aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/time.h
Commit message (Collapse)AuthorAgeFilesLines
* time: Move ktime_t overflow checking into timespec_valid_strictJohn Stultz2012-10-021-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | commit cee58483cf56e0ba355fdd97ff5e8925329aa936 upstream Andreas Bombe reported that the added ktime_t overflow checking added to timespec_valid in commit 4e8b14526ca7 ("time: Improve sanity checking of timekeeping inputs") was causing problems with X.org because it caused timeouts larger then KTIME_T to be invalid. Previously, these large timeouts would be clamped to KTIME_MAX and would never expire, which is valid. This patch splits the ktime_t overflow checking into a new timespec_valid_strict function, and converts the timekeeping codes internal checking to use this more strict function. Reported-and-tested-by: Andreas Bombe <aeb@debian.org> Cc: Zhouping Liu <zliu@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* time: Improve sanity checking of timekeeping inputsJohn Stultz2012-10-021-2/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 4e8b14526ca7fb046a81c94002c1c43b6fdf0e9b upstream Unexpected behavior could occur if the time is set to a value large enough to overflow a 64bit ktime_t (which is something larger then the year 2262). Also unexpected behavior could occur if large negative offsets are injected via adjtimex. So this patch improves the sanity check timekeeping inputs by improving the timespec_valid() check, and then makes better use of timespec_valid() to make sure we don't set the time to an invalid negative value or one that overflows ktime_t. Note: This does not protect from setting the time close to overflowing ktime_t and then letting natural accumulation cause the overflow. Reported-by: CAI Qian <caiqian@redhat.com> Reported-by: Sasha Levin <levinsasha928@gmail.com> Signed-off-by: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Zhouping Liu <zliu@redhat.com> Cc: Ingo Molnar <mingo@kernel.org> Link: http://lkml.kernel.org/r/1344454580-17031-1-git-send-email-john.stultz@linaro.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* timers: Posix interface for alarm-timersJohn Stultz2011-04-261-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch exposes alarm-timers to userland via the posix clock and timers interface, using two new clockids: CLOCK_REALTIME_ALARM and CLOCK_BOOTTIME_ALARM. Both clockids behave identically to CLOCK_REALTIME and CLOCK_BOOTTIME, respectively, but timers set against the _ALARM suffixed clockids will wake the system if it is suspended. Some background can be found here: https://lwn.net/Articles/429925/ The concept for Alarm-timers was inspired by the Android Alarm driver (by Arve Hjønnevåg) found in the Android kernel tree. See: http://android.git.kernel.org/?p=kernel/common.git;a=blob;f=drivers/rtc/alarm.c;h=1250edfbdf3302f5e4ea6194847c6ef4bb7beb1c;hb=android-2.6.36 While the in-kernel interface is pretty similar between alarm-timers and Android alarm driver, the user-space interface for the Android alarm driver is via ioctls to a new char device. As mentioned above, I've instead chosen to export this functionality via the posix interface, as it seemed a little simpler and avoids creating duplicate interfaces to things like CLOCK_REALTIME and CLOCK_MONOTONIC under alternate names (ie:ANDROID_ALARM_RTC and ANDROID_ALARM_SYSTEMTIME). The semantics of the Android alarm driver are different from what this posix interface provides. For instance, threads other then the thread waiting on the Android alarm driver are able to modify the alarm being waited on. Also this interface does not allow the same wakelock semantics that the Android driver provides (ie: kernel takes a wakelock on RTC alarm-interupt, and holds it through process wakeup, and while the process runs, until the process either closes the char device or calls back in to wait on a new alarm). One potential way to implement similar semantics may be via the timerfd infrastructure, but this needs more research. There may also need to be some sort of sysfs system level policy hooks that allow alarm timers to be disabled to keep them from firing at inappropriate times (ie: laptop in a well insulated bag, mid-flight). CC: Arve Hjønnevåg <arve@android.com> CC: Thomas Gleixner <tglx@linutronix.de> CC: Alessandro Zummo <a.zummo@towertech.it> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: John Stultz <john.stultz@linaro.org>
* time: Add timekeeping_inject_sleeptimeJohn Stultz2011-04-261-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | Some platforms cannot implement read_persistent_clock, as their RTC devices are only accessible when interrupts are enabled. This keeps them from being used by the timekeeping code on resume to measure the time in suspend. The RTC layer tries to work around this, by calling do_settimeofday on resume after irqs are reenabled to set the time properly. However, this only corrects CLOCK_REALTIME, and does not properly adjust the sleep time value. This causes btime in /proc/stat to be incorrect as well as making the new CLOCK_BOTTTIME inaccurate. This patch resolves the issue by introducing a new timekeeping hook to allow the RTC layer to inject the sleep time on resume. The code also checks to make sure that read_persistent_clock is nonfunctional before setting the sleep time, so that should the RTC's HCTOSYS option be configured in on a system that does support read_persistent_clock we will not increase the total_sleep_time twice. CC: Arve Hjønnevåg <arve@android.com> CC: Thomas Gleixner <tglx@linutronix.de> Acked-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: John Stultz <john.stultz@linaro.org>
