#ifdef __KERNEL__ #ifndef _PPC_IO_H #define _PPC_IO_H #include <linux/string.h> #include <linux/types.h> #include <asm/page.h> #include <asm/byteorder.h> #include <asm/synch.h> #include <asm/mmu.h> #define SIO_CONFIG_RA 0x398 #define SIO_CONFIG_RD 0x399 #define SLOW_DOWN_IO #define PMAC_ISA_MEM_BASE 0 #define PMAC_PCI_DRAM_OFFSET 0 #define CHRP_ISA_IO_BASE 0xf8000000 #define CHRP_ISA_MEM_BASE 0xf7000000 #define CHRP_PCI_DRAM_OFFSET 0 #define PREP_ISA_IO_BASE 0x80000000 #define PREP_ISA_MEM_BASE 0xc0000000 #define PREP_PCI_DRAM_OFFSET 0x80000000 #if defined(CONFIG_4xx) #include <asm/ibm4xx.h> #elif defined(CONFIG_PPC_MPC52xx) #include <asm/mpc52xx.h> #elif defined(CONFIG_8xx) #include <asm/mpc8xx.h> #elif defined(CONFIG_8260) #include <asm/mpc8260.h> #elif defined(CONFIG_83xx) #include <asm/mpc83xx.h> #elif defined(CONFIG_85xx) #include <asm/mpc85xx.h> #elif defined(CONFIG_APUS) #define _IO_BASE 0 #define _ISA_MEM_BASE 0 #define PCI_DRAM_OFFSET 0 #else /* Everyone else */ #define _IO_BASE isa_io_base #define _ISA_MEM_BASE isa_mem_base #define PCI_DRAM_OFFSET pci_dram_offset #endif /* Platform-dependent I/O */ #define ___IO_BASE ((void __iomem *)_IO_BASE) extern unsigned long isa_io_base; extern unsigned long isa_mem_base; extern unsigned long pci_dram_offset; /* * 8, 16 and 32 bit, big and little endian I/O operations, with barrier. * * Read operations have additional twi & isync to make sure the read * is actually performed (i.e. the data has come back) before we start * executing any following instructions. */ extern inline int in_8(const volatile unsigned char __iomem *addr) { int ret; __asm__ __volatile__( "lbz%U1%X1 %0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "m" (*addr)); return ret; } extern inline void out_8(volatile unsigned char __iomem *addr, int val) { __asm__ __volatile__("stb%U0%X0 %1,%0; eieio" : "=m" (*addr) : "r" (val)); } extern inline int in_le16(const volatile unsigned short __iomem *addr) { int ret; __asm__ __volatile__("lhbrx %0,0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "r" (addr), "m" (*addr)); return ret; } extern inline int in_be16(const volatile unsigned short __iomem *addr) { int ret; __asm__ __volatile__("lhz%U1%X1 %0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "m" (*addr)); return ret; } extern inline void out_le16(volatile unsigned short __iomem *addr, int val) { __asm__ __volatile__("sthbrx %1,0,%2; eieio" : "=m" (*addr) : "r" (val), "r" (addr)); } extern inline void out_be16(volatile unsigned short __iomem *addr, int val) { __asm__ __volatile__("sth%U0%X0 %1,%0; eieio" : "=m" (*addr) : "r" (val)); } extern inline unsigned in_le32(const volatile unsigned __iomem *addr) { unsigned ret; __asm__ __volatile__("lwbrx %0,0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "r" (addr), "m" (*addr)); return ret; } extern inline unsigned in_be32(const volatile unsigned __iomem *addr) { unsigned ret; __asm__ __volatile__("lwz%U1%X1 %0,%1;\n" "twi 0,%0,0;\n" "isync" : "=r" (ret) : "m" (*addr)); return ret; } extern inline void out_le32(volatile unsigned __iomem *addr, int val) { __asm__ __volatile__("stwbrx %1,0,%2; eieio" : "=m" (*addr) : "r" (val), "r" (addr)); } extern inline void out_be32(volatile unsigned __iomem *addr, int val) { __asm__ __volatile__("stw%U0%X0 %1,%0; eieio" : "=m" (*addr) : "r" (val)); } #if defined (CONFIG_8260_PCI9) #define readb(addr) in_8((volatile u8 *)(addr)) #define writeb(b,addr) out_8((volatile u8 *)(addr), (b)) #else static inline __u8 readb(const volatile void __iomem *addr) { return in_8(addr); } static inline void writeb(__u8 b, volatile void __iomem *addr) { out_8(addr, b); } #endif #if defined(CONFIG_APUS) static inline __u16 readw(const volatile void __iomem *addr) { return *(__force volatile __u16 *)(addr); } static inline __u32 readl(const volatile void __iomem *addr) { return *(__force volatile __u32 *)(addr); } static inline void writew(__u16 