From 4f5e387650ca965426a7b4681120988b4ba0e116 Mon Sep 17 00:00:00 2001 From: Tejun Heo Date: Fri, 27 Apr 2012 08:42:53 -0700 Subject: percpu: pcpu_embed_first_chunk() should free unused parts after all allocs are complete commit 42b64281453249dac52861f9b97d18552a7ec62b upstream. pcpu_embed_first_chunk() allocates memory for each node, copies percpu data and frees unused portions of it before proceeding to the next group. This assumes that allocations for different nodes doesn't overlap; however, depending on memory topology, the bootmem allocator may end up allocating memory from a different node than the requested one which may overlap with the portion freed from one of the previous percpu areas. This leads to percpu groups for different nodes overlapping which is a serious bug. This patch separates out copy & partial free from the allocation loop such that all allocations are complete before partial frees happen. This also fixes overlapping frees which could happen on allocation failure path - out_free_areas path frees whole groups but the groups could have portions freed at that point. Signed-off-by: Tejun Heo Reported-by: "Pavel V. Panteleev" Tested-by: "Pavel V. Panteleev" LKML-Reference: Signed-off-by: Greg Kroah-Hartman --- mm/percpu.c | 10 ++++++++++ 1 file changed, 10 insertions(+) (limited to 'mm') diff --git a/mm/percpu.c b/mm/percpu.c index 0ae7a09..af0cc7a 100644 --- a/mm/percpu.c +++ b/mm/percpu.c @@ -1630,6 +1630,16 @@ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, areas[group] = ptr; base = min(ptr, base); + } + + /* + * Copy data and free unused parts. This should happen after all + * allocations are complete; otherwise, we may end up with + * overlapping groups. + */ + for (group = 0; group < ai->nr_groups; group++) { + struct pcpu_group_info *gi = &ai->groups[group]; + void *ptr = areas[group]; for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { if (gi->cpu_map[i] == NR_CPUS) { -- cgit v1.1 From afe85051b486d5d558d93ab2e509dc3bfdffc2c5 Mon Sep 17 00:00:00 2001 From: Chris Metcalf Date: Thu, 10 May 2012 13:01:44 -0700 Subject: hugetlb: prevent BUG_ON in hugetlb_fault() -> hugetlb_cow() commit 4998a6c0edce7fae9c0a5463f6ec3fa585258ee7 upstream. Commit 66aebce747eaf ("hugetlb: fix race condition in hugetlb_fault()") added code to avoid a race condition by elevating the page refcount in hugetlb_fault() while calling hugetlb_cow(). However, one code path in hugetlb_cow() includes an assertion that the page count is 1, whereas it may now also have the value 2 in this path. The consensus is that this BUG_ON has served its purpose, so rather than extending it to cover both cases, we just remove it. Signed-off-by: Chris Metcalf Acked-by: Mel Gorman Acked-by: Hillf Danton Acked-by: Hugh Dickins Cc: Michal Hocko Cc: KAMEZAWA Hiroyuki Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/hugetlb.c | 1 - 1 file changed, 1 deletion(-) (limited to 'mm') diff --git a/mm/hugetlb.c b/mm/hugetlb.c index f7001ac..00b0abb 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -2398,7 +2398,6 @@ retry_avoidcopy: if (outside_reserve) { BUG_ON(huge_pte_none(pte)); if (unmap_ref_private(mm, vma, old_page, address)) { - BUG_ON(page_count(old_page) != 1); BUG_ON(huge_pte_none(pte)); spin_lock(&mm->page_table_lock); goto retry_avoidcopy; -- cgit v1.1 From c928e8c32d44cbd9082455c45fd6f288b310f0f7 Mon Sep 17 00:00:00 2001 From: Russ Anderson Date: Thu, 10 May 2012 13:01:46 -0700 Subject: mm: nobootmem: fix sign extend problem in __free_pages_memory() commit 6bc2e853c6b46a6041980d58200ad9b0a73a60ff upstream. Systems with 8 TBytes of memory or greater can hit a problem where only the the first 8 TB of memory shows up. This is due to "int i" being smaller than "unsigned long start_aligned", causing the high bits to be dropped. The fix is to change `i' to unsigned long to match start_aligned and end_aligned. Thanks to Jack Steiner for assistance tracking this down. Signed-off-by: Russ Anderson Cc: Jack Steiner Cc: Johannes Weiner Cc: Tejun Heo Cc: David S. Miller Cc: Yinghai Lu Cc: Gavin Shan Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/nobootmem.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/nobootmem.c b/mm/nobootmem.c index 6e93dc7..e39e3ef 100644 --- a/mm/nobootmem.c +++ b/mm/nobootmem.c @@ -83,8 +83,7 @@ void __init free_bootmem_late(unsigned long addr, unsigned long size) static void __init __free_pages_memory(unsigned long start, unsigned long end) { - int i; - unsigned long start_aligned, end_aligned; + unsigned long i, start_aligned, end_aligned; int order = ilog2(BITS_PER_LONG); start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1); -- cgit v1.1 From 37de6be49f6c88f7d1306594b7aae5aeee2fa499 Mon Sep 17 00:00:00 2001 From: Sha Zhengju Date: Thu, 10 May 2012 13:01:45 -0700 Subject: memcg: free spare array to avoid memory leak commit 8c7577637ca31385e92769a77e2ab5b428e8b99c upstream. When the last event is unregistered, there is no need to keep the spare array anymore. So free it to avoid memory leak. Signed-off-by: Sha Zhengju Acked-by: KAMEZAWA Hiroyuki Reviewed-by: Kirill A. Shutemov Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/memcontrol.c | 6 ++++++ 1 file changed, 6 insertions(+) (limited to 'mm') diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 283068f..ffb99b4 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -4605,6 +4605,12 @@ static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, swap_buffers: /* Swap primary and spare array */ thresholds->spare = thresholds->primary; + /* If all events are unregistered, free the spare array */ + if (!new) { + kfree(thresholds->spare); + thresholds->spare = NULL; + } + rcu_assign_pointer(thresholds->primary, new); /* To be sure that nobody uses thresholds */ -- cgit v1.1 From beb9576530bc9a2685847fa1fcbf96b97686fcaf Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Wed, 23 May 2012 12:48:13 +0100 Subject: mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages commit 05f144a0d5c2207a0349348127f996e104ad7404 upstream. Dave Jones' system call fuzz testing tool "trinity" triggered the following bug error with slab debugging enabled ============================================================================= BUG numa_policy (Not tainted): Poison overwritten ----------------------------------------------------------------------------- INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154 __slab_alloc+0x3d3/0x445 kmem_cache_alloc+0x29d/0x2b0 mpol_new+0xa3/0x140 sys_mbind+0x142/0x620 system_call_fastpath+0x16/0x1b INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154 __slab_free+0x2e/0x1de kmem_cache_free+0x25a/0x260 __mpol_put+0x27/0x30 remove_vma+0x68/0x90 exit_mmap+0x118/0x140 mmput+0x73/0x110 exit_mm+0x108/0x130 do_exit+0x162/0xb90 do_group_exit+0x4f/0xc0 sys_exit_group+0x17/0x20 system_call_fastpath+0x16/0x1b INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x (null) flags=0x20000000004080 INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0 This implied a reference counting bug and the problem happened during mbind(). mbind() applies a new memory policy to a range and uses mbind_range() to merge existing VMAs or split them as necessary. In the event of splits, mpol_dup() will allocate a new struct mempolicy and maintain existing reference counts whose rules are documented in Documentation/vm/numa_memory_policy.txt . The problem occurs with shared memory policies. The vm_op->set_policy increments the reference count if necessary and split_vma() and vma_merge() have already handled the existing reference counts. However, policy_vma() screws it up by replacing an existing vma->vm_policy with one that potentially has the wrong reference count leading to a premature free. This patch removes the damage caused by policy_vma(). With this patch applied Dave's trinity tool runs an mbind test for 5 minutes without error. /proc/slabinfo reported that there are no numa_policy or shared_policy_node objects allocated after the test completed and the shared memory region was deleted. Signed-off-by: Mel Gorman Cc: Dave Jones Cc: KOSAKI Motohiro Cc: Stephen Wilson Cc: Christoph Lameter Cc: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 41 +++++++++++++++++------------------------ 1 file changed, 17 insertions(+), 24 deletions(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index a85171d..3dac2d1 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -606,27 +606,6 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, return first; } -/* Apply policy to a single VMA */ -static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) -{ - int err = 0; - struct mempolicy *old = vma->vm_policy; - - pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", - vma->vm_start, vma->vm_end, vma->vm_pgoff, - vma->vm_ops, vma->vm_file, - vma->vm_ops ? vma->vm_ops->set_policy : NULL); - - if (vma->vm_ops && vma->vm_ops->set_policy) - err = vma->vm_ops->set_policy(vma, new); - if (!err) { - mpol_get(new); - vma->vm_policy = new; - mpol_put(old); - } - return err; -} - /* Step 2: apply policy to a range and do splits. */ static int mbind_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct mempolicy *new_pol) @@ -666,9 +645,23 @@ static int mbind_range(struct mm_struct *mm, unsigned long start, if (err) goto out; } - err = policy_vma(vma, new_pol); - if (err) - goto out; + + /* + * Apply policy to a single VMA. The reference counting of + * policy for vma_policy linkages has already been handled by + * vma_merge and split_vma as necessary. If this is a shared + * policy then ->set_policy will increment the reference count + * for an sp node. + */ + pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", + vma->vm_start, vma->vm_end, vma->vm_pgoff, + vma->vm_ops, vma->vm_file, + vma->vm_ops ? vma->vm_ops->set_policy : NULL); + if (vma->vm_ops && vma->vm_ops->set_policy) { + err = vma->vm_ops->set_policy(vma, new_pol); + if (err) + goto out; + } } out: -- cgit v1.1 From dce59c2faeb130855bd05d025d854ae79d8dbedd Mon Sep 17 00:00:00 2001 From: Michal Hocko Date: Tue, 29 May 2012 15:06:45 -0700 Subject: mm: consider all swapped back pages in used-once logic commit e48982734ea0500d1eba4f9d96195acc5406cad6 upstream. Commit 645747462435 ("vmscan: detect mapped file pages used only once") made mapped pages have another round in inactive list because they might be just short lived and so we could consider them again next time. This heuristic helps to reduce pressure on the active list with a streaming IO worklods. This patch fixes a regression introduced by this commit for heavy shmem based workloads because unlike Anon pages, which are excluded from this heuristic because they are usually long lived, shmem pages are handled as a regular page cache. This doesn't work quite well, unfortunately, if the workload is mostly backed by shmem (in memory database sitting on 80% of memory) with a streaming IO in the background (backup - up to 20% of memory). Anon inactive list is full of (dirty) shmem pages when watermarks are hit. Shmem pages are kept in the inactive list (they are referenced) in the first round and it is hard to reclaim anything else so we reach lower scanning priorities very quickly which leads to an excessive swap out. Let's fix this by excluding all swap backed pages (they tend to be long lived wrt. the regular page cache anyway) from used-once heuristic and rather activate them if they are referenced. The customer's workload is shmem backed database (80% of RAM) and they are measuring transactions/s with an IO in the background (20%). Transactions touch more or less random rows in the table. The transaction rate fell by a factor of 3 (in the worst case) because of commit 64574746. This patch restores the previous numbers. Signed-off-by: Michal Hocko Acked-by: Johannes Weiner Cc: Mel Gorman Cc: Minchan Kim Cc: KAMEZAWA Hiroyuki Reviewed-by: Rik van Riel Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 6072d74..769935d 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -665,7 +665,7 @@ static enum page_references page_check_references(struct page *page, return PAGEREF_RECLAIM; if (referenced_ptes) { - if (PageAnon(page)) + if (PageSwapBacked(page)) return PAGEREF_ACTIVATE; /* * All mapped pages start out with page table -- cgit v1.1 From 5c2d31dda012797578d012425a785d58e14d2053 Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Tue, 10 Jan 2012 15:08:39 -0800 Subject: mm/vmalloc.c: change void* into explict vm_struct* commit db1aecafef58b5dda39c4228debe2c845e4a27ab upstream. vmap_area->private is void* but we don't use the field for various purpose but use only for vm_struct. So change it to a vm_struct* with naming to improve for readability and type checking. Signed-off-by: Minchan Kim Acked-by: David Rientjes Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/vmalloc.