* timers: Add CLOCK_BOOTTIME hrtimer baseJohn Stultz2011-02-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | CLOCK_MONOTONIC stops while the system is in suspend. This is because to applications system suspend is invisible. However, there is a growing set of applications that are wanting to be suspend-aware, but do not want to deal with the complications of CLOCK_REALTIME (which might jump around if settimeofday is called). For these applications, I propose a new clockid: CLOCK_BOOTTIME. CLOCK_BOOTTIME is idential to CLOCK_MONOTONIC, except it also includes any time spent in suspend. This patch add hrtimer base for CLOCK_BOOTTIME, using get_monotonic_boottime/ktime_get_boottime, to allow in kernel users to set timers against. CC: Jamie Lokier <jamie@shareable.org> CC: Thomas Gleixner <tglx@linutronix.de> CC: Alexander Shishkin <virtuoso@slind.org> CC: Arve Hjønnevåg <arve@android.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
* time: Extend get_xtime_and_monotonic_offset() to also return sleepJohn Stultz2011-02-211-1/+2
| | | | | | | | | | | Extend get_xtime_and_monotonic_offset to get_xtime_and_monotonic_and_sleep_offset(). CC: Jamie Lokier <jamie@shareable.org> CC: Thomas Gleixner <tglx@linutronix.de> CC: Alexander Shishkin <virtuoso@slind.org> CC: Arve Hjønnevåg <arve@android.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
* time: Introduce get_monotonic_boottime and ktime_get_boottimeJohn Stultz2011-02-211-0/+1
| | | | | | | | | | | This adds new functions that return the monotonic time since boot (in other words, CLOCK_MONOTONIC + suspend time). CC: Jamie Lokier <jamie@shareable.org> CC: Thomas Gleixner <tglx@linutronix.de> CC: Alexander Shishkin <virtuoso@slind.org> CC: Arve Hjønnevåg <arve@android.com> Signed-off-by: John Stultz <john.stultz@linaro.org>
* time: Introduce timekeeping_inject_offsetJohn Stultz2011-02-021-0/+1
| | | | | | | | | | | | | | This adds a kernel-internal timekeeping interface to add or subtract a fixed amount from CLOCK_REALTIME. This makes it so kernel users or interfaces trying to do so do not have to read the time, then add an offset and then call settimeofday(), which adds some extra error in comparision to just simply adding the offset in the kernel timekeeping core. Signed-off-by: John Stultz <john.stultz@linaro.org> Signed-off-by: Richard Cochran <richard.cochran@omicron.at> LKML-Reference: <20110201134419.584311693@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Correct the *settime* parametersRichard Cochran2011-02-021-2/+3
| | | | | | | | | | | | Both settimeofday() and clock_settime() promise with a 'const' attribute not to alter the arguments passed in. This patch adds the missing 'const' attribute into the various kernel functions implementing these calls. Signed-off-by: Richard Cochran <richard.cochran@omicron.at> Acked-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <20110201134417.545698637@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Make do_timer() and xtime_lock local to kernel/time/Torben Hohn2011-01-311-2/+0
| | | | | | | | | | | | | | | | All callers of do_timer() are converted to xtime_update(). The only users of xtime_lock are in kernel/time/. Make both local to kernel/time/ and remove them from the global header files. [ tglx: Reuse tick-internal.h instead of creating another local header file. Massaged changelog ] Signed-off-by: Torben Hohn <torbenh@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: johnstul@us.ibm.com Cc: yong.zhang0@gmail.com Cc: hch@infradead.org Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Remove unused __get_wall_to_monotonic()Thomas Gleixner2011-01-311-1/+0
| | | | | | No users left. Remove it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Provide get_xtime_and_monotonic_offset()Torben Hohn2011-01-311-0/+1
| | | | | | | | | | | | | | | | The hrtimer code accesses timekeeping variables under xtime_lock. Provide a sensible accessor function and use it. [ tglx: Removed the conditionals, unused variable, fixed codingstyle and massaged changelog ] Signed-off-by: Torben Hohn <torbenh@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: johnstul@us.ibm.com Cc: yong.zhang0@gmail.com Cc: hch@infradead.org LKML-Reference: <20110127145905.23248.30458.stgit@localhost> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Move do_timer() to kernel/time/timekeeping.cTorben Hohn2011-01-311-1/+0
| | | | | | | | | | | | | | | | do_timer() is primary timekeeping related. calc_global_load() is called from do_timer() as well, but that's more for historical reasons. [ tglx: Fixed up the calc_global_load() reject andmassaged changelog ] Signed-off-by: Torben Hohn <torbenh@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: johnstul@us.ibm.com Cc: yong.zhang0@gmail.com Cc: hch@infradead.org LKML-Reference: <20110127145855.23248.56933.stgit@localhost> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* pps: capture MONOTONIC_RAW timestamps as wellAlexander Gordeev2011-01-131-0/+2
| | | | | | | | | | | | | | | | MONOTONIC_RAW clock timestamps are ideally suited for frequency calculation and also fit well into the original NTP hardpps design. Now phase and frequency can be adjusted separately: the former based on REALTIME clock and the latter based on MONOTONIC_RAW clock. A new function getnstime_raw_and_real is added to timekeeping subsystem to capture both timestamps at the same time and atomically. Signed-off-by: Alexander Gordeev <lasaine@lvk.cs.msu.su> Acked-by: John Stultz <johnstul@us.ibm.com> Cc: Rodolfo Giometti <giometti@enneenne.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Mark arguments to certain syscalls as being constDavid Howells2010-08-131-1/+1