b, volatile void __iomem *addr) { *(__force volatile __u16 *)(addr) = b; } static inline void writel(__u32 b, volatile void __iomem *addr) { *(__force volatile __u32 *)(addr) = b; } #elif defined (CONFIG_8260_PCI9) /* Use macros if PCI9 workaround enabled */ #define readw(addr) in_le16((volatile u16 *)(addr)) #define readl(addr) in_le32((volatile u32 *)(addr)) #define writew(b,addr) out_le16((volatile u16 *)(addr),(b)) #define writel(b,addr) out_le32((volatile u32 *)(addr),(b)) #else static inline __u16 readw(const volatile void __iomem *addr) { return in_le16(addr); } static inline __u32 readl(const volatile void __iomem *addr) { return in_le32(addr); } static inline void writew(__u16 b, volatile void __iomem *addr) { out_le16(addr, b); } static inline void writel(__u32 b, volatile void __iomem *addr) { out_le32(addr, b); } #endif /* CONFIG_APUS */ #define readb_relaxed(addr) readb(addr) #define readw_relaxed(addr) readw(addr) #define readl_relaxed(addr) readl(addr) static inline __u8 __raw_readb(const volatile void __iomem *addr) { return *(__force volatile __u8 *)(addr); } static inline __u16 __raw_readw(const volatile void __iomem *addr) { return *(__force volatile __u16 *)(addr); } static inline __u32 __raw_readl(const volatile void __iomem *addr) { return *(__force volatile __u32 *)(addr); } static inline void __raw_writeb(__u8 b, volatile void __iomem *addr) { *(__force volatile __u8 *)(addr) = b; } static inline void __raw_writew(__u16 b, volatile void __iomem *addr) { *(__force volatile __u16 *)(addr) = b; } static inline void __raw_writel(__u32 b, volatile void __iomem *addr) { *(__force volatile __u32 *)(addr) = b; } #define mmiowb() /* * The insw/outsw/insl/outsl macros don't do byte-swapping. * They are only used in practice for transferring buffers which * are arrays of bytes, and byte-swapping is not appropriate in * that case. - paulus */ #define insb(port, buf, ns) _insb((port)+___IO_BASE, (buf), (ns)) #define outsb(port, buf, ns) _outsb((port)+___IO_BASE, (buf), (ns)) #define insw(port, buf, ns) _insw_ns((port)+___IO_BASE, (buf), (ns)) #define outsw(port, buf, ns) _outsw_ns((port)+___IO_BASE, (buf), (ns)) #define insl(port, buf, nl) _insl_ns((port)+___IO_BASE, (buf), (nl)) #define outsl(port, buf, nl) _outsl_ns((port)+___IO_BASE, (buf), (nl)) /* * On powermacs and 8xx we will get a machine check exception * if we try to read data from a non-existent I/O port. Because * the machine check is an asynchronous exception, it isn't * well-defined which instruction SRR0 will point to when the * exception occurs. * With the sequence below (twi; isync; nop), we have found that * the machine check occurs on one of the three instructions on * all PPC implementations tested so far. The twi and isync are * needed on the 601 (in fact twi; sync works too), the isync and * nop are needed on 604[e|r], and any of twi, sync or isync will * work on 603[e], 750, 74xx. * The twi creates an explicit data dependency on the returned * value which seems to be needed to make the 601 wait for the * load to finish. */ #define __do_in_asm(name, op) \ extern __inline__ unsigned int name(unsigned int port) \ { \ unsigned int x; \ __asm__ __volatile__( \ "0:" op " %0,0,%1\n" \ "1: twi 0,%0,0\n" \ "2: isync\n" \ "3: nop\n" \ "4:\n" \ ".section .fixup,\"ax\"\n" \ "5: li %0,-1\n" \ " b 4b\n" \ ".previous\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 0b,5b\n" \ " .long 1b,5b\n" \ " .long 2b,5b\n" \ " .long 3b,5b\n" \ ".previous" \ : "=&r" (x) \ : "r" (port + ___IO_BASE)); \ return x; \ } #define __do_out_asm(name, op) \ extern __inline__ void name(unsigned int val, unsigned int port) \ { \ __asm__ __volatile__( \ "0:" op " %0,0,%1\n" \ "1: sync\n" \ "2:\n" \ ".section __ex_table,\"a\"\n" \ " .align 2\n" \ " .long 0b,2b\n" \ " .long 1b,2b\n" \ ".previous" \ : : "r" (val), "r" (port + ___IO_BASE)); \ } __do_out_asm(outb, "stbx") #ifdef CONFIG_APUS __do_in_asm(inb, "lbzx") __do_in_asm(inw, "lhz%U1%X1") __do_in_asm(inl, "lwz%U1%X1") __do_out_asm(outl,"stw%U0%X0") __do_out_asm(outw, "sth%U0%X0") #elif defined (CONFIG_8260_PCI9) /* in asm cannot be defined if PCI9 workaround is used */ #define inb(port) in_8((port)+___IO_BASE) #define inw(port) in_le16((port)+___IO_BASE) #define inl(port) in_le32((port)+___IO_BASE) __do_out_asm(outw, "sthbrx") __do_out_asm(outl, "stwbrx") #else __do_in_asm(inb, "lbzx") __do_in_asm(inw, "lhbrx") __do_in_asm(inl, "lwbrx") __do_out_asm(outw, "sthbrx") __do_out_asm(outl, "stwbrx") #endif #define inb_p(port) inb((port)) #define outb_p(val, port) outb((val), (port)) #define inw_p(port) inw((port)) #define outw_p(val, port) outw((val), (port)) #define inl_p(port) inl((port)) #define outl_p(val, port) outl((val), (port)) extern void _insb(volatile u8 __iomem *port, void *buf, int ns); extern void _outsb(volatile u8 __iomem *port, const void *buf, int ns); extern void _insw(volatile u16 __iomem *port, void *buf, int ns); extern void _outsw(volatile u16 __iomem *port, const void *buf, int ns); extern void _insl(volatile u32 __iomem *port, void *buf, int nl); extern void _outsl(volatile u32 __iomem *port, const void *buf, int nl); extern void _insw_ns(volatile u16 __iomem *port, void *buf, int ns); extern void _outsw_ns(volatile u16 __iomem *port, const void *buf, int ns); extern void _insl_ns(volatile u32 __iomem *port, void *buf, int nl); extern void _outsl_ns(volatile u32 __iomem *port, const void *buf, int nl); /* * The *_ns versions below don't do byte-swapping. * Neither do the standard versions now, these are just here * for older code. */ #define insw_ns(port, buf, ns) _insw_ns((port)+___IO_BASE, (buf), (ns)) #define outsw_ns(port, buf, ns) _outsw_ns((port)+___IO_BASE, (buf), (ns)) #define insl_ns(port, buf, nl) _insl_ns((port)+___IO_BASE, (buf), (nl)) #define outsl_ns(port, buf, nl) _outsl_ns((port)+___IO_BASE, (buf), (nl)) #define IO_SPACE_LIMIT ~0 #if defined (CONFIG_8260_PCI9) #define memset_io(a,b,c) memset((void *)(a),(b),(c)) #define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c)) #define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c)) #else static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count) { memset((void __force *)addr, val, count); } static inline void memcpy_fromio(void *dst,const volatile void __iomem *src, int count) { memcpy(dst, (void __force *) src, count); } static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count) { memcpy((void __force *) dst, src, count); } #endif #define eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(void __force *)(void __iomem *)(b),(c),(d)) /* * Map in an area of physical address space, for accessing * I/O devices etc. */ extern void __iomem *__ioremap(phys_addr_t address, unsigned long size, unsigned long flags); extern void __iomem *ioremap(phys_addr_t address, unsigned long size); #ifdef CONFIG_44x extern void __iomem *ioremap64(unsigned long long address, unsigned long size); #endif #define ioremap_nocache(addr, size) ioremap((addr), (size)) extern void iounmap(volatile void __iomem *addr); extern unsigned long iopa(unsigned long addr); extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; extern void io_block_mapping(unsigned long virt, phys_addr_t phys, unsigned int size, int flags); /* * The PCI bus is inherently Little-Endian. The PowerPC is being * run Big-Endian. Thus all values which cross the [PCI] barrier * must be endian-adjusted. Also, the local DRAM has a different * address from the PCI point of view, thus buffer addresses also * have to be modified [mapped] appropriately. */ extern inline unsigned long virt_to_bus(volatile void * address) { #ifndef CONFIG_APUS if (address == (void *)0) return 0; return (unsigned long)address - KERNELBASE + PCI_DRAM_OFFSET; #else return iopa ((unsigned long) address); #endif } extern inline void * bus_to_virt(unsigned