aboutsummaryrefslogtreecommitdiffstats
path: root/fs/gfs2/dentry.c
Commit message (Collapse)AuthorAgeFilesLines
* GFS2: Remove localcaching mount optionSteven Whitehouse2010-09-231-1/+1
| | | | | | | | | | | | | | | This option defaulted to on for lock_nolock mounts and off otherwise. The only function was to avoid the revalidation of dentries. In the cluster case, that is entirely pointless and liable to cause coherency problems. The patch changes the revalidation to depend upon whether the fs is a local or cluster fs (i.e. it follows the existing default behaviour). I very much doubt anybody ever used this option as there is no reason to. Even so we will continue to accept it on the mount command line, but ignore it. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* include cleanup: Update gfp.h and slab.h includes to prepare for breaking ↵Tejun Heo2010-03-301-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
* GFS2: free disk inode which is deleted by remote node -V2Wengang Wang2009-08-181-0/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | this patch is for the same problem that Benjamin Marzinski fixes at commit b94a170e96dc416828af9d350ae2e34b70ae7347 quotation of the original problem: ---cut here--- When a file is deleted from a gfs2 filesystem on one node, a dcache entry for it may still exist on other nodes in the cluster. If this happens, gfs2 will be unable to free this file on disk. Because of this, it's possible to have a gfs2 filesystem with no files on it and no free space. With this patch, when a node receives a callback notifying it that the file is being deleted on another node, it schedules a new workqueue thread to remove the file's dcache entry. ---end cut--- after applying Benjamin's patch, I think there is still a case in which the disk inode remains even when "no space" is hit. the case is that when running d_prune_aliases() against the inode, there are one or more dentries(aliases) which have reference count number > 0. in this case the dentries won't be pruned. and even later, the reference count becomes to 0, the dentries can still be cached in memory. unfortunately, no callback come again, things come back to the state before the callback runs. thus the on disk inode remains there until in memoryinode is removed for some other reason(shrinking inode cache or unmount the volume..). this patch is to remove those dentries when their reference count becomes to 0 and the inode is deleted by remote node. for implementation, gfs2_dentry_delete() is added as dentry_operations.d_delete. the function returns true when the inode is deleted by remote node. in dput(), gfs2_dentry_delete() is called and since it returns true, the dentry is unhashed from dcache and then removed. when all dentries are removed, the in memory inode get removed so that the on disk inode is freed. Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
* GFS2: Clean up some file namesSteven Whitehouse2009-05-221-0/+114
This patch renames the ops_*.c files which have no counterpart without the ops_ prefix in order to shorten the name and make it more readable. In addition, ops_address.h (which was very small) is moved into inode.h and inode.h is cleaned up by adding extern where required. Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>