| | | | | | | | | | | | | | | | Mark arguments to certain system calls as being const where they should be but aren't. The list includes: (*) The filename arguments of various stat syscalls, execve(), various utimes syscalls and some mount syscalls. (*) The filename arguments of some syscall helpers relating to the above. (*) The buffer argument of various write syscalls. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* x86/hpet: Use the FSEC_PER_SEC constant for femto-second periodsChris Wilson2010-08-121-1/+1
| | | | | | | | | | | | | | | | | The current computation, introduced with f12a15be63, of FSEC_PER_SEC using the multiplication of (FSEC_PER_NSEC * NSEC_PER_SEC) is performed only with 32bit integers on small machines, resulting in an overflow and a *very* short intervals being programmed. An interrupt storm follows. Note that we also have to specify FSEC_PER_SEC as being long long to overcome the same limitations. Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@elte.hu> Acked-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* timekeeping: Make xtime and wall_to_monotonic staticJohn Stultz2010-07-271-2/+0
| | | | | | | | | | | This patch makes xtime and wall_to_monotonic static, as planned in Documentation/feature-removal-schedule.txt. This will allow for further cleanups to the timekeeping core. Signed-off-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1279068988-21864-10-git-send-email-johnstul@us.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* hrtimer: Cleanup direct access to wall_to_monotonicJohn Stultz2010-07-271-1/+2
| | | | | | | | | | | | Provides an accessor function to replace hrtimer.c's direct access of wall_to_monotonic. This will allow wall_to_monotonic to be made static as planned in Documentation/feature-removal-schedule.txt Signed-off-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1279068988-21864-9-git-send-email-johnstul@us.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Implement timespec_addJohn Stultz2010-07-271-0/+16
| | | | | | | | | | | | After accidentally misusing timespec_add_safe, I wanted to make sure we don't accidently trip over that issue again, so I created a simple timespec_add() function which we can use to replace the instances of timespec_add_safe() that don't want the overflow detection. Signed-off-by: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1279068988-21864-3-git-send-email-johnstul@us.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: Remove xtime_cacheJohn Stultz2010-04-131-1/+0
| | | | | | | | | | | | | | | | | | | | With the earlier logarithmic time accumulation patch, xtime will now always be within one "tick" of the current time, instead of possibly half a second off. This removes the need for the xtime_cache value, which always stored the time at the last interrupt, so this patch cleans that up removing the xtime_cache related code. This patch also addresses an issue with an earlier version of this change, where xtime_cache was normalizing xtime, which could in some cases be not valid (ie: tv_nsec == NSEC_PER_SEC). This is fixed by handling the edge case in update_wall_time(). Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Petr Titěra <P.Titera@century.cz> LKML-Reference: <1270589451-30773-1-git-send-email-johnstul@us.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* nohz: Prevent clocksource wrapping during idleJon Hunter2009-11-131-0/+1
| | | | | | | | | | | | | | | | | | | The dynamic tick allows the kernel to sleep for periods longer than a single tick, but it does not limit the sleep time currently. In the worst case the kernel could sleep longer than the wrap around time of the time keeping clock source which would result in losing track of time. Prevent this by limiting it to the safe maximum sleep time of the current time keeping clock source. The value is calculated when the clock source is registered. [ tglx: simplified the code a bit and massaged the commit msg ] Signed-off-by: Jon Hunter <jon-hunter@ti.com> Cc: John Stultz <johnstul@us.ibm.com> LKML-Reference: <1250617512-23567-2-git-send-email-jon-hunter@ti.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* time: add function to convert between calendar time and broken-down time for ↵Zhaolei2009-09-241-0/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | universal use There are many similar code in kernel for one object: convert time between calendar time and broken-down time. Here is some source I found: fs/ncpfs/dir.c fs/smbfs/proc.c fs/fat/misc.c fs/udf/udftime.c fs/cifs/netmisc.c net/netfilter/xt_time.c drivers/scsi/ips.c drivers/input/misc/hp_sdc_rtc.c drivers/rtc/rtc-lib.c arch/ia64/hp/sim/boot/fw-emu.c arch/m68k/mac/misc.c arch/powerpc/kernel/time.c arch/parisc/include/asm/rtc.h ... We can make a common function for this type of conversion, At least we can get following benefit: 1: Make kernel simple and unify 2: Easy to fix bug in converting code 3: Reduce clone of code in future For example, I'm trying to make ftrace display walltime, this patch will make me easy. This code is based on code from glibc-2.6 Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Cc: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: Pavel Machek <pavel@ucw.cz> Cc: Andi Kleen <andi@firstfloor.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* time: Prevent 32 bit overflow with set_normalized_timespec()Thomas Gleixner2009-09-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | set_normalized_timespec() nsec argument is of type long. The recent timekeeping changes of ktime_get_ts() feed ts->tv_nsec + tomono.tv_nsec + nsecs to set_normalized_timespec(). On 32 bit machines that sum can be larger than (1 << 31) and therefor result in a negative value which screws up the result completely. Make the nsec argument of set_normalized_timespec() s64 to fix the problem at hand. This also prevents similar problems for future users of set_normalized_timespec(). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Carsten Emde <carsten.emde@osadl.org> LKML-Reference: <new-submission> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: John Stultz <johnstul@us.ibm.com>