long address) { #ifndef CONFIG_APUS if (address == 0) return NULL; return (void *)(address - PCI_DRAM_OFFSET + KERNELBASE); #else return (void*) mm_ptov (address); #endif } /* * Change virtual addresses to physical addresses and vv, for * addresses in the area where the kernel has the RAM mapped. */ extern inline unsigned long virt_to_phys(volatile void * address) { #ifndef CONFIG_APUS return (unsigned long) address - KERNELBASE; #else return iopa ((unsigned long) address); #endif } extern inline void * phys_to_virt(unsigned long address) { #ifndef CONFIG_APUS return (void *) (address + KERNELBASE); #else return (void*) mm_ptov (address); #endif } /* * Change "struct page" to physical address. */ #define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT) #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET) /* Enforce in-order execution of data I/O. * No distinction between read/write on PPC; use eieio for all three. */ #define iobarrier_rw() eieio() #define iobarrier_r() eieio() #define iobarrier_w() eieio() static inline int check_signature(volatile void __iomem * io_addr, const unsigned char *signature, int length) { int retval = 0; do { if (readb(io_addr) != *signature) goto out; io_addr++; signature++; length--; } while (length); retval = 1; out: return retval; } /* * Here comes the ppc implementation of the IOMAP * interfaces. */ static inline unsigned int ioread8(void __iomem *addr) { return readb(addr); } static inline unsigned int ioread16(void __iomem *addr) { return readw(addr); } static inline unsigned int ioread32(void __iomem *addr) { return readl(addr); } static inline void iowrite8(u8 val, void __iomem *addr) { writeb(val, addr); } static inline void iowrite16(u16 val, void __iomem *addr) { writew(val, addr); } static inline void iowrite32(u32 val, void __iomem *addr) { writel(val, addr); } static inline void ioread8_rep(void __iomem *addr, void *dst, unsigned long count) { _insb(addr, dst, count); } static inline void ioread16_rep(void __iomem *addr, void *dst, unsigned long count) { _insw_ns(addr, dst, count); } static inline void ioread32_rep(void __iomem *addr, void *dst, unsigned long count) { _insl_ns(addr, dst, count); } static inline void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count) { _outsb(addr, src, count); } static inline void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count) { _outsw_ns(addr, src, count); } static inline void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count) { _outsl_ns(addr, src, count); } /* Create a virtual mapping cookie for an IO port range */ extern void __iomem *ioport_map(unsigned long port, unsigned int nr); extern void ioport_unmap(void __iomem *); /* Create a virtual mapping cookie for a PCI BAR (memory or IO) */ struct pci_dev; extern void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long max); extern void pci_iounmap(struct pci_dev *dev, void __iomem *); #endif /* _PPC_IO_H */ #ifdef CONFIG_8260_PCI9 #include <asm/mpc8260_pci9.h> #endif #ifdef CONFIG_NOT_COHERENT_CACHE #define dma_cache_inv(_start,_size) \ invalidate_dcache_range(_start, (_start + _size)) #define dma_cache_wback(_start,_size) \ clean_dcache_range(_start, (_start + _size)) #define dma_cache_wback_inv(_start,_size) \ flush_dcache_range(_start, (_start + _size)) #else #define dma_cache_inv(_start,_size) do { } while (0) #define dma_cache_wback(_start,_size) do { } while (0) #define dma_cache_wback_inv(_start,_size) do { } while (0) #endif /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) /* * Convert a virtual cached pointer to an uncached pointer */ #define xlate_dev_kmem_ptr(p) p /* access ports */ #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v)) #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v)) #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v)) #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v)) #endif /* __KERNEL__ */