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'mm') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 43b44db..3e927cc 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -256,7 +256,7 @@ struct vmap_area { struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ struct list_head purge_list; /* "lazy purge" list */ - void *private; + struct vm_struct *vm; struct rcu_head rcu_head; }; @@ -1274,7 +1274,7 @@ static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, vm->addr = (void *)va->va_start; vm->size = va->va_end - va->va_start; vm->caller = caller; - va->private = vm; + va->vm = vm; va->flags |= VM_VM_AREA; } @@ -1397,7 +1397,7 @@ static struct vm_struct *find_vm_area(const void *addr) va = find_vmap_area((unsigned long)addr); if (va && va->flags & VM_VM_AREA) - return va->private; + return va->vm; return NULL; } @@ -1416,7 +1416,7 @@ struct vm_struct *remove_vm_area(const void *addr) va = find_vmap_area((unsigned long)addr); if (va && va->flags & VM_VM_AREA) { - struct vm_struct *vm = va->private; + struct vm_struct *vm = va->vm; if (!(vm->flags & VM_UNLIST)) { struct vm_struct *tmp, **p; -- cgit v1.1 From c201beec4842674cd4773771931d25c9a5d45d66 Mon Sep 17 00:00:00 2001 From: KyongHo Date: Tue, 29 May 2012 15:06:49 -0700 Subject: mm: fix faulty initialization in vmalloc_init() commit dbda591d920b4c7692725b13e3f68ecb251e9080 upstream. The transfer of ->flags causes some of the static mapping virtual addresses to be prematurely freed (before the mapping is removed) because VM_LAZY_FREE gets "set" if tmp->flags has VM_IOREMAP set. This might cause subsequent vmalloc/ioremap calls to fail because it might allocate one of the freed virtual address ranges that aren't unmapped. va->flags has different types of flags from tmp->flags. If a region with VM_IOREMAP set is registered with vm_area_add_early(), it will be removed by __purge_vmap_area_lazy(). Fix vmalloc_init() to correctly initialize vmap_area for the given vm_struct. Also initialise va->vm. If it is not set, find_vm_area() for the early vm regions will always fail. Signed-off-by: KyongHo Cho Cc: "Olav Haugan" Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/vmalloc.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 3e927cc..bdb7004 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -1174,9 +1174,10 @@ void __init vmalloc_init(void) /* Import existing vmlist entries. */ for (tmp = vmlist; tmp; tmp = tmp->next) { va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); - va->flags = tmp->flags | VM_VM_AREA; + va->flags = VM_VM_AREA; va->va_start = (unsigned long)tmp->addr; va->va_end = va->va_start + tmp->size; + va->vm = tmp; __insert_vmap_area(va); } -- cgit v1.1 From 2209ffb965c6b17602aae5e637961e4f0f8a4162 Mon Sep 17 00:00:00 2001 From: Dave Hansen Date: Tue, 29 May 2012 15:06:46 -0700 Subject: hugetlb: fix resv_map leak in error path commit c50ac050811d6485616a193eb0f37bfbd191cc89 and 4523e1458566a0e8ecfaff90f380dd23acc44d27 upstream. When called for anonymous (non-shared) mappings, hugetlb_reserve_pages() does a resv_map_alloc(). It depends on code in hugetlbfs's vm_ops->close() to release that allocation. However, in the mmap() failure path, we do a plain unmap_region() without the remove_vma() which actually calls vm_ops->close(). This is a decent fix. This leak could get reintroduced if new code (say, after hugetlb_reserve_pages() in hugetlbfs_file_mmap()) decides to return an error. But, I think it would have to unroll the reservation anyway. Christoph's test case: http://marc.info/?l=linux-mm&m=133728900729735 This patch applies to 3.4 and later. A version for earlier kernels is at https://lkml.org/lkml/2012/5/22/418. Signed-off-by: Dave Hansen Acked-by: Mel Gorman Acked-by: KOSAKI Motohiro Reported-by: Christoph Lameter Tested-by: Christoph Lameter Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/hugetlb.c | 29 +++++++++++++++++++++++------ 1 file changed, 23 insertions(+), 6 deletions(-) (limited to 'mm') diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 00b0abb..05f8fd4 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -2060,6 +2060,15 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma) kref_get(&reservations->refs); } +static void resv_map_put(struct vm_area_struct *vma) +{ + struct resv_map *reservations = vma_resv_map(vma); + + if (!reservations) + return; + kref_put(&reservations->refs, resv_map_release); +} + static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); @@ -2075,7 +2084,7 @@ static void hugetlb_vm_op_close(struct vm_area_struct *vma) reserve = (end - start) - region_count(&reservations->regions, start, end); - kref_put(&reservations->refs, resv_map_release); + resv_map_put(vma); if (reserve) { hugetlb_acct_memory(h, -reserve); @@ -2877,12 +2886,16 @@ int hugetlb_reserve_pages(struct inode *inode, set_vma_resv_flags(vma, HPAGE_RESV_OWNER); } - if (chg < 0) - return chg; + if (chg < 0) { + ret = chg; + goto out_err; + } /* There must be enough filesystem quota for the mapping */ - if (hugetlb_get_quota(inode->i_mapping, chg)) - return -ENOSPC; + if (hugetlb_get_quota(inode->i_mapping, chg)) { + ret = -ENOSPC; + goto out_err; + } /* * Check enough hugepages are available for the reservation. @@ -2891,7 +2904,7 @@ int hugetlb_reserve_pages(struct inode *inode, ret = hugetlb_acct_memory(h, chg); if (ret < 0) { hugetlb_put_quota(inode->i_mapping, chg); - return ret; + goto out_err; } /* @@ -2908,6 +2921,10 @@ int hugetlb_reserve_pages(struct inode *inode, if (!vma || vma->vm_flags & VM_MAYSHARE) region_add(&inode->i_mapping->private_list, from, to); return 0; +out_err: + if (vma) + resv_map_put(vma); + return ret; } void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) -- cgit v1.1 From 32ef2126fabc8a984506a1a4e83f3459ba1a2075 Mon Sep 17 00:00:00 2001 From: Jiang Liu Date: Wed, 11 Jul 2012 14:01:52 -0700 Subject: memory hotplug: fix invalid memory access caused by stale kswapd pointer commit d8adde17e5f858427504725218c56aef90e90fc7 upstream. kswapd_stop() is called to destroy the kswapd work thread when all memory of a NUMA node has been offlined. But kswapd_stop() only terminates the work thread without resetting NODE_DATA(nid)->kswapd to NULL. The stale pointer will prevent kswapd_run() from creating a new work thread when adding memory to the memory-less NUMA node again. Eventually the stale pointer may cause invalid memory access. An example stack dump as below. It's reproduced with 2.6.32, but latest kernel has the same issue. BUG: unable to handle kernel NULL pointer dereference at (null) IP: [] exit_creds+0x12/0x78 PGD 0 Oops: 0000 [#1] SMP last sysfs file: /sys/devices/system/memory/memory391/state CPU 11 Modules linked in: cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq microcode fuse loop dm_mod tpm_tis rtc_cmos i2c_i801 rtc_core tpm serio_raw pcspkr sg tpm_bios igb i2c_core iTCO_wdt rtc_lib mptctl iTCO_vendor_support button dca bnx2 usbhid hid uhci_hcd ehci_hcd usbcore sd_mod crc_t10dif edd ext3 mbcache jbd fan ide_pci_generic ide_core ata_generic ata_piix libata thermal processor thermal_sys hwmon mptsas mptscsih mptbase scsi_transport_sas scsi_mod Pid: 7949, comm: sh Not tainted 2.6.32.12-qiuxishi-5-default #92 Tecal RH2285 RIP: 0010:exit_creds+0x12/0x78 RSP: 0018:ffff8806044f1d78 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff880604f22140 RCX: 0000000000019502 RDX: 0000000000000000 RSI: 0000000000000202 RDI: 0000000000000000 RBP: ffff880604f22150 R08: 0000000000000000 R09: ffffffff81a4dc10 R10: 00000000000032a0 R11: ffff880006202500 R12: 0000000000000000 R13: 0000000000c40000 R14: 0000000000008000 R15: 0000000000000001 FS: 00007fbc03d066f0(0000) GS:ffff8800282e0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b CR2: 0000000000000000 CR3: 000000060f029000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 Process sh (pid: 7949, threadinfo ffff8806044f0000, task ffff880603d7c600) Stack: ffff880604f22140 ffffffff8103aac5 ffff880604f22140 ffffffff8104d21e ffff880006202500 0000000000008000 0000000000c38000 ffffffff810bd5b1 0000000000000000 ffff880603d7c600 00000000ffffdd29 0000000000000003 Call Trace: __put_task_struct+0x5d/0x97 kthread_stop+0x50/0x58 offline_pages+0x324/0x3da memory_block_change_state+0x179/0x1db store_mem_state+0x9e/0xbb sysfs_write_file+0xd0/0x107 vfs_write+0xad/0x169 sys_write+0x45/0x6e system_call_fastpath+0x16/0x1b Code: ff 4d 00 0f 94 c0 84 c0 74 08 48 89 ef e8 1f fd ff ff 5b 5d 31 c0 41 5c c3 53 48 8b 87 20 06 00 00 48 89 fb 48 8b bf 18 06 00 00 <8b> 00 48 c7 83 18 06 00 00 00 00 00 00 f0 ff 0f 0f 94 c0 84 c0 RIP exit_creds+0x12/0x78 RSP CR2: 0000000000000000 [akpm@linux-foundation.org: add pglist_data.kswapd locking comments] Signed-off-by: Xishi Qiu Signed-off-by: Jiang Liu Acked-by: KAMEZAWA Hiroyuki Acked-by: KOSAKI Motohiro Acked-by: Mel Gorman Acked-by: David Rientjes Reviewed-by: Minchan Kim Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 769935d..1b0ed36 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2952,14 +2952,17 @@ int kswapd_run(int nid) } /* - * Called by memory hotplug when all memory in a node is offlined. + * Called by memory hotplug when all memory in a node is offlined. Caller must + * hold lock_memory_hotplug(). */ void kswapd_stop(int nid) { struct task_struct *kswapd = NODE_DATA(nid)->kswapd; - if (kswapd) + if (kswapd) { kthread_stop(kswapd); + NODE_DATA(nid)->kswapd = NULL; + } } static int __init kswapd_init(void) -- cgit v1.1 From c58c52e0f44d2883ddc31ac021b88a121b332982 Mon Sep 17 00:00:00 2001 From: David Rientjes Date: Wed, 11 Jul 2012 14:02:13 -0700 Subject: mm, thp: abort compaction if migration page cannot be charged to memcg commit 4bf2bba3750f10aa9e62e6949bc7e8329990f01b upstream. If page migration cannot charge the temporary page to the memcg, migrate_pages() will return -ENOMEM. This isn't considered in memory compaction however, and the loop continues to iterate over all pageblocks trying to isolate and migrate pages. If a small number of very large memcgs happen to be oom, however, these attempts will mostly be futile leading to an enormous amout of cpu consumption due to the page migration failures. This patch will short circuit and fail memory compaction if migrate_pages() returns -ENOMEM. COMPACT_PARTIAL is returned in case some migrations were successful so that the page allocator will retry. Signed-off-by: David Rientjes Acked-by: Mel Gorman Cc: Minchan Kim Cc: Kamezawa Hiroyuki Cc: Rik van Riel Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index c4bc5ac..adc5336 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -596,8 +596,11 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) if (err) { putback_lru_pages(&cc->migratepages); cc->nr_migratepages = 0; + if (err == -ENOMEM) { + ret = COMPACT_PARTIAL; + goto out; + } } - } out: -- cgit v1.1 From e12fcd38abe8a869cbabd77724008f1cf812a3e7 Mon Sep 17 00:00:00 2001 From: Andy Lutomirski Date: Thu, 5 Jul 2012 16:00:11 -0700 Subject: mm: Hold a file reference in madvise_remove commit 9ab4233dd08036fe34a89c7dc6f47a8bf2eb29eb upstream. Otherwise the code races with munmap (causing a use-after-free of the vma) or with close (causing a use-after-free of the struct file). The bug was introduced by commit 90ed52ebe481 ("[PATCH] holepunch: fix mmap_sem i_mutex deadlock") [bwh: Backported to 3.2: - Adjust context - madvise_remove() calls vmtruncate_range(), not do_fallocate()] [luto: Backported to 3.0: Adjust context] Cc: Hugh Dickins Cc: Miklos Szeredi Cc: Badari Pulavarty Cc: Nick Piggin Signed-off-by: Ben Hutchings Signed-off-by: Andy Lutomirski Signed-off-by: Greg Kroah-Hartman --- mm/madvise.c | 16 +++++++++++++--- 1 file changed, 13 insertions(+), 3 deletions(-) (limited to 'mm') diff --git a/mm/madvise.c b/mm/madvise.c index 2221491..deabe5f6 100644 --- a/mm/madvise.c +++ b/mm/madvise.c @@ -13,6 +13,7 @@ #include #include #include +#include /* * Any behaviour which results in changes to the vma->vm_flags needs to @@ -197,14 +198,16 @@ static long madvise_remove(struct vm_area_struct *vma, struct address_space *mapping; loff_t offset, endoff; int error; + struct file *f; *prev = NULL; /* tell sys_madvise we drop mmap_sem */ if (vma->vm_flags & (VM_LOCKED|VM_NONLINEAR|VM_HUGETLB)) return -EINVAL; - if (!vma->vm_file || !vma->vm_file->f_mapping - || !vma->vm_file->f_mapping->host) { + f = vma->vm_file; + + if (!f || !f->f_mapping || !f->f_mapping->host) { return -EINVAL; } @@ -218,9 +221,16 @@ static long madvise_remove(struct vm_area_struct *vma, endoff = (loff_t)(end - vma->vm_start - 1) + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); - /* vmtruncate_range needs to take i_mutex and i_alloc_sem */ + /* + * vmtruncate_range may need to take i_mutex and i_alloc_sem. + * We need to explicitly grab a reference because the vma (and + * hence the vma's reference to the file) can go away as soon as + * we drop mmap_sem. + */ + get_file(f); up_read(¤t->mm->mmap_sem); error = vmtruncate_range(mapping->host, offset, endoff); + fput(f); down_read(¤t->mm->mmap_sem); return