* time: Introduce CLOCK_REALTIME_COARSEjohn stultz2009-08-211-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | After talking with some application writers who want very fast, but not fine-grained timestamps, I decided to try to implement new clock_ids to clock_gettime(): CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE which returns the time at the last tick. This is very fast as we don't have to access any hardware (which can be very painful if you're using something like the acpi_pm clocksource), and we can even use the vdso clock_gettime() method to avoid the syscall. The only trade off is you only get low-res tick grained time resolution. This isn't a new idea, I know Ingo has a patch in the -rt tree that made the vsyscall gettimeofday() return coarse grained time when the vsyscall64 sysctrl was set to 2. However this affects all applications on a system. With this method, applications can choose the proper speed/granularity trade-off for themselves. Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: nikolag@ca.ibm.com Cc: Darren Hart <dvhltc@us.ibm.com> Cc: arjan@infradead.org Cc: jonathan@jonmasters.org LKML-Reference: <1250734414.6897.5.camel@localhost.localdomain> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timekeeping: Introduce read_boot_clockMartin Schwidefsky2009-08-151-0/+1
| | | | | | | | | | | | | | | Add the new function read_boot_clock to get the exact time the system has been started. For architectures without support for exact boot time a new weak function is added that returns 0. Use the exact boot time to initialize wall_to_monotonic, or xtime if the read_boot_clock returned 0. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Acked-by: John Stultz <johnstul@us.ibm.com> Cc: Daniel Walker <dwalker@fifo99.com> LKML-Reference: <20090814134811.296703241@de.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timekeeping: Increase granularity of read_persistent_clock()Martin Schwidefsky2009-08-151-1/+1
| | | | | | | | | | | | | | The persistent clock of some architectures (e.g. s390) have a better granularity than seconds. To reduce the delta between the host clock and the guest clock in a virtualized system change the read_persistent_clock function to return a struct timespec. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Acked-by: John Stultz <johnstul@us.ibm.com> Cc: Daniel Walker <dwalker@fifo99.com> LKML-Reference: <20090814134811.013873340@de.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timekeeping: Introduce timekeeping_leap_insertJohn Stultz2009-08-151-0/+1
| | | | | | | | | | Move the adjustment of xtime, wall_to_monotonic and the update of the vsyscall variables to the timekeeping code. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> LKML-Reference: <20090814134807.609730216@de.ibm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timekeeping: create arch_gettimeoffset infrastructurejohn stultz2009-05-021-0/+15
| | | | | | | | | | | | | | | | Some arches don't supply their own clocksource. This is mainly the case in architectures that get their inter-tick times by reading the counter on their interval timer. Since these timers wrap every tick, they're not really useful as clocksources. Wrapping them to act like one is possible but not very efficient. So we provide a callout these arches can implement for use with the jiffies clocksource to provide finer then tick granular time. [ Impact: ease the migration to generic time keeping ] Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* make exported headers use strict posix typesArnd Bergmann2009-03-261-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | A number of standard posix types are used in exported headers, which is not allowed if __STRICT_KERNEL_NAMES is defined. In order to get rid of the non-__STRICT_KERNEL_NAMES part and to make sane headers the default, we have to change them all to safe types. There are also still some leftovers in reiserfs_fs.h, elfcore.h and coda.h, but these files have not compiled in user space for a long time. This leaves out the various integer types ({u_,u,}int{8,16,32,64}_t), which we take care of separately. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Mauro Carvalho Chehab <mchehab@redhat.com> Cc: David Airlie <airlied@linux.ie> Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net> Cc: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org> Cc: netdev@vger.kernel.org Cc: linux-ppp@vger.kernel.org Cc: Jaroslav Kysela <perex@perex.cz> Cc: Takashi Iwai <tiwai@suse.de> Cc: David Woodhouse <dwmw2@infradead.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* sched_clock: prevent scd->clock from moving backwards, take #2Thomas Gleixner2008-12-311-0/+1
| | | | | | | | | | | | | | | | | | | | Redo: 5b7dba4: sched_clock: prevent scd->clock from moving backwards which had to be reverted due to s2ram hangs: ca7e716: Revert "sched_clock: prevent scd->clock from moving backwards" ... this time with resume restoring GTOD later in the sequence taken into account as well. The "timekeeping_suspended" flag is not very nice but we cannot call into GTOD before it has been properly resumed and the scheduler will run very early in the resume sequence. Cc: <stable@kernel.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Merge branch 'timers/range-hrtimers' into v28-range-hrtimers-for-linus-v2Thomas Gleixner2008-10-221-0/+4
|\ | | | | | | | | | | | | | | Conflicts: kernel/time/tick-sched.c Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
| * Merge commit 'linus/master' into merge-linusArjan van de Ven2008-10-171-0/+2
| |\ | | | | | | | | | | | | | | | Conflicts: arch/x86/kvm/i8254.c
