#ifndef MM_SLAB_H #define MM_SLAB_H /* * Internal slab definitions */ /* * State of the slab allocator. * * This is used to describe the states of the allocator during bootup. * Allocators use this to gradually bootstrap themselves. Most allocators * have the problem that the structures used for managing slab caches are * allocated from slab caches themselves. */ enum slab_state { DOWN, /* No slab functionality yet */ PARTIAL, /* SLUB: kmem_cache_node available */ PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */ PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */ UP, /* Slab caches usable but not all extras yet */ FULL /* Everything is working */ }; extern enum slab_state slab_state; /* The slab cache mutex protects the management structures during changes */ extern struct mutex slab_mutex; /* The list of all slab caches on the system */ extern struct list_head slab_caches; /* The slab cache that manages slab cache information */ extern struct kmem_cache *kmem_cache; unsigned long calculate_alignment(unsigned long flags, unsigned long align, unsigned long size); #ifndef CONFIG_SLOB /* Kmalloc array related functions */ void create_kmalloc_caches(unsigned long); #endif /* Functions provided by the slab allocators */ extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags); extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size, unsigned long flags); extern void create_boot_cache(struct kmem_cache *, const char *name, size_t size, unsigned long flags); struct mem_cgroup; #ifdef CONFIG_SLUB struct kmem_cache * __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)); #else static inline struct kmem_cache * __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size, size_t align, unsigned long flags, void (*ctor)(void *)) { return NULL; } #endif /* Legal flag mask for kmem_cache_create(), for various configurations */ #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \ SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS ) #if defined(CONFIG_DEBUG_SLAB) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) #elif defined(CONFIG_SLUB_DEBUG) #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ SLAB_TRACE | SLAB_DEBUG_FREE) #else #define SLAB_DEBUG_FLAGS (0) #endif #if defined(CONFIG_SLAB) #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \ SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK) #elif defined(CONFIG_SLUB) #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \ SLAB_TEMPORARY | SLAB_NOTRACK) #else #define SLAB_CACHE_FLAGS (0) #endif #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS) int __kmem_cache_shutdown(struct kmem_cache *); struct seq_file; struct file; struct slabinfo { unsigned long active_objs; unsigned long num_objs; unsigned long active_slabs; unsigned long num_slabs; unsigned long shared_avail; unsigned int limit; unsigned int batchcount; unsigned int shared; unsigned int objects_per_slab; unsigned int cache_order; }; void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo); void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s); ssize_t slabinfo_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos); #ifdef CONFIG_MEMCG_KMEM static inline bool is_root_cache(struct kmem_cache *s) { return !s->memcg_params || s->memcg_params->is_root_cache; } static inline bool cache_match_memcg(struct kmem_cache *cachep, struct mem_cgroup *memcg) { return (is_root_cache(cachep) && !memcg) || (cachep->memcg_params->memcg == memcg); } static inline void memcg_bind_pages(struct kmem_cache *s, int order) { if (!is_root_cache(s)) atomic_add(1 << order, &s->memcg_params->nr_pages); } static inline void memcg_release_pages(struct kmem_cache *s, int order) { if (is_root_cache(s)) return; if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages)) mem_cgroup_destroy_cache(s); } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return (p == s) || (s->memcg_params && (p == s->memcg_params->root_cache)); } /* * We use suffixes to the name in memcg because we can't have caches * created in the system with the same name. But when we print them * locally, better refer to them with the base name */ static inline const char *cache_name(struct kmem_cache *s) { if (!is_root_cache(s)) return s->memcg_params->root_cache->name; return s->name; } static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx) { return s->memcg_params->memcg_caches[idx]; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { if (is_root_cache(s)) return s; return s->memcg_params->root_cache; } #else static inline bool is_root_cache(struct kmem_cache *s) { return true; } static inline bool cache_match_memcg(struct kmem_cache *cachep, struct mem_cgroup *memcg) { return true; } static inline void memcg_bind_pages(struct kmem_cache *s, int order) { } static inline void memcg_release_pages(struct kmem_cache *s, int order) { } static inline bool slab_equal_or_root(struct kmem_cache *s, struct kmem_cache *p) { return true; } static inline const char *cache_name(struct kmem_cache *s) { return s->name; } static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx) { return NULL; } static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s) { return s; } #endif static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x) { struct kmem_cache *cachep; struct page *page; /* * When kmemcg is not being used, both assignments should return the * same value. but we don't want to pay the assignment price in that * case. If it is not compiled in, the compiler should be smart enough * to not do even the assignment. In that case, slab_equal_or_root * will also be a constant. */ if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE)) return s; page = virt_to_head_page(x); cachep = page->slab_cache; if (slab_equal_or_root(cachep, s)) return cachep; pr_err("%s: Wrong slab cache. %s but object is from %s\n", __FUNCTION__, cachep->name, s->name); WARN_ON_ONCE(1); return s; } #endif