error; } -- cgit v1.1 From 6d40de834ce9bb2964a70b7f91a98406eceb0399 Mon Sep 17 00:00:00 2001 From: Aaditya Kumar Date: Tue, 17 Jul 2012 15:48:07 -0700 Subject: mm: fix lost kswapd wakeup in kswapd_stop() commit 1c7e7f6c0703d03af6bcd5ccc11fc15d23e5ecbe upstream. Offlining memory may block forever, waiting for kswapd() to wake up because kswapd() does not check the event kthread->should_stop before sleeping. The proper pattern, from Documentation/memory-barriers.txt, is: --- waker --- event_indicated = 1; wake_up_process(event_daemon); --- sleeper --- for (;;) { set_current_state(TASK_UNINTERRUPTIBLE); if (event_indicated) break; schedule(); } set_current_state() may be wrapped by: prepare_to_wait(); In the kswapd() case, event_indicated is kthread->should_stop. === offlining memory (waker) === kswapd_stop() kthread_stop() kthread->should_stop = 1 wake_up_process() wait_for_completion() === kswapd_try_to_sleep (sleeper) === kswapd_try_to_sleep() prepare_to_wait() . . schedule() . . finish_wait() The schedule() needs to be protected by a test of kthread->should_stop, which is wrapped by kthread_should_stop(). Reproducer: Do heavy file I/O in background. Do a memory offline/online in a tight loop Signed-off-by: Aaditya Kumar Acked-by: KOSAKI Motohiro Reviewed-by: Minchan Kim Acked-by: Mel Gorman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 1b0ed36..130fa32 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2695,7 +2695,10 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) * them before going back to sleep. */ set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); - schedule(); + + if (!kthread_should_stop()) + schedule(); + set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); } else { if (remaining) -- cgit v1.1 From 9116bc4fb2f96d4a3190932bf17088174da04401 Mon Sep 17 00:00:00 2001 From: Dimitri Sivanich Date: Mon, 31 Oct 2011 17:09:46 -0700 Subject: mm/vmstat.c: cache align vm_stat commit a1cb2c60ddc98ff4e5246f410558805401ceee67 upstream. Stable note: Not tracked on Bugzilla. This patch is known to make a big difference to tmpfs performance on larger machines. This was found to adversely affect tmpfs I/O performance. Tests run on a 640 cpu UV system. With 120 threads doing parallel writes, each to different tmpfs mounts: No patch: ~300 MB/sec With vm_stat alignment: ~430 MB/sec Signed-off-by: Dimitri Sivanich Acked-by: Christoph Lameter Acked-by: Mel Gorman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman --- mm/vmstat.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmstat.c b/mm/vmstat.c index 20c18b7..6559013 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -78,7 +78,7 @@ void vm_events_fold_cpu(int cpu) * * vm_stat contains the global counters */ -atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; +atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; EXPORT_SYMBOL(vm_stat); #ifdef CONFIG_SMP -- cgit v1.1 From 71a07f4cf29615d30369760c022972d4875758b3 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Tue, 10 Jan 2012 15:07:14 -0800 Subject: mm: reduce the amount of work done when updating min_free_kbytes commit 938929f14cb595f43cd1a4e63e22d36cab1e4a1f upstream. Stable note: Fixes https://bugzilla.novell.com/show_bug.cgi?id=726210 . Large machines with 1TB or more of RAM take a long time to boot without this patch and may spew out soft lockup warnings. When min_free_kbytes is updated, some pageblocks are marked MIGRATE_RESERVE. Ordinarily, this work is unnoticable as it happens early in boot but on large machines with 1TB of memory, this has been reported to delay boot times, probably due to the NUMA distances involved. The bulk of the work is due to calling calling pageblock_is_reserved() an unnecessary amount of times and accessing far more struct page metadata than is necessary. This patch significantly reduces the amount of work done by setup_zone_migrate_reserve() improving boot times on 1TB machines. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Mel Gorman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/page_alloc.c | 40 ++++++++++++++++++++++++---------------- 1 file changed, 24 insertions(+), 16 deletions(-) (limited to 'mm') diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 947a7e9..70c049d 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -3418,25 +3418,33 @@ static void setup_zone_migrate_reserve(struct zone *zone) if (page_to_nid(page) != zone_to_nid(zone)) continue; - /* Blocks with reserved pages will never free, skip them. */ - block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); - if (pageblock_is_reserved(pfn, block_end_pfn)) - continue; - block_migratetype = get_pageblock_migratetype(page); - /* If this block is reserved, account for it */ - if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { - reserve--; - continue; - } + /* Only test what is necessary when the reserves are not met */ + if (reserve > 0) { + /* + * Blocks with reserved pages will never free, skip + * them. + */ + block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); + if (pageblock_is_reserved(pfn, block_end_pfn)) + continue; - /* Suitable for reserving if this block is movable */ - if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { - set_pageblock_migratetype(page, MIGRATE_RESERVE); - move_freepages_block(zone, page, MIGRATE_RESERVE); - reserve--; - continue; + /* If this block is reserved, account for it */ + if (block_migratetype == MIGRATE_RESERVE) { + reserve--; + continue; + } + + /* Suitable for reserving if this block is movable */ + if (block_migratetype == MIGRATE_MOVABLE) { + set_pageblock_migratetype(page, + MIGRATE_RESERVE); + move_freepages_block(zone, page, + MIGRATE_RESERVE); + reserve--; + continue; + } } /* -- cgit v1.1 From 33c17eafdeefb08fbb6ded946abcf024f76c9615 Mon Sep 17 00:00:00 2001 From: Johannes Weiner Date: Wed, 14 Sep 2011 16:21:52 -0700 Subject: mm: vmscan: fix force-scanning small targets without swap commit a4d3e9e76337059406fcf3ead288c0df22a790e9 upstream. Stable note: Not tracked in Bugzilla. This patch augments an earlier commit that avoids scanning priority being artificially raised. The older fix was particularly important for small memcgs to avoid calling wait_iff_congested() unnecessarily. Without swap, anonymous pages are not scanned. As such, they should not count when considering force-scanning a small target if there is no swap. Otherwise, targets are not force-scanned even when their effective scan number is zero and the other conditions--kswapd/memcg--apply. This fixes 246e87a93934 ("memcg: fix get_scan_count() for small targets"). [akpm@linux-foundation.org: fix comment] Signed-off-by: Johannes Weiner Acked-by: KAMEZAWA Hiroyuki Reviewed-by: Michal Hocko Cc: Ying Han Cc: Balbir Singh Cc: KOSAKI Motohiro Cc: Daisuke Nishimura Acked-by: Mel Gorman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 27 ++++++++++++--------------- 1 file changed, 12 insertions(+), 15 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 130fa32..347bb447 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1747,23 +1747,15 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, u64 fraction[2], denominator; enum lru_list l; int noswap = 0; - int force_scan = 0; + bool force_scan = false; unsigned long nr_force_scan[2]; - - anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + - zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); - file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + - zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); - - if (((anon + file) >> priority) < SWAP_CLUSTER_MAX) { - /* kswapd does zone balancing and need to scan this zone */ - if (scanning_global_lru(sc) && current_is_kswapd()) - force_scan = 1; - /* memcg may have small limit and need to avoid priority drop */ - if (!scanning_global_lru(sc)) - force_scan = 1; - } + /* kswapd does zone balancing and needs to scan this zone */ + if (scanning_global_lru(sc) && current_is_kswapd()) + force_scan = true; + /* memcg may have small limit and need to avoid priority drop */ + if (!scanning_global_lru(sc)) + force_scan = true; /* If we have no swap space, do not bother scanning anon pages. */ if (!sc->may_swap || (nr_swap_pages <= 0)) { @@ -1776,6 +1768,11 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, goto out; } + anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) + + zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); + file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) + + zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); + if (scanning_global_lru(sc)) { free = zone_page_state(zone, NR_FREE_PAGES); /* If we have very few page cache pages, -- cgit v1.1 From 564ea9dd5ab042cb2fe8373f4d627073706e1d4f Mon Sep 17 00:00:00 2001 From: Shaohua Li Date: Thu, 25 Aug 2011 15:59:12 -0700 Subject: vmscan: clear ZONE_CONGESTED for zone with good watermark commit 439423f6894aa0dec22187526827456f5004baed upstream. Stable note: Not tracked in Bugzilla. kswapd is responsible for clearing ZONE_CONGESTED after it balances a zone and this patch fixes a bug where that was failing to happen. Without this patch, processes can stall in wait_iff_congested unnecessarily. For users, this can look like an interactivity stall but some workloads would see it as sudden drop in throughput. ZONE_CONGESTED is only cleared in kswapd, but pages can be freed in any task. It's possible ZONE_CONGESTED isn't cleared in some cases: 1. the zone is already balanced just entering balance_pgdat() for order-0 because concurrent tasks free memory. In this case, later check will skip the zone as it's balanced so the flag isn't cleared. 2. high order balance fallbacks to order-0. quote from Mel: At the end of balance_pgdat(), kswapd uses the following logic; If reclaiming at high order { for each zone { if all_unreclaimable skip if watermark is not met order = 0 loop again /* watermark is met */ clear congested } } i.e. it clears ZONE_CONGESTED if it the zone is balanced. if not, it restarts balancing at order-0. However, if the higher zones are balanced for order-0, kswapd will miss clearing ZONE_CONGESTED as that only happens after a zone is shrunk. This can mean that wait_iff_congested() stalls unnecessarily. This patch makes kswapd clear ZONE_CONGESTED during its initial highmem->dma scan for zones that are already balanced. Signed-off-by: Shaohua Li Acked-by: Mel Gorman Reviewed-by: Minchan Kim Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 3 +++ 1 file changed, 3 insertions(+) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 347bb447..6b0f8a6 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2456,6 +2456,9 @@ loop_again: high_wmark_pages(zone), 0, 0)) { end_zone = i; break; + } else { + /* If balanced, clear the congested flag */ + zone_clear_flag(zone, ZONE_CONGESTED); } } if (i < 0) -- cgit v1.1 From 5e5b3d2ed3aee6f8bbe38c0945876aacce11ff03 Mon Sep 17 00:00:00 2001 From: Dave Chinner Date: Fri, 8 Jul 2011 14:14:34 +1000 Subject: vmscan: add shrink_slab tracepoints commit 095760730c1047c69159ce88021a7fa3833502c8 upstream. Stable note: This patch makes later patches easier to apply but otherwise has little to justify it. It is a diagnostic patch that was part of a series addressing excessive slab shrinking after GFP_NOFS failures. There is detailed information on the series' motivation at https://lkml.org/lkml/2011/6/2/42 . It is impossible to understand what the shrinkers are actually doing without instrumenting the code, so add a some tracepoints to allow insight to be gained. Signed-off-by: Dave Chinner Signed-off-by: Al Viro Signed-off-by: Mel Gorman --- mm/vmscan.c | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 6b0f8a6..abc7981 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -250,6 +250,7 @@ unsigned long shrink_slab(struct shrink_control *shrink, unsigned long long delta; unsigned long total_scan; unsigned long max_pass; + int shrink_ret = 0; max_pass = do_shrinker_shrink(shrinker, shrink, 0); delta = (4 * nr_pages_scanned) / shrinker->seeks; @@ -274,9 +275,12 @@ unsigned long shrink_slab(struct shrink_control *shrink, total_scan = shrinker->nr; shrinker->nr = 0; + trace_mm_shrink_slab_start(shrinker, shrink, total_scan, + nr_pages_scanned, lru_pages, + max_pass, delta, total_scan); + while (total_scan >= SHRINK_BATCH) { long this_scan = SHRINK_BATCH; - int shrink_ret; int nr_before; nr_before = do_shrinker_shrink(shrinker, shrink, 0); @@ -293,6 +297,8 @@ unsigned long shrink_slab(struct shrink_control *shrink, } shrinker->nr += total_scan; + trace_mm_shrink_slab_end(shrinker, shrink_ret, total_scan, + shrinker->nr); } up_read(&shrinker_rwsem); out: -- cgit v1.1 From 6a5091a09f9278f8f821e3f33ac748633d143cea Mon Sep 17 00:00:00 2001 From: Dave Chinner Date: Fri, 8 Jul 2011 14:14:35 +1000 Subject: vmscan: shrinker->nr updates race and go wrong commit acf92b485cccf028177f46918e045c0c4e80ee10 upstream. Stable note: Not tracked in Bugzilla. This patch reduces excessive reclaim of slab objects reducing the amount of information that has to be brought back in from disk. shrink_slab() allows shrinkers to be called in parallel so the struct shrinker can be updated concurrently. It does not provide any exclusio for such updates, so we can get the shrinker->nr value increasing or decreasing incorrectly. As a result, when a shrinker repeatedly returns a value of -1 (e.g. a VFS shrinker called w/ GFP_NOFS), the shrinker->nr goes haywire, sometimes updating with the scan count that wasn't used, sometimes losing it altogether. Worse is when a shrinker does work and that update is lost due to racy updates, which means the shrinker will do the work again! Fix this by making the total_scan calculations independent of shrinker->nr, and making the shrinker->nr updates atomic w.r.t. to other updates via cmpxchg loops. Signed-off-by: Dave Chinner Signed-off-by: Al Viro Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 45 ++++++++++++++++++++++++++++++++------------- 1 file changed, 32 insertions(+), 13 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index abc7981..bb7df1e 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -251,17 +251,29 @@ unsigned long shrink_slab(struct shrink_control *shrink, unsigned long total_scan; unsigned long max_pass; int shrink_ret = 0; + long nr; + long new_nr; + /* + * copy the current shrinker scan count into a local variable + * and zero it so that other concurrent shrinker invocations + * don't also do this scanning work. + */ + do { + nr = shrinker->nr; + } while (cmpxchg(&shrinker->nr, nr, 0) != nr); + + total_scan = nr; max_pass = do_shrinker_shrink(shrinker, shrink, 0); delta = (4 * nr_pages_scanned) / shrinker->seeks; delta *= max_pass; do_div(delta, lru_pages + 1); - shrinker->nr += delta; - if (shrinker->nr < 0) { + total_scan += delta; + if (total_scan < 0) { printk(KERN_ERR "shrink_slab: %pF negative objects to " "delete nr=%ld\n", - shrinker->shrink, shrinker->nr); - shrinker->nr = max_pass; + shrinker->shrink, total_scan); + total_scan = max_pass; } /* @@ -269,13 +281,10 @@ unsigned long shrink_slab(struct shrink_control *shrink, * never try to free more than twice the estimate number of * freeable entries. */ - if (shrinker->nr > max_pass * 2) - shrinker->nr = max_pass * 2; - - total_scan = shrinker->nr; - shrinker->nr = 0; + if (total_scan > max_pass * 2) + total_scan = max_pass * 2; - trace_mm_shrink_slab_start(shrinker, shrink, total_scan, + trace_mm_shrink_slab_start(shrinker, shrink, nr, nr_pages_scanned, lru_pages, max_pass, delta, total_scan); @@ -296,9 +305,19 @@ unsigned long shrink_slab(struct shrink_control *shrink, cond_resched(); } - shrinker->nr += total_scan; - trace_mm_shrink_slab_end(shrinker, shrink_ret, total_scan, - shrinker->nr); + /* + * move the unused scan count back into the shrinker in a + * manner that handles concurrent updates. If we exhausted the + * scan, there is no need to do an update. + */ + do { + nr = shrinker->nr; + new_nr = total_scan + nr; + if (total_scan <= 0) + break; + } while (cmpxchg(&shrinker->nr, nr, new_nr) != nr); + + trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); } up_read(&shrinker_rwsem); out: -- cgit v1.1 From 7554e3446a916363447a81a29f9300d3f2fbf503 Mon Sep 17 00:00:00 2001 From: Dave Chinner Date: Fri, 8 Jul 2011 14:14:36 +1000 Subject: vmscan: reduce wind up shrinker->nr when shrinker can't do work commit 3567b59aa80ac4417002bf58e35dce5c777d4164 upstream. Stable note: Not tracked in Bugzilla. This patch reduces excessive reclaim of slab objects reducing the amount of information that has to be brought back in from disk. The third and fourth paragram in the series describes the impact. When a shrinker returns -1 to shrink_slab() to indicate it cannot do any work given the current memory reclaim requirements, it adds the entire total_scan count to shrinker->nr. The idea ehind this is that whenteh shrinker is next called and can do work, it will do the work of the previously aborted shrinker call as well. However, if a filesystem is doing lots of allocation with GFP_NOFS set, then we get many, many more aborts from the shrinkers than we do successful calls. The result is that shrinker->nr winds up to it's maximum permissible value (twice the current cache size) and then when the next shrinker call that can do work is issued, it has enough scan count built up to free the entire cache twice over. This manifests itself in the cache going from full to empty in a matter of seconds, even when only a small part of the cache is needed to be emptied to free sufficient memory. Under metadata intensive workloads on ext4 and XFS, I'm seeing the VFS caches increase memory consumption up to 75% of memory (no page cache pressure) over a period of 30-60s, and then the shrinker empties them down to zero in the space of 2-3s. This cycle repeats over and over again, with the shrinker completely trashing the inode and dentry caches every minute or so the workload continues. This behaviour was made obvious by the shrink_slab tracepoints added earlier in the series, and made worse by the patch that corrected the concurrent accounting of shrinker->nr. To avoid this problem, stop repeated small increments of the total scan value from winding shrinker->nr up to a value that can cause the entire cache to be freed. We still need to allow it to wind up, so use the delta as the "large scan" threshold check - if the delta is more than a quarter of the entire cache size, then it is a large scan and allowed to cause lots of windup because we are clearly needing to free lots of memory. If it isn't a large scan then limit the total scan to half the size of the cache so that windup never increases to consume the whole cache. Reducing the total scan limit further does not allow enough wind-up to maintain the current levels of performance, whilst a higher threshold does not prevent the windup from freeing the entire cache under sustained workloads. Signed-off-by: Dave Chinner Signed-off-by: Al Viro Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 15 +++++++++++++++ 1 file changed, 15 insertions(+) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index bb7df1e..d375de3 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -277,6 +277,21 @@ unsigned long shrink_slab(struct shrink_control *shrink, } /* + * We need to avoid excessive windup on filesystem shrinkers + * due to large numbers of GFP_NOFS allocations causing the + * shrinkers to return -1 all the time. This results in a large + * nr being built up so when a shrink that can do some work + * comes along it empties the entire cache due to nr >>> + * max_pass. This is bad for sustaining a working set in + * memory. + * + * Hence only allow the shrinker to scan the entire cache when + * a large delta change is calculated directly. + */ + if (delta < max_pass / 4) + total_scan = min(total_scan, max_pass / 2); + + /* * Avoid risking looping forever due to too large nr value: * never try to free more than twice the estimate number of * freeable entries. -- cgit v1.1 From 4d4724067d512e7f17010112da8ec64917c192e7 Mon Sep 17 00:00:00 2001 From: Rik van Riel Date: Mon, 31 Oct 2011 17:09:31 -0700 Subject: vmscan: limit direct reclaim for higher order allocations commit e0887c19b2daa140f20ca8104bdc5740f39dbb86 upstream. Stable note: Not tracked on Bugzilla. THP and compaction was found to aggressively reclaim pages and stall systems under different situations that was addressed piecemeal over time. Paragraph 3 of this changelog is the motivation for this patch. When suffering from memory fragmentation due to unfreeable pages, THP page faults will repeatedly try to compact memory. Due to the unfreeable pages, compaction fails. Needless to say, at that point page reclaim also fails to create free contiguous 2MB areas. However, that doesn't stop the current code from trying, over and over again, and freeing a minimum of 4MB (2UL << sc->order pages) at every single invocation. This resulted in my 12GB system having 2-3GB free memory, a corresponding amount of used swap and very sluggish response times. This can be avoided by having the direct reclaim code not reclaim from zones that already have plenty of free memory available for compaction. If compaction still fails due to unmovable memory, doing additional reclaim will only hurt the system, not help. [jweiner@redhat.com: change comment to explain the order check] Signed-off-by: Rik van Riel Acked-by: Johannes Weiner Acked-by: Mel Gorman Cc: Andrea Arcangeli Reviewed-by: Minchan Kim Signed-off-by: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 16 ++++++++++++++++ 1 file changed, 16 insertions(+) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index d375de3..e1ae88b 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2059,6 +2059,22 @@ static void shrink_zones(int priority, struct zonelist *zonelist, continue; if (zone->all_unreclaimable && priority != DEF_PRIORITY) continue; /* Let kswapd poll it */ + if (COMPACTION_BUILD) { + /* + * If we already have plenty of memory + * free for compaction, don't free any + * more. Even though compaction is + * invoked for any non-zero order, + * only frequent costly order + * reclamation is disruptive enough to + * become a noticable problem, like + * transparent huge page allocations. + */ + if (sc->order > PAGE_ALLOC_COSTLY_ORDER && + (compaction_suitable(zone, sc->order) || + compaction_deferred(zone))) + continue; + } /* * This steals pages from memory cgroups over softlimit * and returns the number of reclaimed pages and -- cgit v1.1 From 4682e89d1455d66e2536d9efb2875d61a1f1f294 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Mon, 31 Oct 2011 17:09:33 -0700 Subject: vmscan: abort reclaim/compaction if compaction can proceed commit e0c23279c9f800c403f37511484d9014ac83adec upstream. Stable note: Not tracked on Bugzilla. THP and compaction was found to aggressively reclaim pages and stall systems under different situations that was addressed piecemeal over time. If compaction can proceed, shrink_zones() stops doing any work but its callers still call shrink_slab() which raises the priority and potentially sleeps. This is unnecessary and wasteful so this patch aborts direct reclaim/compaction entirely if compaction can proceed. Signed-off-by: Mel Gorman Acked-by: Rik van Riel Reviewed-by: Minchan Kim Acked-by: Johannes Weiner Cc: Josh Boyer Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 32 +++++++++++++++++++++----------- 1 file changed, 21 insertions(+), 11 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index e1ae88b..b146b42 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2037,14 +2037,19 @@ restart: * * If a zone is deemed to be full of pinned pages then just give it a light * scan then give up on it. + * + * This function returns true if a zone is being reclaimed for a costly + * high-order allocation and compaction is either ready to begin or deferred. + * This indicates to the caller that it should retry the allocation or fail. */ -static void shrink_zones(int priority, struct zonelist *zonelist, +static bool shrink_zones(int priority, struct zonelist *zonelist, struct scan_control *sc) { struct zoneref *z; struct zone *zone; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; + bool should_abort_reclaim = false; for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(sc->gfp_mask), sc->nodemask) { @@ -2061,19 +2066,20 @@ static void shrink_zones(int priority, struct zonelist *zonelist, continue; /* Let kswapd poll it */ if (COMPACTION_BUILD) { /* - * If we already have plenty of memory - * free for compaction, don't free any - * more. Even though compaction is - * invoked for any non-zero order, - * only frequent costly order - * reclamation is disruptive enough to - * become a noticable problem, like - * transparent huge page allocations. + * If we already have plenty of memory free for + * compaction in this zone, don't free any more. + * Even though compaction is invoked for any + * non-zero order, only frequent costly order + * reclamation is disruptive enough to become a + * noticable problem, like transparent huge page + * allocations. */ if (sc->order > PAGE_ALLOC_COSTLY_ORDER && (compaction_suitable(zone, sc->order) || - compaction_deferred(zone))) + compaction_deferred(zone))) { + should_abort_reclaim = true; continue; + } } /* * This steals pages from memory cgroups over softlimit @@ -2092,6 +2098,8 @@ static void shrink_zones(int priority, struct zonelist *zonelist, shrink_zone(priority, zone, sc); } + + return should_abort_reclaim; } static bool zone_reclaimable(struct zone *zone) @@ -2156,7 +2164,9 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, sc->nr_scanned = 0; if (!priority) disable_swap_token(sc->mem_cgroup); - shrink_zones(priority, zonelist, sc); + if (shrink_zones(priority, zonelist, sc)) + break; + /* * Don't