| * | select: add a timespec_add_safe() functionThomas Gleixner2008-09-051-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For the select() rework, it's important to be able to add timespec structures in an overflow-safe manner. This patch adds a timespec_add_safe() function for this which is similar in operation to ktime_add_safe(), but works on a struct timespec. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
| | |
| \ \
| \ \
| \ \
*---. \ \ Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', ↵Thomas Gleixner2008-10-201-0/+5
|\ \ \ \ \ | | |_|/ / | |/| | / | | | |/ | | |/| 'timers/ntp', 'timers/posixtimers' and 'timers/debug' into v28-timers-for-linus
| | | * timers: fix itimer/many thread hangFrank Mayhar2008-09-141-0/+3
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Overview This patch reworks the handling of POSIX CPU timers, including the ITIMER_PROF, ITIMER_VIRT timers and rlimit handling. It was put together with the help of Roland McGrath, the owner and original writer of this code. The problem we ran into, and the reason for this rework, has to do with using a profiling timer in a process with a large number of threads. It appears that the performance of the old implementation of run_posix_cpu_timers() was at least O(n*3) (where "n" is the number of threads in a process) or worse. Everything is fine with an increasing number of threads until the time taken for that routine to run becomes the same as or greater than the tick time, at which point things degrade rather quickly. This patch fixes bug 9906, "Weird hang with NPTL and SIGPROF." Code Changes This rework corrects the implementation of run_posix_cpu_timers() to make it run in constant time for a particular machine. (Performance may vary between one machine and another depending upon whether the kernel is built as single- or multiprocessor and, in the latter case, depending upon the number of running processors.) To do this, at each tick we now update fields in signal_struct as well as task_struct. The run_posix_cpu_timers() function uses those fields to make its decisions. We define a new structure, "task_cputime," to contain user, system and scheduler times and use these in appropriate places: struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; This is included in the structure "thread_group_cputime," which is a new substructure of signal_struct and which varies for uniprocessor versus multiprocessor kernels. For uniprocessor kernels, it uses "task_cputime" as a simple substructure, while for multiprocessor kernels it is a pointer: struct thread_group_cputime { struct task_cputime totals; }; struct thread_group_cputime { struct task_cputime *totals; }; We also add a new task_cputime substructure directly to signal_struct, to cache the earliest expiration of process-wide timers, and task_cputime also replaces the it_*_expires fields of task_struct (used for earliest expiration of thread timers). The "thread_group_cputime" structure contains process-wide timers that are updated via account_user_time() and friends. In the non-SMP case the structure is a simple aggregator; unfortunately in the SMP case that simplicity was not achievable due to cache-line contention between CPUs (in one measured case performance was actually _worse_ on a 16-cpu system than the same test on a 4-cpu system, due to this contention). For SMP, the thread_group_cputime counters are maintained as a per-cpu structure allocated using alloc_percpu(). The timer functions update only the timer field in the structure corresponding to the running CPU, obtained using per_cpu_ptr(). We define a set of inline functions in sched.h that we use to maintain the thread_group_cputime structure and hide the differences between UP and SMP implementations from the rest of the kernel. The thread_group_cputime_init() function initializes the thread_group_cputime structure for the given task. The thread_group_cputime_alloc() is a no-op for UP; for SMP it calls the out-of-line function thread_group_cputime_alloc_smp() to allocate and fill in the per-cpu structures and fields. The thread_group_cputime_free() function, also a no-op for UP, in SMP frees the per-cpu structures. The thread_group_cputime_clone_thread() function (also a UP no-op) for SMP calls thread_group_cputime_alloc() if the per-cpu structures haven't yet been allocated. The thread_group_cputime() function fills the task_cputime structure it is passed with the contents of the thread_group_cputime fields; in UP it's that simple but in SMP it must also safely check that tsk->signal is non-NULL (if it is it just uses the appropriate fields of task_struct) and, if so, sums the per-cpu values for each online CPU. Finally, the three functions account_group_user_time(), account_group_system_time() and account_group_exec_runtime() are used by timer functions to update the respective fields of the thread_group_cputime structure. Non-SMP operation is trivial and will not be mentioned further. The per-cpu structure is always allocated when a task creates its first new thread, via a call to thread_group_cputime_clone_thread() from copy_signal(). It is freed at process exit via a call to thread_group_cputime_free() from cleanup_signal(). All functions that formerly summed utime/stime/sum_sched_runtime values from from all threads in the thread group now use thread_group_cputime() to snapshot the values in the thread_group_cputime structure or the values in the task structure itself if the per-cpu structure hasn't been allocated. Finally, the code in kernel/posix-cpu-timers.c has changed quite a bit. The run_posix_cpu_timers() function has been split into a fast path and a slow path; the former safely checks whether there are any expired thread timers and, if not, just returns, while the slow path does