify successful */ int i; __be16 *src; __u16 *dest; isd200_fix_driveid(id); US_DEBUGP(" Identify Data Structure:\n"); US_DEBUGP(" config = 0x%x\n", id->config); US_DEBUGP(" cyls = 0x%x\n", id->cyls); US_DEBUGP(" heads = 0x%x\n", id->heads); US_DEBUGP(" track_bytes = 0x%x\n", id->track_bytes); US_DEBUGP(" sector_bytes = 0x%x\n", id->sector_bytes); US_DEBUGP(" sectors = 0x%x\n", id->sectors); US_DEBUGP(" serial_no[0] = 0x%x\n", id->serial_no[0]); US_DEBUGP(" buf_type = 0x%x\n", id->buf_type); US_DEBUGP(" buf_size = 0x%x\n", id->buf_size); US_DEBUGP(" ecc_bytes = 0x%x\n", id->ecc_bytes); US_DEBUGP(" fw_rev[0] = 0x%x\n", id->fw_rev[0]); US_DEBUGP(" model[0] = 0x%x\n", id->model[0]); US_DEBUGP(" max_multsect = 0x%x\n", id->max_multsect); US_DEBUGP(" dword_io = 0x%x\n", id->dword_io); US_DEBUGP(" capability = 0x%x\n", id->capability); US_DEBUGP(" tPIO = 0x%x\n", id->tPIO); US_DEBUGP(" tDMA = 0x%x\n", id->tDMA); US_DEBUGP(" field_valid = 0x%x\n", id->field_valid); US_DEBUGP(" cur_cyls = 0x%x\n", id->cur_cyls); US_DEBUGP(" cur_heads = 0x%x\n", id->cur_heads); US_DEBUGP(" cur_sectors = 0x%x\n", id->cur_sectors); US_DEBUGP(" cur_capacity = 0x%x\n", (id->cur_capacity1 << 16) + id->cur_capacity0 ); US_DEBUGP(" multsect = 0x%x\n", id->multsect); US_DEBUGP(" lba_capacity = 0x%x\n", id->lba_capacity); US_DEBUGP(" command_set_1 = 0x%x\n", id->command_set_1); US_DEBUGP(" command_set_2 = 0x%x\n", id->command_set_2); memset(&info->InquiryData, 0, sizeof(info->InquiryData)); /* Standard IDE interface only supports disks */ info->InquiryData.DeviceType = DIRECT_ACCESS_DEVICE; /* The length must be at least 36 (5 + 31) */ info->InquiryData.AdditionalLength = 0x1F; if (id->command_set_1 & COMMANDSET_MEDIA_STATUS) { /* set the removable bit */ info->InquiryData.DeviceTypeModifier = DEVICE_REMOVABLE; info->DeviceFlags |= DF_REMOVABLE_MEDIA; } /* Fill in vendor identification fields */ src = (__be16*)id->model; dest = (__u16*)info->InquiryData.VendorId; for (i=0;i<4;i++) dest[i] = be16_to_cpu(src[i]); src = (__be16*)(id->model+8); dest = (__u16*)info->InquiryData.ProductId; for (i=0;i<8;i++) dest[i] = be16_to_cpu(src[i]); src = (__be16*)id->fw_rev; dest = (__u16*)info->InquiryData.ProductRevisionLevel; for (i=0;i<2;i++) dest[i] = be16_to_cpu(src[i]); /* determine if it supports Media Status Notification */ if (id->command_set_2 & COMMANDSET_MEDIA_STATUS) { US_DEBUGP(" Device supports Media Status Notification\n"); /* Indicate that it is enabled, even though it is not * This allows the lock/unlock of the media to work * correctly. */ info->DeviceFlags |= DF_MEDIA_STATUS_ENABLED; } else info->DeviceFlags &= ~DF_MEDIA_STATUS_ENABLED; } } else { /* * this must be an ATAPI device * use an ATAPI protocol (Transparent SCSI) */ us->protocol_name = "Transparent SCSI"; us->proto_handler = usb_stor_transparent_scsi_command; US_DEBUGP("Protocol changed to: %s\n", us->protocol_name); /* Free driver structure */ us->extra_destructor(info); kfree(info); us->extra = NULL; us->extra_destructor = NULL; } } US_DEBUGP("Leaving isd200_get_inquiry_data %08X\n", retStatus); return(retStatus); } /************************************************************************** * isd200_scsi_to_ata * * Translate SCSI commands to ATA commands. * * RETURNS: * 1 if the command needs to be sent to the transport layer * 0 otherwise */ static int isd200_scsi_to_ata(struct scsi_cmnd *srb, struct us_data *us, union ata_cdb * ataCdb) { struct isd200_info *info = (struct isd200_info *)us->extra; struct hd_driveid *id = info->id; int sendToTransport = 1; unsigned char sectnum, head; unsigned short cylinder; unsigned long lba; unsigned long blockCount; unsigned char senseData[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; memset(ataCdb, 0, sizeof(union ata_cdb)); /* SCSI Command */ switch (srb->cmnd[0]) { case INQUIRY: US_DEBUGP(" ATA OUT - INQUIRY\n"); /* copy InquiryData */ usb_stor_set_xfer_buf((unsigned char *) &info->InquiryData, sizeof(info->InquiryData), srb); srb->result = SAM_STAT_GOOD; sendToTransport = 0; break; case MODE_SENSE: US_DEBUGP(" ATA OUT - SCSIOP_MODE_SENSE\n"); /* Initialize the return buffer */ usb_stor_set_xfer_buf(senseData, sizeof(senseData), srb); if (info->DeviceFlags & DF_MEDIA_STATUS_ENABLED) { ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 1; ataCdb->generic.RegisterSelect = REG_COMMAND; ataCdb->write.CommandByte = ATA_COMMAND_GET_MEDIA_STATUS; isd200_srb_set_bufflen(srb, 0); } else { US_DEBUGP(" Media Status not supported, just report okay\n"); srb->result = SAM_STAT_GOOD; sendToTransport = 0; } break; case TEST_UNIT_READY: US_DEBUGP(" ATA OUT - SCSIOP_TEST_UNIT_READY\n"); if (info->DeviceFlags & DF_MEDIA_STATUS_ENABLED) { ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 1; ataCdb->generic.RegisterSelect = REG_COMMAND; ataCdb->write.CommandByte = ATA_COMMAND_GET_MEDIA_STATUS; isd200_srb_set_bufflen(srb, 0); } else { US_DEBUGP(" Media Status not supported, just report okay\n"); srb->result = SAM_STAT_GOOD; sendToTransport = 0; } break; case READ_CAPACITY: { unsigned long capacity; struct read_capacity_data readCapacityData; US_DEBUGP(" ATA OUT - SCSIOP_READ_CAPACITY\n"); if (id->capability & CAPABILITY_LBA ) { capacity = id->lba_capacity - 1; } else { capacity = (id->heads * id->cyls * id->sectors) - 1; } readCapacityData.LogicalBlockAddress = cpu_to_be32(capacity); readCapacityData.BytesPerBlock = cpu_to_be32(0x200); usb_stor_set_xfer_buf((unsigned char *) &readCapacityData, sizeof(readCapacityData), srb); srb->result = SAM_STAT_GOOD; sendToTransport = 0; } break; case READ_10: US_DEBUGP(" ATA OUT - SCSIOP_READ\n"); lba = be32_to_cpu(*(__be32 *)&srb->cmnd[2]); blockCount = (unsigned long)srb->cmnd[7]<<8 | (unsigned long)srb->cmnd[8]; if (id->capability & CAPABILITY_LBA) { sectnum = (unsigned char)(lba); cylinder = (unsigned short)(lba>>8); head = ATA_ADDRESS_DEVHEAD_LBA_MODE | (unsigned char)(lba>>24 & 0x0F); } else { sectnum = (unsigned char)((lba % id->sectors) + 1); cylinder = (unsigned short)(lba / (id->sectors * id->heads)); head = (unsigned char)((lba / id->sectors) % id->heads); } ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 1; ataCdb->generic.RegisterSelect = REG_SECTOR_COUNT | REG_SECTOR_NUMBER | REG_CYLINDER_LOW | REG_CYLINDER_HIGH | REG_DEVICE_HEAD | REG_COMMAND; ataCdb->write.SectorCountByte = (unsigned char)blockCount; ataCdb->write.SectorNumberByte = sectnum; ataCdb->write.CylinderHighByte = (unsigned char)(cylinder>>8); ataCdb->write.CylinderLowByte = (unsigned char)cylinder; ataCdb->write.DeviceHeadByte = (head | ATA_ADDRESS_DEVHEAD_STD); ataCdb->write.CommandByte = WIN_READ; break; case WRITE_10: US_DEBUGP(" ATA OUT - SCSIOP_WRITE\n"); lba = be32_to_cpu(*(__be32 *)&srb->cmnd[2]); blockCount = (unsigned long)srb->cmnd[7]<<8 | (unsigned long)srb->cmnd[8]; if (id->capability & CAPABILITY_LBA) { sectnum = (unsigned char)(lba); cylinder = (unsigned short)(lba>>8); head = ATA_ADDRESS_DEVHEAD_LBA_MODE | (unsigned char)(lba>>24 & 0x0F); } else { sectnum = (unsigned char)((lba % id->sectors) + 1); cylinder = (unsigned short)(lba / (id->sectors * id->heads)); head = (unsigned char)((lba / id->sectors) % id->heads); } ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 1; ataCdb->generic.RegisterSelect = REG_SECTOR_COUNT | REG_SECTOR_NUMBER | REG_CYLINDER_LOW | REG_CYLINDER_HIGH | REG_DEVICE_HEAD | REG_COMMAND; ataCdb->write.SectorCountByte = (unsigned char)blockCount; ataCdb->write.SectorNumberByte = sectnum; ataCdb->write.CylinderHighByte = (unsigned char)(cylinder>>8); ataCdb->write.CylinderLowByte = (unsigned char)cylinder; ataCdb->write.DeviceHeadByte = (head | ATA_ADDRESS_DEVHEAD_STD); ataCdb->write.CommandByte = WIN_WRITE; break; case ALLOW_MEDIUM_REMOVAL: US_DEBUGP(" ATA OUT - SCSIOP_MEDIUM_REMOVAL\n"); if (info->DeviceFlags & DF_REMOVABLE_MEDIA) { US_DEBUGP(" srb->cmnd[4] = 0x%X\n", srb->cmnd[4]); ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 1; ataCdb->generic.RegisterSelect = REG_COMMAND; ataCdb->write.CommandByte = (srb->cmnd[4] & 0x1) ? WIN_DOORLOCK : WIN_DOORUNLOCK; isd200_srb_set_bufflen(srb, 0); } else { US_DEBUGP(" Not removeable media, just report okay\n"); srb->result = SAM_STAT_GOOD; sendToTransport = 0; } break; case START_STOP: US_DEBUGP(" ATA OUT - SCSIOP_START_STOP_UNIT\n"); US_DEBUGP(" srb->cmnd[4] = 0x%X\n", srb->cmnd[4]); if ((srb->cmnd[4] & 0x3) == 0x2) { US_DEBUGP(" Media Eject\n"); ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 0; ataCdb->generic.RegisterSelect = REG_COMMAND; ataCdb->write.CommandByte = ATA_COMMAND_MEDIA_EJECT; } else if ((srb->cmnd[4] & 0x3) == 0x1) { US_DEBUGP(" Get Media Status\n"); ataCdb->generic.SignatureByte0 = info->ConfigData.ATAMajorCommand; ataCdb->generic.SignatureByte1 = info->ConfigData.ATAMinorCommand; ataCdb->generic.TransferBlockSize = 1; ataCdb->generic.RegisterSelect = REG_COMMAND; ataCdb->write.CommandByte = ATA_COMMAND_GET_MEDIA_STATUS; isd200_srb_set_bufflen(srb, 0); } else { US_DEBUGP(" Nothing to do, just report okay\n"); srb->result = SAM_STAT_GOOD; sendToTransport = 0; } break; default: US_DEBUGP("Unsupported SCSI command - 0x%X\n", srb->cmnd[0]); srb->result = DID_ERROR << 16; sendToTransport = 0; break; } return(sendToTransport); } /************************************************************************** * isd200_free_info * * Frees the driver structure. */ static void isd200_free_info_ptrs(void *info_) { struct isd200_info *info = (struct isd200_info *) info_; if (info) { kfree(info->id); kfree(info->RegsBuf); kfree(info->srb.sense_buffer); } } /************************************************************************** * isd200_init_info * * Allocates (if necessary) and initializes the driver structure. * * RETURNS: * ISD status code */ static int isd200_init_info(struct us_data *us) { int retStatus = ISD200_GOOD; struct isd200_info *info; info = (struct isd200_info *) kzalloc(sizeof(struct isd200_info), GFP_KERNEL); if (!info) retStatus = ISD200_ERROR; else { info->id = (struct hd_driveid *) kzalloc(sizeof(struct hd_driveid), GFP_KERNEL); info->RegsBuf = (unsigned char *) kmalloc(sizeof(info->ATARegs), GFP_KERNEL); info->srb.sense_buffer = kmalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL); if (!info->id || !info->RegsBuf || !info->srb.sense_buffer) { isd200_free_info_ptrs(info); kfree(info); retStatus = ISD200_ERROR; } } if (retStatus == ISD200_GOOD) { us->extra = info; us->extra_destructor = isd200_free_info_ptrs; } else US_DEBUGP("ERROR - kmalloc failure\n"); return retStatus; } /************************************************************************** * Initialization for the ISD200 */ int isd200_Initialization(struct us_data *us) { US_DEBUGP("ISD200 Initialization...\n"); /* Initialize ISD200 info struct */ if (isd200_init_info(us) == ISD200_ERROR) { US_DEBUGP("ERROR Initializing ISD200 Info struct\n"); } else { /* Get device specific data */ if (isd200_get_inquiry_data(us) != ISD200_GOOD) US_DEBUGP("ISD200 Initialization Failure\n"); else US_DEBUGP("ISD200 Initialization complete\n"); } return 0; } /************************************************************************** * Protocol and Transport for the ISD200 ASIC * * This protocol and transport are for ATA devices connected to an ISD200 * ASIC. An ATAPI device that is conected as a slave device will be * detected in the driver initialization function and the protocol will * be changed to an ATAPI protocol (Transparent SCSI). * */ void isd200_ata_command(struct scsi_cmnd *srb, struct us_data *us) { int sendToTransport = 1, orig_bufflen; union ata_cdb ataCdb; /* Make sure driver was initialized */ if (us->extra == NULL) US_DEBUGP("ERROR Driver not initialized\n"); scsi_set_resid(srb, 0); /* scsi_bufflen might change in protocol translation to ata */ orig_bufflen = scsi_bufflen(srb); sendToTransport = isd200_scsi_to_ata(srb, us, &ataCdb); /* send the command to the transport layer */ if (sendToTransport) isd200_invoke_transport(us, srb, &ataCdb); isd200_srb_set_bufflen(srb, orig_bufflen); }