shrink slabs when reclaiming memory from * over limit cgroups -- cgit v1.1 From f665a680f89357a6773fb97684690c76933888f6 Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Mon, 31 Oct 2011 17:06:44 -0700 Subject: mm: compaction: trivial clean up in acct_isolated() commit b9e84ac1536d35aee03b2601f19694949f0bd506 upstream. Stable note: Not tracked in Bugzilla. This patch makes later patches easier to apply but has no other impact. acct_isolated of compaction uses page_lru_base_type which returns only base type of LRU list so it never returns LRU_ACTIVE_ANON or LRU_ACTIVE_FILE. In addtion, cc->nr_[anon|file] is used in only acct_isolated so it doesn't have fields in conpact_control. This patch removes fields from compact_control and makes clear function of acct_issolated which counts the number of anon|file pages isolated. Signed-off-by: Minchan Kim Acked-by: Johannes Weiner Reviewed-by: KAMEZAWA Hiroyuki Reviewed-by: KOSAKI Motohiro Acked-by: Mel Gorman Acked-by: Rik van Riel Reviewed-by: Michal Hocko Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 18 +++++------------- 1 file changed, 5 insertions(+), 13 deletions(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index adc5336..d6ba037 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -35,10 +35,6 @@ struct compact_control { unsigned long migrate_pfn; /* isolate_migratepages search base */ bool sync; /* Synchronous migration */ - /* Account for isolated anon and file pages */ - unsigned long nr_anon; - unsigned long nr_file; - unsigned int order; /* order a direct compactor needs */ int migratetype; /* MOVABLE, RECLAIMABLE etc */ struct zone *zone; @@ -223,17 +219,13 @@ static void isolate_freepages(struct zone *zone, static void acct_isolated(struct zone *zone, struct compact_control *cc) { struct page *page; - unsigned int count[NR_LRU_LISTS] = { 0, }; + unsigned int count[2] = { 0, }; - list_for_each_entry(page, &cc->migratepages, lru) { - int lru = page_lru_base_type(page); - count[lru]++; - } + list_for_each_entry(page, &cc->migratepages, lru) + count[!!page_is_file_cache(page)]++; - cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON]; - cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE]; - __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon); - __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file); + __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]); + __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]); } /* Similar to reclaim, but different enough that they don't share logic */ -- cgit v1.1 From a15a3971cc49eefbde40b397a446c0fa9c5fed9c Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Mon, 31 Oct 2011 17:06:47 -0700 Subject: mm: change isolate mode from #define to bitwise type commit 4356f21d09283dc6d39a6f7287a65ddab61e2808 upstream. Stable note: Not tracked in Bugzilla. This patch makes later patches easier to apply but has no other impact. Change ISOLATE_XXX macro with bitwise isolate_mode_t type. Normally, macro isn't recommended as it's type-unsafe and making debugging harder as symbol cannot be passed throught to the debugger. Quote from Johannes " Hmm, it would probably be cleaner to fully convert the isolation mode into independent flags. INACTIVE, ACTIVE, BOTH is currently a tri-state among flags, which is a bit ugly." This patch moves isolate mode from swap.h to mmzone.h by memcontrol.h Signed-off-by: Minchan Kim Cc: Johannes Weiner Cc: KAMEZAWA Hiroyuki Cc: KOSAKI Motohiro Cc: Mel Gorman Cc: Rik van Riel Cc: Michal Hocko Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 3 ++- mm/memcontrol.c | 3 ++- mm/vmscan.c | 37 ++++++++++++++++++++----------------- 3 files changed, 24 insertions(+), 19 deletions(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index d6ba037..26521a1 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -371,7 +371,8 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone, } /* Try isolate the page */ - if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0) + if (__isolate_lru_page(page, + ISOLATE_ACTIVE|ISOLATE_INACTIVE, 0) != 0) continue; VM_BUG_ON(PageTransCompound(page)); diff --git a/mm/memcontrol.c b/mm/memcontrol.c index ffb99b4..57cdf5a 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -1251,7 +1251,8 @@ mem_cgroup_get_reclaim_stat_from_page(struct page *page) unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, struct list_head *dst, unsigned long *scanned, int order, - int mode, struct zone *z, + isolate_mode_t mode, + struct zone *z, struct mem_cgroup *mem_cont, int active, int file) { diff --git a/mm/vmscan.c b/mm/vmscan.c index b146b42..9267ba1 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1012,23 +1012,27 @@ keep_lumpy: * * returns 0 on success, -ve errno on failure. */ -int __isolate_lru_page(struct page *page, int mode, int file) +int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file) { + bool all_lru_mode; int ret = -EINVAL; /* Only take pages on the LRU. */ if (!PageLRU(page)) return ret; + all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) == + (ISOLATE_ACTIVE|ISOLATE_INACTIVE); + /* * When checking the active state, we need to be sure we are * dealing with comparible boolean values. Take the logical not * of each. */ - if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) + if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE)) return ret; - if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file) + if (!all_lru_mode && !!page_is_file_cache(page) != file) return ret; /* @@ -1076,7 +1080,8 @@ int __isolate_lru_page(struct page *page, int mode, int file) */ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, struct list_head *src, struct list_head *dst, - unsigned long *scanned, int order, int mode, int file) + unsigned long *scanned, int order, isolate_mode_t mode, + int file) { unsigned long nr_taken = 0; unsigned long nr_lumpy_taken = 0; @@ -1201,8 +1206,8 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, static unsigned long isolate_pages_global(unsigned long nr, struct list_head *dst, unsigned long *scanned, int order, - int mode, struct zone *z, - int active, int file) + isolate_mode_t mode, + struct zone *z, int active, int file) { int lru = LRU_BASE; if (active) @@ -1448,6 +1453,7 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, unsigned long nr_taken; unsigned long nr_anon; unsigned long nr_file; + isolate_mode_t reclaim_mode = ISOLATE_INACTIVE; while (unlikely(too_many_isolated(zone, file, sc))) { congestion_wait(BLK_RW_ASYNC, HZ/10); @@ -1458,15 +1464,15 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, } set_reclaim_mode(priority, sc, false); + if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM) + reclaim_mode |= ISOLATE_ACTIVE; + lru_add_drain(); spin_lock_irq(&zone->lru_lock); if (scanning_global_lru(sc)) { - nr_taken = isolate_pages_global(nr_to_scan, - &page_list, &nr_scanned, sc->order, - sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ? - ISOLATE_BOTH : ISOLATE_INACTIVE, - zone, 0, file); + nr_taken = isolate_pages_global(nr_to_scan, &page_list, + &nr_scanned, sc->order, reclaim_mode, zone, 0, file); zone->pages_scanned += nr_scanned; if (current_is_kswapd()) __count_zone_vm_events(PGSCAN_KSWAPD, zone, @@ -1475,12 +1481,9 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); } else { - nr_taken = mem_cgroup_isolate_pages(nr_to_scan, - &page_list, &nr_scanned, sc->order, - sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM ? - ISOLATE_BOTH : ISOLATE_INACTIVE, - zone, sc->mem_cgroup, - 0, file); + nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list, + &nr_scanned, sc->order, reclaim_mode, zone, + sc->mem_cgroup, 0, file); /* * mem_cgroup_isolate_pages() keeps track of * scanned pages on its own. -- cgit v1.1 From 19faec0520b3b16dfd58cde30938a3c4d3dcdd5b Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Mon, 31 Oct 2011 17:06:51 -0700 Subject: mm: compaction: make isolate_lru_page() filter-aware commit 39deaf8585152f1a35c1676d3d7dc6ae0fb65967 upstream. Stable note: Not tracked in Bugzilla. THP and compaction disrupt the LRU list leading to poor reclaim decisions which has a variable performance impact. In async mode, compaction doesn't migrate dirty or writeback pages. So, it's meaningless to pick the page and re-add it to lru list. Of course, when we isolate the page in compaction, the page might be dirty or writeback but when we try to migrate the page, the page would be not dirty, writeback. So it could be migrated. But it's very unlikely as isolate and migration cycle is much faster than writeout. So, this patch helps cpu overhead and prevent unnecessary LRU churning. Signed-off-by: Minchan Kim Acked-by: Johannes Weiner Reviewed-by: KAMEZAWA Hiroyuki Reviewed-by: KOSAKI Motohiro Acked-by: Mel Gorman Acked-by: Rik van Riel Reviewed-by: Michal Hocko Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 7 +++++-- mm/vmscan.c | 3 +++ 2 files changed, 8 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index 26521a1..b30c40f 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -261,6 +261,7 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone, unsigned long last_pageblock_nr = 0, pageblock_nr; unsigned long nr_scanned = 0, nr_isolated = 0; struct list_head *migratelist = &cc->migratepages; + isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE; /* Do not scan outside zone boundaries */ low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn); @@ -370,9 +371,11 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone, continue; } + if (!cc->sync) + mode |= ISOLATE_CLEAN; + /* Try isolate the page */ - if (__isolate_lru_page(page, - ISOLATE_ACTIVE|ISOLATE_INACTIVE, 0) != 0) + if (__isolate_lru_page(page, mode, 0) != 0) continue; VM_BUG_ON(PageTransCompound(page)); diff --git a/mm/vmscan.c b/mm/vmscan.c index 9267ba1..6835735 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1045,6 +1045,9 @@ int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file) ret = -EBUSY; + if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page))) + return ret; + if (likely(get_page_unless_zero(page))) { /* * Be careful not to clear PageLRU until after we're -- cgit v1.1 From 5e02dde6aee7c4492b3a62ad93e7f1120877a019 Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Mon, 31 Oct 2011 17:06:55 -0700 Subject: mm: zone_reclaim: make isolate_lru_page() filter-aware commit f80c0673610e36ae29d63e3297175e22f70dde5f upstream. Stable note: Not tracked in Bugzilla. THP and compaction disrupt the LRU list leading to poor reclaim decisions which has a variable performance impact. In __zone_reclaim case, we don't want to shrink mapped page. Nonetheless, we have isolated mapped page and re-add it into LRU's head. It's unnecessary CPU overhead and makes LRU churning. Of course, when we isolate the page, the page might be mapped but when we try to migrate the page, the page would be not mapped. So it could be migrated. But race is rare and although it happens, it's no big deal. Signed-off-by: Minchan Kim Acked-by: Johannes Weiner Reviewed-by: KAMEZAWA Hiroyuki Reviewed-by: KOSAKI Motohiro Reviewed-by: Michal Hocko Cc: Mel Gorman Cc: Rik van Riel Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 6835735..0c78bd3 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1048,6 +1048,9 @@ int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file) if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page))) return ret; + if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) + return ret; + if (likely(get_page_unless_zero(page))) { /* * Be careful not to clear PageLRU until after we're @@ -1471,6 +1474,12 @@ shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone, reclaim_mode |= ISOLATE_ACTIVE; lru_add_drain(); + + if (!sc->may_unmap) + reclaim_mode |= ISOLATE_UNMAPPED; + if (!sc->may_writepage) + reclaim_mode |= ISOLATE_CLEAN; + spin_lock_irq(&zone->lru_lock); if (scanning_global_lru(sc)) { @@ -1588,19 +1597,26 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone, struct page *page; struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc); unsigned long nr_rotated = 0; + isolate_mode_t reclaim_mode = ISOLATE_ACTIVE; lru_add_drain(); + + if (!sc->may_unmap) + reclaim_mode |= ISOLATE_UNMAPPED; + if (!sc->may_writepage) + reclaim_mode |= ISOLATE_CLEAN; + spin_lock_irq(&zone->lru_lock); if (scanning_global_lru(sc)) { nr_taken = isolate_pages_global(nr_pages, &l_hold, &pgscanned, sc->order, - ISOLATE_ACTIVE, zone, + reclaim_mode, zone, 1, file); zone->pages_scanned += pgscanned; } else { nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, - ISOLATE_ACTIVE, zone, + reclaim_mode, zone, sc->mem_cgroup, 1, file); /* * mem_cgroup_isolate_pages() keeps track of -- cgit v1.1 From 331fae62e66ac4209f23df0df66999932e513fff Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Mon, 31 Oct 2011 17:06:57 -0700 Subject: mm: migration: clean up unmap_and_move() commit 0dabec93de633a87adfbbe1d800a4c56cd19d73b