the heavy lifting. With the dedicated thread group fields, timers are no longer "rebalanced" and the process_timer_rebalance() function and related code has gone away. All summing loops are gone and all code that used them now uses the thread_group_cputime() inline. When process-wide timers are set, the new task_cputime structure in signal_struct is used to cache the earliest expiration; this is checked in the fast path. Performance The fix appears not to add significant overhead to existing operations. It generally performs the same as the current code except in two cases, one in which it performs slightly worse (Case 5 below) and one in which it performs very significantly better (Case 2 below). Overall it's a wash except in those two cases. I've since done somewhat more involved testing on a dual-core Opteron system. Case 1: With no itimer running, for a test with 100,000 threads, the fixed kernel took 1428.5 seconds, 513 seconds more than the unfixed system, all of which was spent in the system. There were twice as many voluntary context switches with the fix as without it. Case 2: With an itimer running at .01 second ticks and 4000 threads (the most an unmodified kernel can handle), the fixed kernel ran the test in eight percent of the time (5.8 seconds as opposed to 70 seconds) and had better tick accuracy (.012 seconds per tick as opposed to .023 seconds per tick). Case 3: A 4000-thread test with an initial timer tick of .01 second and an interval of 10,000 seconds (i.e. a timer that ticks only once) had very nearly the same performance in both cases: 6.3 seconds elapsed for the fixed kernel versus 5.5 seconds for the unfixed kernel. With fewer threads (eight in these tests), the Case 1 test ran in essentially the same time on both the modified and unmodified kernels (5.2 seconds versus 5.8 seconds). The Case 2 test ran in about the same time as well, 5.9 seconds versus 5.4 seconds but again with much better tick accuracy, .013 seconds per tick versus .025 seconds per tick for the unmodified kernel. Since the fix affected the rlimit code, I also tested soft and hard CPU limits. Case 4: With a hard CPU limit of 20 seconds and eight threads (and an itimer running), the modified kernel was very slightly favored in that while it killed the process in 19.997 seconds of CPU time (5.002 seconds of wall time), only .003 seconds of that was system time, the rest was user time. The unmodified kernel killed the process in 20.001 seconds of CPU (5.014 seconds of wall time) of which .016 seconds was system time. Really, though, the results were too close to call. The results were essentially the same with no itimer running. Case 5: With a soft limit of 20 seconds and a hard limit of 2000 seconds (where the hard limit would never be reached) and an itimer running, the modified kernel exhibited worse tick accuracy than the unmodified kernel: .050 seconds/tick versus .028 seconds/tick. Otherwise, performance was almost indistinguishable. With no itimer running this test exhibited virtually identical behavior and times in both cases. In times past I did some limited performance testing. those results are below. On a four-cpu Opteron system without this fix, a sixteen-thread test executed in 3569.991 seconds, of which user was 3568.435s and system was 1.556s. On the same system with the fix, user and elapsed time were about the same, but system time dropped to 0.007 seconds. Performance with eight, four and one thread were comparable. Interestingly, the timer ticks with the fix seemed more accurate: The sixteen-thread test with the fix received 149543 ticks for 0.024 seconds per tick, while the same test without the fix received 58720 for 0.061 seconds per tick. Both cases were configured for an interval of 0.01 seconds. Again, the other tests were comparable. Each thread in this test computed the primes up to 25,000,000. I also did a test with a large number of threads, 100,000 threads, which is impossible without the fix. In this case each thread computed the primes only up to 10,000 (to make the runtime manageable). System time dominated, at 1546.968 seconds out of a total 2176.906 seconds (giving a user time of 629.938s). It received 147651 ticks for 0.015 seconds per tick, still quite accurate. There is obviously no comparable test without the fix. Signed-off-by: Frank Mayhar <fmayhar@google.com> Cc: Roland McGrath <roland@redhat.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
| | * compat: generic compat get/settimeofdayChristoph Hellwig2008-10-161-0/+2
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nothing arch specific in get/settimeofday. The details of the timeval conversion varied a little from arch to arch, but all with the same results. Also add an extern declaration for sys_tz to linux/time.h because externs in .c files are fowned upon. I'll kill the externs in various other files in a sparate patch. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: David S. Miller <davem@davemloft.net> [ sparc bits ] Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Ralf Baechle <ralf@linux-mips.org> Acked-by: Kyle McMartin <kyle@mcmartin.ca> Cc: Matthew Wilcox <matthew@wil.cx> Cc: Grant Grundler <grundler@parisc-linux.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | clocksource: introduce CLOCK_MONOTONIC_RAWJohn Stultz2008-08-211-0/+2
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In talking with Josip Loncaric, and his work on clock synchronization (see btime.sf.net), he mentioned that for really close synchronization, it is useful to have access to "hardware time", that is a notion of time that is not in any way adjusted by the clock slewing done to keep close time sync. Part of the issue is if we are using the kernel's ntp adjusted representation of time in order to measure how we should correct time, we can run into what Paul McKenney aptly described as "Painting a road using the lines we're painting as the guide". I had been thinking of a similar problem, and was trying to come up with a way to give users access to a purely hardware based time representation that avoided users having to know the underlying frequency and mask values needed to deal with the wide variety of possible underlying hardware counters. My solution is to introduce CLOCK_MONOTONIC_RAW. This exposes a nanosecond based time value, that increments starting at bootup and has no frequency adjustments made to it what so ever. The time is accessed from userspace via the posix_clock_gettime() syscall, passing CLOCK_MONOTONIC_RAW as the clock_id. Signed-off-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* always_inline timespec_add_nsJeremy Fitzhardinge2008-06-121-2/+5
| | | | | | | | | | timespec_add_ns is used from the x86-64 vdso, which cannot call out to other kernel code. Make sure that timespec_add_ns is always inlined (and only uses always_inlined functions) to make sure there are no unexpected calls. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* common implementation of iterative div/modJeremy Fitzhardinge2008-06-121-9/+2
| | | | | | | | | | | | | | | | | | | | | | We have a few instances of the open-coded iterative div/mod loop, used when we don't expcet the dividend to be much bigger than the divisor. Unfortunately modern gcc's have the tendency to strength "reduce" this into a full mod operation, which isn't necessarily any faster, and even if it were, doesn't exist if gcc implements it in libgcc. The workaround is to put a dummy asm statement in the loop to prevent gcc from performing the transformation. This patch creates a single implementation of this loop, and uses it to replace the open-coded versions I know about. Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Segher Boessenkool <segher@kernel.crashing.org> Cc: Christian Kujau <lists@nerdbynature.de> Cc: Robert Hancock <hancockr@shaw.ca> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* time: prevent the loop in timespec_add_ns() from being optimised awaySegher Boessenkool2008-03-091-0/+4
| | | | | | | | | | Since some architectures don't support __udivdi3(). Signed-off-by: Segher Boessenkool <segher@kernel.crashing.org> Cc: john stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* timekeeping: rename timekeeping_is_continuous to timekeeping_valid_for_hresLi Zefan2008-02-081-1/+1
| | | | | | | | | | | | | Function timekeeping_is_continuous() no longer checks flag CLOCK_IS_CONTINUOUS, and it checks CLOCK_SOURCE_VALID_FOR_HRES now. So rename the function accordingly. Signed-off-by: Li Zefan <lizf@cn.fujitsu.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* timekeeping: update xtime_cache when time(zone) changesThomas Gleixner2008-02-011-0/+1
| | | | | | | | | | | | | | xtime_cache needs to be updated whenever xtime and or wall_to_monotic are changed. Otherwise users of xtime_cache might see a stale (and in the case of timezone changes utterly wrong) value until the next update happens. Fixup the obvious places, which miss this update. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: John Stultz <johnstul@us.ibm.com> Tested-by: Dhaval Giani <dhaval@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
* kernel/time/timekeeping.c: cleanupsAdrian Bunk2007-10-171-1/+1
| | | | | | | | | | | | | - remove the no longer required __attribute__((weak)) of xtime_lock - remove the following no longer used EXPORT_SYMBOL's: - xtime - xtime_lock Signed-off-by: Adrian Bunk <bunk@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Cache xtime every call to update_wall_timejohn stultz2007-07-251-5/+1
| | | | | | | | | | | | | | | | | | | | This avoids xtime lag seen with dynticks, because while 'xtime' itself is still not updated often, we keep a 'xtime_cache' variable around that contains the approximate real-time that _is_ updated each time we do a 'update_wall_time()', and is thus never off by more than one tick. IOW, this restores the original semantics for 'xtime' users, as long as you use the proper abstraction functions (ie 'current_kernel_time()' or 'get_seconds()' depending on whether you want a timespec or just the seconds field). [ Updated Patch. As penance for my sins I've also yanked another #ifdef that was added to avoid the xtime lag w/ hrtimers. ] Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Cleanup non-arch xtime uses, use get_seconds() or current_kernel_time().john stultz2007-07-251-1/+1
| | | | | | | | | | | | | | | | | | This avoids use of the kernel-internal "xtime" variable directly outside of the actual time-related functions. Instead, use the helper functions that we already have available to us. This doesn't actually change any behaviour, but this will allow us to fix the fact that "xtime" isn't updated very often with CONFIG_NO_HZ (because much of the realtime information is maintained as separate offsets to 'xtime'), which has caused interfaces that use xtime directly to get a time that is out of sync with the real-time clock by up to a third of a second or so. Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* NTP: move the cmos update code into ntp.cThomas Gleixner2007-07-211-0/+3
| | | | | | | | | | | | | | | | i386 and sparc64 have the identical code to update the cmos clock. Move it into kernel/time/ntp.c as there are other architectures coming along with the same requirements. [akpm@linux-foundation.org: build fixes] Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Chris Wright <chrisw@sous-sol.org> Cc: Ingo Molnar <mingo@elte.hu> Cc: john stultz <johnstul@us.ibm.com> Cc: David Miller <davem@davemloft.net> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* make timespec_equal() take const argumentsJan Engelhardt2007-07-171-1/+2