upstream. Stable note: Not tracked in Bugzilla. This patch makes later patches easier to apply but has no other impact. unmap_and_move() is one a big messy function. Clean it up. Signed-off-by: Minchan Kim Reviewed-by: KOSAKI Motohiro Cc: Johannes Weiner Cc: KAMEZAWA Hiroyuki Cc: Mel Gorman Cc: Rik van Riel Cc: Michal Hocko Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/migrate.c | 75 ++++++++++++++++++++++++++++++++---------------------------- 1 file changed, 40 insertions(+), 35 deletions(-) (limited to 'mm') diff --git a/mm/migrate.c b/mm/migrate.c index 14d0a6a..33358f8 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -621,38 +621,18 @@ static int move_to_new_page(struct page *newpage, struct page *page, return rc; } -/* - * Obtain the lock on page, remove all ptes and migrate the page - * to the newly allocated page in newpage. - */ -static int unmap_and_move(new_page_t get_new_page, unsigned long private, - struct page *page, int force, bool offlining, bool sync) +static int __unmap_and_move(struct page *page, struct page *newpage, + int force, bool offlining, bool sync) { - int rc = 0; - int *result = NULL; - struct page *newpage = get_new_page(page, private, &result); + int rc = -EAGAIN; int remap_swapcache = 1; int charge = 0; struct mem_cgroup *mem; struct anon_vma *anon_vma = NULL; - if (!newpage) - return -ENOMEM; - - if (page_count(page) == 1) { - /* page was freed from under us. So we are done. */ - goto move_newpage; - } - if (unlikely(PageTransHuge(page))) - if (unlikely(split_huge_page(page))) - goto move_newpage; - - /* prepare cgroup just returns 0 or -ENOMEM */ - rc = -EAGAIN; - if (!trylock_page(page)) { if (!force || !sync) - goto move_newpage; + goto out; /* * It's not safe for direct compaction to call lock_page. @@ -668,7 +648,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, * altogether. */ if (current->flags & PF_MEMALLOC) - goto move_newpage; + goto out; lock_page(page); } @@ -785,27 +765,52 @@ uncharge: mem_cgroup_end_migration(mem, page, newpage, rc == 0); unlock: unlock_page(page); +out: + return rc; +} -move_newpage: +/* + * Obtain the lock on page, remove all ptes and migrate the page + * to the newly allocated page in newpage. + */ +static int unmap_and_move(new_page_t get_new_page, unsigned long private, + struct page *page, int force, bool offlining, bool sync) +{ + int rc = 0; + int *result = NULL; + struct page *newpage = get_new_page(page, private, &result); + + if (!newpage) + return -ENOMEM; + + if (page_count(page) == 1) { + /* page was freed from under us. So we are done. */ + goto out; + } + + if (unlikely(PageTransHuge(page))) + if (unlikely(split_huge_page(page))) + goto out; + + rc = __unmap_and_move(page, newpage, force, offlining, sync); +out: if (rc != -EAGAIN) { - /* - * A page that has been migrated has all references - * removed and will be freed. A page that has not been - * migrated will have kepts its references and be - * restored. - */ - list_del(&page->lru); + /* + * A page that has been migrated has all references + * removed and will be freed. A page that has not been + * migrated will have kepts its references and be + * restored. + */ + list_del(&page->lru); dec_zone_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page)); putback_lru_page(page); } - /* * Move the new page to the LRU. If migration was not successful * then this will free the page. */ putback_lru_page(newpage); - if (result) { if (rc) *result = rc; -- cgit v1.1 From ec46a9e8767b9fa37c5d18b18b24ea96a5d2695d Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:22 -0800 Subject: mm: compaction: allow compaction to isolate dirty pages commit a77ebd333cd810d7b680d544be88c875131c2bd3 upstream. Stable note: Not tracked in Bugzilla. A fix aimed at preserving page aging information by reducing LRU list churning had the side-effect of reducing THP allocation success rates. This was part of a series to restore the success rates while preserving the reclaim fix. Short summary: There are severe stalls when a USB stick using VFAT is used with THP enabled that are reduced by this series. If you are experiencing this problem, please test and report back and considering I have seen complaints from openSUSE and Fedora users on this as well as a few private mails, I'm guessing it's a widespread issue. This is a new type of USB-related stall because it is due to synchronous compaction writing where as in the past the big problem was dirty pages reaching the end of the LRU and being written by reclaim. Am cc'ing Andrew this time and this series would replace mm-do-not-stall-in-synchronous-compaction-for-thp-allocations.patch. I'm also cc'ing Dave Jones as he might have merged that patch to Fedora for wider testing and ideally it would be reverted and replaced by this series. That said, the later patches could really do with some review. If this series is not the answer then a new direction needs to be discussed because as it is, the stalls are unacceptable as the results in this leader show. For testers that try backporting this to 3.1, it won't work because there is a non-obvious dependency on not writing back pages in direct reclaim so you need those patches too. Changelog since V5 o Rebase to 3.2-rc5 o Tidy up the changelogs a bit Changelog since V4 o Added reviewed-bys, credited Andrea properly for sync-light o Allow dirty pages without mappings to be considered for migration o Bound the number of pages freed for compaction o Isolate PageReclaim pages on their own LRU list This is against 3.2-rc5 and follows on from discussions on "mm: Do not stall in synchronous compaction for THP allocations" and "[RFC PATCH 0/5] Reduce compaction-related stalls". Initially, the proposed patch eliminated stalls due to compaction which sometimes resulted in user-visible interactivity problems on browsers by simply never using sync compaction. The downside was that THP success allocation rates were lower because dirty pages were not being migrated as reported by Andrea. His approach at fixing this was nacked on the grounds that it reverted fixes from Rik merged that reduced the amount of pages reclaimed as it severely impacted his workloads performance. This series attempts to reconcile the requirements of maximising THP usage, without stalling in a user-visible fashion due to compaction or cheating by reclaiming an excessive number of pages. Patch 1 partially reverts commit 39deaf85 to allow migration to isolate dirty pages. This is because migration can move some dirty pages without blocking. Patch 2 notes that the /proc/sys/vm/compact_memory handler is not using synchronous compaction when it should be. This is unrelated to the reported stalls but is worth fixing. Patch 3 checks if we isolated a compound page during lumpy scan and account for it properly. For the most part, this affects tracing so it's unrelated to the stalls but worth fixing. Patch 4 notes that it is possible to abort reclaim early for compaction and return 0 to the page allocator potentially entering the "may oom" path. This has not been observed in practice but the rest of the series potentially makes it easier to happen. Patch 5 adds a sync parameter to the migratepage callback and gives the callback responsibility for migrating the page without blocking if sync==false. For example, fallback_migrate_page will not call writepage if sync==false. This increases the number of pages that can be handled by asynchronous compaction thereby reducing stalls. Patch 6 restores filter-awareness to isolate_lru_page for migration. In practice, it means that pages under writeback and pages without a ->migratepage callback will not be isolated for migration. Patch 7 avoids calling direct reclaim if compaction is deferred but makes sure that compaction is only deferred if sync compaction was used. Patch 8 introduces a sync-light migration mechanism that sync compaction uses. The objective is to allow some stalls but to not call ->writepage which can lead to significant user-visible stalls. Patch 9 notes that while we want to abort reclaim ASAP to allow compation to go ahead that we leave a very small window of opportunity for compaction to run. This patch allows more pages to be freed by reclaim but bounds the number to a reasonable level based on the high watermark on each zone. Patch 10 allows slabs to be shrunk even after compaction_ready() is true for one zone. This is to avoid a problem whereby a single small zone can abort reclaim even though no pages have been reclaimed and no suitably large zone is in a usable state. Patch 11 fixes a problem with the rate of page scanning. As reclaim is rarely stalling on pages under writeback it means that scan rates are very high. This is particularly true for direct reclaim which is not calling writepage. The vmstat figures implied that much of this was busy work with PageReclaim pages marked for immediate reclaim. This patch is a prototype that moves these pages to their own LRU list. This has been tested and other than 2 USB keys getting trashed, nothing horrible fell out. That said, I am a bit unhappy with the rescue logic in patch 11 but did not find a better way around it. It does significantly reduce scan rates and System CPU time indicating it is the right direction to take. What is of critical importance is that stalls due to compaction are massively reduced even though sync compaction was still allowed. Testing from people complaining about stalls copying to USBs with THP enabled are particularly welcome. The following tests all involve THP usage and USB keys in some way. Each test follows this type of pattern 1. Read from some fast fast storage, be it raw device or file. Each time the copy finishes, start again until the test ends 2. Write a large file to a filesystem on a USB stick. Each time the copy finishes, start again until the test ends 3. When memory is low, start an alloc process that creates a mapping the size of physical memory to stress THP allocation. This is the "real" part of the test and the part that is meant to trigger stalls when THP is enabled. Copying continues in the background. 4. Record the CPU usage and time to execute of the alloc process 5. Record the number of THP allocs and fallbacks as well as the number of THP pages in use a the end of the test just before alloc exited 6. Run the test 5 times to get an idea of variability 7. Between each run, sync is run and caches dropped and the test waits until nr_dirty is a small number to avoid interference or caching between iterations that would skew the figures. The individual tests were then writebackCPDeviceBasevfat Disable THP, read from a raw device (sda), vfat on USB stick writebackCPDeviceBaseext4 Disable THP, read from a raw device (sda), ext4 on USB stick writebackCPDevicevfat THP enabled, read from a raw device (sda), vfat on USB stick writebackCPDeviceext4 THP enabled, read from a raw device (sda), ext4 on USB stick writebackCPFilevfat THP enabled, read from a file on fast storage and USB, both vfat writebackCPFileext4 THP enabled, read from a file on fast storage and USB, both ext4 The kernels tested were 3.1 3.1 vanilla 3.2-rc5 freemore Patches 1-10 immediate Patches 1-11 andrea The 8 patches Andrea posted as a basis of comparison The results are very long unfortunately. I'll start with the case where we are not using THP at all writebackCPDeviceBasevfat 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.28 ( 0.00%) 54.49 (-4143.46%) 48.63 (-3687.69%) 4.69 ( -265.11%) 51.88 (-3940.81%) +/- 0.06 ( 0.00%) 2.45 (-4305.55%) 4.75 (-8430.57%) 7.46 (-13282.76%) 4.76 (-8440.70%) User Time 0.09 ( 0.00%) 0.05 ( 40.91%) 0.06 ( 29.55%) 0.07 ( 15.91%) 0.06 ( 27.27%) +/- 0.02 ( 0.00%) 0.01 ( 45.39%) 0.02 ( 25.07%) 0.00 ( 77.06%) 0.01 ( 52.24%) Elapsed Time 110.27 ( 0.00%) 56.38 ( 48.87%) 49.95 ( 54.70%) 11.77 ( 89.33%) 53.43 ( 51.54%) +/- 7.33 ( 0.00%) 3.77 ( 48.61%) 4.94 ( 32.63%) 6.71 ( 8.50%) 4.76 ( 35.03%) THP Active 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) +/- 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Fault Alloc 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) +/- 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) Fault Fallback 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) +/- 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) 0.00 ( 0.00%) The THP figures are obviously all 0 because THP was enabled. The main thing to watch is the elapsed times and how they compare to times when THP is enabled later. It's also important to note that elapsed time is improved by this series as System CPu time is much reduced. writebackCPDevicevfat 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.22 ( 0.00%) 13.89 (-1040.72%) 46.40 (-3709.20%) 4.44 ( -264.37%) 47.37 (-3789.33%) +/- 0.06 ( 0.00%) 22.82 (-37635.56%) 3.84 (-6249.44%) 6.48 (-10618.92%) 6.60 (-10818.53%) User Time 0.06 ( 0.00%) 0.06 ( -6.90%) 