| | | | | | | | | | | Make arguments of timespec_equal() const struct timespec. Signed-off-by: Jan Engelhardt <jengelh@gmx.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: john stultz <johnstul@us.ibm.com> Cc: Roman Zippel <zippel@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Introduce boot based timeTomas Janousek2007-07-161-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | The commits 411187fb05cd11676b0979d9fbf3291db69dbce2 (GTOD: persistent clock support) c1d370e167d66b10bca3b602d3740405469383de (i386: use GTOD persistent clock support) changed the monotonic time so that it no longer jumps after resume, but it's not possible to use it for boot time and process start time calculations then. Also, the uptime no longer increases during suspend. I add a variable to track the wall_to_monotonic changes, a function to get the real boot time and a function to get the boot based time from the monotonic one. [akpm@linux-foundation.org: remove exports, add comment] Signed-off-by: Tomas Janousek <tjanouse@redhat.com> Cc: Tomas Smetana <tsmetana@redhat.com> Cc: John Stultz <johnstul@us.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@elte.hu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* utimensat implementationUlrich Drepper2007-05-081-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement utimensat(2) which is an extension to futimesat(2) in that it a) supports nano-second resolution for the timestamps b) allows to selectively ignore the atime/mtime value c) allows to selectively use the current time for either atime or mtime d) supports changing the atime/mtime of a symlink itself along the lines of the BSD lutimes(3) functions For this change the internally used do_utimes() functions was changed to accept a timespec time value and an additional flags parameter. Additionally the sys_utime function was changed to match compat_sys_utime which already use do_utimes instead of duplicating the work. Also, the completely missing futimensat() functionality is added. We have such a function in glibc but we have to resort to using /proc/self/fd/* which not everybody likes (chroot etc). Test application (the syscall number will need per-arch editing): #include <errno.h> #include <fcntl.h> #include <time.h> #include <sys/time.h> #include <stddef.h> #include <syscall.h> #define __NR_utimensat 280 #define UTIME_NOW ((1l << 30) - 1l) #define UTIME_OMIT ((1l << 30) - 2l) int main(void) { int status = 0; int fd = open("ttt", O_RDWR|O_CREAT|O_EXCL, 0666); if (fd == -1) error (1, errno, "failed to create test file \"ttt\""); struct stat64 st1; if (fstat64 (fd, &st1) != 0) error (1, errno, "fstat failed"); struct timespec t[2]; t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); struct stat64 st2; if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0] = st1.st_atim; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_OMIT; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("atim not set"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("mtim changed from zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 0; t[0].tv_nsec = UTIME_OMIT; t[1] = st1.st_mtim; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != st1.st_atim.tv_sec || st2.st_atim.tv_nsec != st1.st_atim.tv_nsec) { puts ("mtim changed from original time"); status = 1; } if (st2.st_mtim.tv_sec != st1.st_mtim.tv_sec || st2.st_mtim.tv_nsec != st1.st_mtim.tv_nsec) { puts ("mtim not set"); status = 1; } if (status != 0) goto out; sleep (2); t[0].tv_sec = 0; t[0].tv_nsec = UTIME_NOW; t[1].tv_sec = 0; t[1].tv_nsec = UTIME_NOW; if (syscall(__NR_utimensat, AT_FDCWD, "ttt", t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); struct timeval tv; gettimeofday(&tv,NULL); if (st2.st_atim.tv_sec <= st1.st_atim.tv_sec || st2.st_atim.tv_sec > tv.tv_sec) { puts ("atim not set to NOW"); status = 1; } if (st2.st_mtim.tv_sec <= st1.st_mtim.tv_sec || st2.st_mtim.tv_sec > tv.tv_sec) { puts ("mtim not set to NOW"); status = 1; } if (symlink ("ttt", "tttsym") != 0) error (1, errno, "cannot create symlink"); t[0].tv_sec = 0; t[0].tv_nsec = 0; t[1].tv_sec = 0; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, AT_FDCWD, "tttsym", t, AT_SYMLINK_NOFOLLOW) != 0) error (1, errno, "utimensat failed"); if (lstat64 ("tttsym", &st2) != 0) error (1, errno, "lstat failed"); if (st2.st_atim.tv_sec != 0 || st2.st_atim.tv_nsec != 0) { puts ("symlink atim not reset to zero"); status = 1; } if (st2.st_mtim.tv_sec != 0 || st2.st_mtim.tv_nsec != 0) { puts ("symlink mtim not reset to zero"); status = 1; } if (status != 0) goto out; t[0].tv_sec = 1; t[0].tv_nsec = 0; t[1].tv_sec = 1; t[1].tv_nsec = 0; if (syscall(__NR_utimensat, fd, NULL, t, 0) != 0) error (1, errno, "utimensat failed"); if (fstat64 (fd, &st2) != 0) error (1, errno, "fstat failed"); if (st2.st_atim.tv_sec != 1 || st2.st_atim.tv_nsec != 0) { puts ("atim not reset to one"); status = 1; } if (st2.st_mtim.tv_sec != 1 || st2.st_mtim.tv_nsec != 0) { puts ("mtim not reset to one"); status = 1; } if (status == 0) puts ("all OK"); out: close (fd); unlink ("ttt"); unlink ("tttsym"); return status; } [akpm@linux-foundation.org: add missing i386 syscall table entry] Signed-off-by: Ulrich Drepper <drepper@redhat.com> Cc: Alexey Dobriyan <adobriyan@openvz.org> Cc: Michael Kerrisk <mtk-manpages@gmx.net> Cc: <linux-arch@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Move timekeeping code to timekeeping.cjohn stultz2007-05-081-0/+1
| | | | | | | | | | | | Move the timekeeping code out of kernel/timer.c and into kernel/time/timekeeping.c. I made no cleanups or other changes in transit. [akpm@linux-foundation.org: build fix] Signed-off-by: John Stultz <johnstul@us.ibm.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>