0.05 ( 17.24%) 0.05 ( 13.79%) 0.04 ( 31.03%) +/- 0.01 ( 0.00%) 0.01 ( 33.33%) 0.01 ( 33.33%) 0.01 ( 39.14%) 0.01 ( 25.46%) Elapsed Time 10445.54 ( 0.00%) 2249.92 ( 78.46%) 70.06 ( 99.33%) 16.59 ( 99.84%) 472.43 ( 95.48%) +/- 643.98 ( 0.00%) 811.62 ( -26.03%) 10.02 ( 98.44%) 7.03 ( 98.91%) 59.99 ( 90.68%) THP Active 15.60 ( 0.00%) 35.20 ( 225.64%) 65.00 ( 416.67%) 70.80 ( 453.85%) 62.20 ( 398.72%) +/- 18.48 ( 0.00%) 51.29 ( 277.59%) 15.99 ( 86.52%) 37.91 ( 205.18%) 22.02 ( 119.18%) Fault Alloc 121.80 ( 0.00%) 76.60 ( 62.89%) 155.40 ( 127.59%) 181.20 ( 148.77%) 286.60 ( 235.30%) +/- 73.51 ( 0.00%) 61.11 ( 83.12%) 34.89 ( 47.46%) 31.88 ( 43.36%) 68.13 ( 92.68%) Fault Fallback 881.20 ( 0.00%) 926.60 ( -5.15%) 847.60 ( 3.81%) 822.00 ( 6.72%) 716.60 ( 18.68%) +/- 73.51 ( 0.00%) 61.26 ( 16.67%) 34.89 ( 52.54%) 31.65 ( 56.94%) 67.75 ( 7.84%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 3540.88 1945.37 716.04 64.97 1937.03 Total Elapsed Time (seconds) 52417.33 11425.90 501.02 230.95 2520.28 The first thing to note is the "Elapsed Time" for the vanilla kernels of 2249 seconds versus 56 with THP disabled which might explain the reports of USB stalls with THP enabled. Applying the patches brings performance in line with THP-disabled performance while isolating pages for immediate reclaim from the LRU cuts down System CPU time. The "Fault Alloc" success rate figures are also improved. The vanilla kernel only managed to allocate 76.6 pages on average over the course of 5 iterations where as applying the series allocated 181.20 on average albeit it is well within variance. It's worth noting that applies the series at least descreases the amount of variance which implies an improvement. Andrea's series had a higher success rate for THP allocations but at a severe cost to elapsed time which is still better than vanilla but still much worse than disabling THP altogether. One can bring my series close to Andrea's by removing this check /* * If compaction is deferred for high-order allocations, it is because * sync compaction recently failed. In this is the case and the caller * has requested the system not be heavily disrupted, fail the * allocation now instead of entering direct reclaim */ if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) goto nopage; I didn't include a patch that removed the above check because hurting overall performance to improve the THP figure is not what the average user wants. It's something to consider though if someone really wants to maximise THP usage no matter what it does to the workload initially. This is summary of vmstat figures from the same test. 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 Page Ins 3257266139 1111844061 17263623 10901575 161423219 Page Outs 81054922 30364312 3626530 3657687 8753730 Swap Ins 3294 2851 6560 4964 4592 Swap Outs 390073 528094 620197 790912 698285 Direct pages scanned 1077581700 3024951463 1764930052 115140570 5901188831 Kswapd pages scanned 34826043 7112868 2131265 1686942 1893966 Kswapd pages reclaimed 28950067 4911036 1246044 966475 1497726 Direct pages reclaimed 805148398 280167837 3623473 2215044 40809360 Kswapd efficiency 83% 69% 58% 57% 79% Kswapd velocity 664.399 622.521 4253.852 7304.360 751.490 Direct efficiency 74% 9% 0% 1% 0% Direct velocity 20557.737 264745.137 3522673.849 498551.938 2341481.435 Percentage direct scans 96% 99% 99% 98% 99% Page writes by reclaim 722646 529174 620319 791018 699198 Page writes file 332573 1080 122 106 913 Page writes anon 390073 528094 620197 790912 698285 Page reclaim immediate 0 2552514720 1635858848 111281140 5478375032 Page rescued immediate 0 0 0 87848 0 Slabs scanned 23552 23552 9216 8192 9216 Direct inode steals 231 0 0 0 0 Kswapd inode steals 0 0 0 0 0 Kswapd skipped wait 28076 786 0 61 6 THP fault alloc 609 383 753 906 1433 THP collapse alloc 12 6 0 0 6 THP splits 536 211 456 593 1136 THP fault fallback 4406 4633 4263 4110 3583 THP collapse fail 120 127 0 0 4 Compaction stalls 1810 728 623 779 3200 Compaction success 196 53 60 80 123 Compaction failures 1614 675 563 699 3077 Compaction pages moved 193158 53545 243185 333457 226688 Compaction move failure 9952 9396 16424 23676 45070 The main things to look at are 1. Page In/out figures are much reduced by the series. 2. Direct page scanning is incredibly high (264745.137 pages scanned per second on the vanilla kernel) but isolating PageReclaim pages on their own list reduces the number of pages scanned significantly. 3. The fact that "Page rescued immediate" is a positive number implies that we sometimes race removing pages from the LRU_IMMEDIATE list that need to be put back on a normal LRU but it happens only for 0.07% of the pages marked for immediate reclaim. writebackCPDeviceext4 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.51 ( 0.00%) 1.77 ( -17.66%) 1.46 ( 2.92%) 1.15 ( 23.77%) 1.89 ( -25.63%) +/- 0.27 ( 0.00%) 0.67 ( -148.52%) 0.33 ( -22.76%) 0.30 ( -11.15%) 0.19 ( 30.16%) User Time 0.03 ( 0.00%) 0.04 ( -37.50%) 0.05 ( -62.50%) 0.07 ( -112.50%) 0.04 ( -18.75%) +/- 0.01 ( 0.00%) 0.02 ( -146.64%) 0.02 ( -97.91%) 0.02 ( -75.59%) 0.02 ( -63.30%) Elapsed Time 124.93 ( 0.00%) 114.49 ( 8.36%) 96.77 ( 22.55%) 27.48 ( 78.00%) 205.70 ( -64.65%) +/- 20.20 ( 0.00%) 74.39 ( -268.34%) 59.88 ( -196.48%) 7.72 ( 61.79%) 25.03 ( -23.95%) THP Active 161.80 ( 0.00%) 83.60 ( 51.67%) 141.20 ( 87.27%) 84.60 ( 52.29%) 82.60 ( 51.05%) +/- 71.95 ( 0.00%) 43.80 ( 60.88%) 26.91 ( 37.40%) 59.02 ( 82.03%) 52.13 ( 72.45%) Fault Alloc 471.40 ( 0.00%) 228.60 ( 48.49%) 282.20 ( 59.86%) 225.20 ( 47.77%) 388.40 ( 82.39%) +/- 88.07 ( 0.00%) 87.42 ( 99.26%) 73.79 ( 83.78%) 109.62 ( 124.47%) 82.62 ( 93.81%) Fault Fallback 531.60 ( 0.00%) 774.60 ( -45.71%) 720.80 ( -35.59%) 777.80 ( -46.31%) 614.80 ( -15.65%) +/- 88.07 ( 0.00%) 87.26 ( 0.92%) 73.79 ( 16.22%) 109.62 ( -24.47%) 82.29 ( 6.56%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 50.22 33.76 30.65 24.14 128.45 Total Elapsed Time (seconds) 1113.73 1132.19 1029.45 759.49 1707.26 Similar test but the USB stick is using ext4 instead of vfat. As ext4 does not use writepage for migration, the large stalls due to compaction when THP is enabled are not observed. Still, isolating PageReclaim pages on their own list helped completion time largely by reducing the number of pages scanned by direct reclaim although time spend in congestion_wait could also be a factor. Again, Andrea's series had far higher success rates for THP allocation at the cost of elapsed time. I didn't look too closely but a quick look at the vmstat figures tells me kswapd reclaimed 8 times more pages than the patch series and direct reclaim reclaimed roughly three times as many pages. It follows that if memory is aggressively reclaimed, there will be more available for THP. writebackCPFilevfat 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.76 ( 0.00%) 29.10 (-1555.52%) 46.01 (-2517.18%) 4.79 ( -172.35%) 54.89 (-3022.53%) +/- 0.14 ( 0.00%) 25.61 (-18185.17%) 2.15 (-1434.83%) 6.60 (-4610.03%) 9.75 (-6863.76%) User Time 0.05 ( 0.00%) 0.07 ( -45.83%) 0.05 ( -4.17%) 0.06 ( -29.17%) 0.06 ( -16.67%) +/- 0.02 ( 0.00%) 0.02 ( 20.11%) 0.02 ( -3.14%) 0.01 ( 31.58%) 0.01 ( 47.41%) Elapsed Time 22520.79 ( 0.00%) 1082.85 ( 95.19%) 73.30 ( 99.67%) 32.43 ( 99.86%) 291.84 ( 98.70%) +/- 7277.23 ( 0.00%) 706.29 ( 90.29%) 19.05 ( 99.74%) 17.05 ( 99.77%) 125.55 ( 98.27%) THP Active 83.80 ( 0.00%) 12.80 ( 15.27%) 15.60 ( 18.62%) 13.00 ( 15.51%) 0.80 ( 0.95%) +/- 66.81 ( 0.00%) 20.19 ( 30.22%) 5.92 ( 8.86%) 15.06 ( 22.54%) 1.17 ( 1.75%) Fault Alloc 171.00 ( 0.00%) 67.80 ( 39.65%) 97.40 ( 56.96%) 125.60 ( 73.45%) 133.00 ( 77.78%) +/- 82.91 ( 0.00%) 30.69 ( 37.02%) 53.91 ( 65.02%) 55.05 ( 66.40%) 21.19 ( 25.56%) Fault Fallback 832.00 ( 0.00%) 935.20 ( -12.40%) 906.00 ( -8.89%) 877.40 ( -5.46%) 870.20 ( -4.59%) +/- 82.91 ( 0.00%) 30.69 ( 62.98%) 54.01 ( 34.86%) 55.05 ( 33.60%) 20.91 ( 74.78%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 7229.81 928.42 704.52 80.68 1330.76 Total Elapsed Time (seconds) 112849.04 5618.69 571.11 360.54 1664.28 In this case, the test is reading/writing only from filesystems but as it's vfat, it's slow due to calling writepage during compaction. Little to observe really - the time to complete the test goes way down with the series applied and THP allocation success rates go up in comparison to 3.2-rc5. The success rates are lower than 3.1.0 but the elapsed time for that kernel is abysmal so it is not really a sensible comparison. As before, Andrea's series allocates more THPs at the cost of overall performance. writebackCPFileext4 3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1 System Time 1.51 ( 0.00%) 1.77 ( -17.66%) 1.46 ( 2.92%) 1.15 ( 23.77%) 1.89 ( -25.63%) +/- 0.27 ( 0.00%) 0.67 ( -148.52%) 0.33 ( -22.76%) 0.30 ( -11.15%) 0.19 ( 30.16%) User Time 0.03 ( 0.00%) 0.04 ( -37.50%) 0.05 ( -62.50%) 0.07 ( -112.50%) 0.04 ( -18.75%) +/- 0.01 ( 0.00%) 0.02 ( -146.64%) 0.02 ( -97.91%) 0.02 ( -75.59%) 0.02 ( -63.30%) Elapsed Time 124.93 ( 0.00%) 114.49 ( 8.36%) 96.77 ( 22.55%) 27.48 ( 78.00%) 205.70 ( -64.65%) +/- 20.20 ( 0.00%) 74.39 ( -268.34%) 59.88 ( -196.48%) 7.72 ( 61.79%) 25.03 ( -23.95%) THP Active 161.80 ( 0.00%) 83.60 ( 51.67%) 141.20 ( 87.27%) 84.60 ( 52.29%) 82.60 ( 51.05%) +/- 71.95 ( 0.00%) 43.80 ( 60.88%) 26.91 ( 37.40%) 59.02 ( 82.03%) 52.13 ( 72.45%) Fault Alloc 471.40 ( 0.00%) 228.60 ( 48.49%) 282.20 ( 59.86%) 225.20 ( 47.77%) 388.40 ( 82.39%) +/- 88.07 ( 0.00%) 87.42 ( 99.26%) 73.79 ( 83.78%) 109.62 ( 124.47%) 82.62 ( 93.81%) Fault Fallback 531.60 ( 0.00%) 774.60 ( -45.71%) 720.80 ( -35.59%) 777.80 ( -46.31%) 614.80 ( -15.65%) +/- 88.07 ( 0.00%) 87.26 ( 0.92%) 73.79 ( 16.22%) 109.62 ( -24.47%) 82.29 ( 6.56%) MMTests Statistics: duration User/Sys Time Running Test (seconds) 50.22 33.76 30.65 24.14 128.45 Total Elapsed Time (seconds) 1113.73 1132.19 1029.45 759.49 1707.26 Same type of story - elapsed times go down. In this case, allocation success rates are roughtly the same. As before, Andrea's has higher success rates but takes a lot longer. Overall the series does reduce latencies and while the tests are inherency racy as alloc competes with the cp processes, the variability was included. The THP allocation rates are not as high as they could be but that is because we would have to be more aggressive about reclaim and compaction impacting overall performance. This patch: Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware") noted that compaction does not migrate dirty or writeback pages and that is was meaningless to pick the page and re-add it to the LRU list. What was missed during review is that asynchronous migration moves dirty pages if their ->migratepage callback is migrate_page() because these can be moved without blocking. This potentially impacted hugepage allocation success rates by a factor depending on how many dirty pages are in the system. This patch partially reverts 39deaf85 to allow migration to isolate dirty pages again. This increases how much compaction disrupts the LRU but that is addressed later in the series. Signed-off-by: Mel Gorman Reviewed-by: Andrea Arcangeli Reviewed-by: Rik van Riel Reviewed-by: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 3 --- 1 file changed, 3 deletions(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index b30c40f..228f91b 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -371,9 +371,6 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone, continue; } - if (!cc->sync) - mode |= ISOLATE_CLEAN; - /* Try isolate the page */ if (__isolate_lru_page(page, mode, 0) != 0) continue; -- cgit v1.1 From 397d9c507ff1c9c5afc80c80ee245c2455d6a1db Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:34 -0800 Subject: mm: compaction: determine if dirty pages can be migrated without blocking within ->migratepage commit b969c4ab9f182a6e1b2a0848be349f99714947b0 upstream. Stable note: Not tracked in Bugzilla. A fix aimed at preserving page aging information by reducing LRU list churning had the side-effect of reducing THP allocation success rates. This was part of a series to restore the success rates while preserving the reclaim fix. Asynchronous compaction is used when allocating transparent hugepages to avoid blocking for long periods of time. Due to reports of stalling, there was a debate on disabling synchronous compaction but this severely impacted allocation success rates. Part of the reason was that many dirty pages are skipped in asynchronous compaction by the following check; if (PageDirty(page) && !sync && mapping->a_ops->migratepage != migrate_page) rc = -EBUSY; This skips over all mapping aops using buffer_migrate_page() even though it is possible to migrate some of these pages without blocking. This patch updates the ->migratepage callback with a "sync" parameter. It is the responsibility of the callback to fail gracefully if migration would block. Signed-off-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Cc: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/migrate.c | 129 ++++++++++++++++++++++++++++++++++++++++++----------------- 1 file changed, 92 insertions(+), 37 deletions(-) (limited to 'mm') diff --git a/mm/migrate.c b/mm/migrate.c index 33358f8..d43689a 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -220,6 +220,55 @@ out: pte_unmap_unlock(ptep, ptl); } +#ifdef CONFIG_BLOCK +/* Returns true if all buffers are successfully locked */ +static bool buffer_migrate_lock_buffers(struct buffer_head *head, bool sync) +{ + struct buffer_head *bh = head; + + /* Simple case, sync compaction */ + if (sync) { + do { + get_bh(bh); + lock_buffer(bh); + bh = bh->b_this_page; + + } while (bh != head); + + return true; + } + + /* async case, we cannot block on lock_buffer so use trylock_buffer */ + do { + get_bh(bh); + if (!trylock_buffer(bh)) { + /* + * We failed to lock the buffer and cannot stall in + * async migration. Release the taken locks + */ + struct buffer_head *failed_bh = bh; + put_bh(failed_bh); + bh = head; + while (bh != failed_bh) { + unlock_buffer(bh); + put_bh(bh); + bh = bh->b_this_page; + } + return false; + } + + bh = bh->b_this_page; + } while (bh != head); + return true; +} +#else +static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, + bool sync) +{ + return true; +} +#endif /* CONFIG_BLOCK */ + /* * Replace the page in the mapping. * @@ -229,7 +278,8 @@ out: * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. */ static int migrate_page_move_mapping(struct address_space *mapping, - struct page *newpage, struct page *page) + struct page *newpage, struct page *page, + struct buffer_head *head, bool sync) { int expected_count; void **pslot; @@ -259,6 +309,19 @@ static int migrate_page_move_mapping(struct address_space *mapping, } /* + * In the async migration case of moving a page with buffers, lock the + * buffers using trylock before the mapping is moved. If the mapping + * was moved, we later failed to lock the buffers and could not move + * the mapping back due to an elevated page count, we would have to + * block waiting on other references to be dropped. + */ + if (!sync && head && !buffer_migrate_lock_buffers(head, sync)) { + page_unfreeze_refs(page, expected_count); + spin_unlock_irq(&mapping->tree_lock); + return -EAGAIN; + } + + /* * Now we know that no one else is looking at the page. */ get_page(newpage); /* add cache reference */ @@ -415,13 +478,13 @@ EXPORT_SYMBOL(fail_migrate_page); * Pages are locked upon entry and exit. */ int migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page) + struct page *newpage, struct page *page, bool sync) { int rc; BUG_ON(PageWriteback(page)); /* Writeback must be complete */ - rc = migrate_page_move_mapping(mapping, newpage, page); + rc = migrate_page_move_mapping(mapping, newpage, page, NULL, sync); if (rc) return rc; @@ -438,28 +501,28 @@ EXPORT_SYMBOL(migrate_page); * exist. */ int buffer_migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page) + struct page *newpage, struct page *page, bool sync) { struct buffer_head *bh, *head; int rc; if (!page_has_buffers(page)) - return migrate_page(mapping, newpage, page); + return migrate_page(mapping, newpage, page, sync); head = page_buffers(page); - rc = migrate_page_move_mapping(mapping, newpage, page); + rc = migrate_page_move_mapping(mapping, newpage, page, head, sync); if (rc) return rc; - bh = head; - do { - get_bh(bh); - lock_buffer(bh); - bh = bh->b_this_page; - - } while (bh != head); + /* + * In the async case, migrate_page_move_mapping locked the buffers + * with an IRQ-safe spinlock held. In the sync case, the buffers + * need to be locked now + */ + if (sync) + BUG_ON(!buffer_migrate_lock_buffers(head, sync)); ClearPagePrivate(page); set_page_private(newpage, page_private(page)); @@ -536,10 +599,13 @@ static int writeout(struct address_space *mapping, struct page *page) * Default handling if a filesystem does not provide a migration function. */ static int fallback_migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page) + struct page *newpage, struct page *page, bool sync) { - if (PageDirty(page)) + if (PageDirty(page)) { + if (!sync) + return -EBUSY; return writeout(mapping, page); + } /* * Buffers may be managed in a filesystem specific way. @@ -549,7 +615,7 @@ static int fallback_migrate_page(struct address_space *mapping, !try_to_release_page(page, GFP_KERNEL)) return -EAGAIN; - return migrate_page(mapping, newpage, page); + return migrate_page(mapping, newpage, page, sync); } /* @@ -585,29 +651,18 @@ static int move_to_new_page(struct page *newpage, struct page *page, mapping = page_mapping(page); if (!mapping) - rc = migrate_page(mapping, newpage, page); - else { + rc = migrate_page(mapping, newpage, page, sync); + else if (mapping->a_ops->migratepage) /* - * Do not writeback pages if !sync and migratepage is - * not pointing to migrate_page() which is nonblocking - * (swapcache/tmpfs uses migratepage = migrate_page). + * Most pages have a mapping and most filesystems provide a + * migratepage callback. Anonymous pages are part of swap + * space which also has its own migratepage callback. This + * is the most common path for page migration. */ - if (PageDirty(page) && !sync && - mapping->a_ops->migratepage != migrate_page) - rc = -EBUSY; - else if (mapping->a_ops->migratepage) - /* - * Most pages have a mapping and most filesystems - * should provide a migration function. Anonymous - * pages are part of swap space which also has its - * own migration function. This is the most common - * path for page migration. - */ - rc = mapping->a_ops->migratepage(mapping, - newpage, page); - else - rc = fallback_migrate_page(mapping, newpage, page); - } + rc = mapping->a_ops->migratepage(mapping, + newpage, page, sync); + else + rc = fallback_migrate_page(mapping, newpage, page, sync); if (rc) { newpage->mapping = NULL; -- cgit v1.1 From c17a36656685a2af6ea9e99fa243a7103b643d12 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:41 -0800 Subject: mm: page allocator: do not call direct reclaim for THP allocations while compaction is deferred commit 66199712e9eef5aede09dbcd9dfff87798a66917 upstream. Stable note: Not tracked in Buzilla. This was part of a series that reduced interactivity stalls experienced when THP was enabled. If compaction is deferred, direct reclaim is used to try to free enough pages for the allocation to succeed. For small high-orders, this has a reasonable chance of success. However, if the caller has specified __GFP_NO_KSWAPD to limit the disruption to the system, it makes more sense to fail the allocation rather than stall the caller in direct reclaim. This patch skips direct reclaim if compaction is deferred and the caller specifies __GFP_NO_KSWAPD. Async compaction only considers a subset of pages so it is possible for compaction to be deferred prematurely and not enter direct reclaim even in cases where it should. To compensate for this, this patch also defers compaction only if sync compaction failed. Signed-off-by: Mel Gorman Acked-by: Minchan Kim Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/page_alloc.c | 45 +++++++++++++++++++++++++++++++++++---------- 1 file changed, 35 insertions(+), 10 deletions(-) (limited to 'mm') diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 70c049d..0d490ba 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -1897,14 +1897,20 @@ static struct page * __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, enum zone_type high_zoneidx, nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, - int migratetype, unsigned long *did_some_progress, - bool sync_migration) + int migratetype, bool sync_migration, + bool *deferred_compaction, + unsigned long *did_some_progress) { struct page *page; - if (!order || compaction_deferred(preferred_zone)) + if (!order) return NULL; + if (compaction_deferred(preferred_zone)) { + *deferred_compaction = true; + return NULL; + } + current->flags |= PF_MEMALLOC; *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, nodemask, sync_migration); @@ -1932,7 +1938,13 @@ __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, * but not enough to satisfy watermarks. */ count_vm_event(COMPACTFAIL); - defer_compaction(preferred_zone); + + /* + * As async compaction considers a subset of pageblocks, only + * defer if the failure was a sync compaction failure. + */ + if (sync_migration) + defer_compaction(preferred_zone); cond_resched(); } @@ -1944,8 +1956,9 @@ static inline struct page * __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, enum zone_type high_zoneidx, nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, - int migratetype, unsigned long *did_some_progress, - bool sync_migration) + int migratetype, bool sync_migration, + bool *deferred_compaction, + unsigned long *did_some_progress) { return NULL; } @@ -2095,6 +2108,7 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, unsigned long pages_reclaimed = 0; unsigned long did_some_progress; bool sync_migration = false; + bool deferred_compaction = false; /* * In the slowpath, we sanity check order to avoid ever trying to @@ -2175,12 +2189,22 @@ rebalance: zonelist, high_zoneidx, nodemask, alloc_flags, preferred_zone, - migratetype, &did_some_progress, - sync_migration); + migratetype, sync_migration, + &deferred_compaction, + &did_some_progress); if (page) goto got_pg; sync_migration = true; + /* + * If compaction is deferred for high-order allocations, it is because + * sync compaction recently failed. In this is the case and the caller + * has requested the system not be heavily disrupted, fail the + * allocation now instead of entering direct reclaim + */ + if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) + goto nopage; + /* Try direct reclaim and then allocating */ page = __alloc_pages_direct_reclaim(gfp_mask, order, zonelist, high_zoneidx, @@ -2243,8 +2267,9 @@ rebalance: zonelist, high_zoneidx, nodemask, alloc_flags, preferred_zone, - migratetype, &did_some_progress, - sync_migration); + migratetype, sync_migration, + &deferred_compaction, + &did_some_progress); if (page) goto got_pg; } -- cgit v1.1 From a7e32d7a2a801b7838b4159e9d73ea86f68ae002 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:38 -0800 Subject: mm: compaction: make isolate_lru_page() filter-aware again commit c82449352854ff09e43062246af86bdeb628f0c3 upstream. Stable note: Not tracked in Bugzilla. A fix aimed at preserving page aging information by reducing LRU list churning had the side-effect of reducing THP allocation success rates. This was part of a series to restore the success rates while preserving the reclaim fix. Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware") noted that compaction does not migrate dirty or writeback pages and that is was meaningless to pick the page and re-add it to the LRU list. This had to be partially reverted because some dirty pages can be migrated by compaction without blocking. This patch updates "mm: compaction: make isolate_lru_page" by skipping over pages that migration has no possibility of migrating to minimise LRU disruption. Signed-off-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Reviewed-by: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 3 +++ mm/vmscan.c | 35 +++++++++++++++++++++++++++++++++-- 2 files changed, 36 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index 228f91b..da44920 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -371,6 +371,9 @@ static isolate_migrate_t isolate_migratepages(struct zone *zone, continue; } + if (!cc->sync) + mode |= ISOLATE_ASYNC_MIGRATE; + /* Try isolate the page */ if (__isolate_lru_page(page, mode, 0) != 0) continue; diff --git a/mm/vmscan.c b/mm/vmscan.c index 0c78bd3..45c40d6 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1045,8 +1045,39 @@ int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file) ret = -EBUSY; - if ((mode & ISOLATE_CLEAN) && (PageDirty(page) || PageWriteback(page))) - return ret; + /* + * To minimise LRU disruption, the caller can indicate that it only + * wants to isolate pages it will be able to operate on without + * blocking - clean pages for the most part. + * + * ISOLATE_CLEAN means that only clean pages should be isolated. This + * is used by reclaim when it is cannot write to backing storage + * + * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages + * that it is possible to migrate without blocking + */ + if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { + /* All the caller can do on PageWriteback is block */ + if (PageWriteback(page)) + return ret; + + if (PageDirty(page)) { + struct address_space *mapping; + + /* ISOLATE_CLEAN means only clean pages */ + if (mode & ISOLATE_CLEAN) + return ret; + + /* + * Only pages without mappings or that have a + * ->migratepage callback are possible to migrate + * without blocking + */ + mapping = page_mapping(page); + if (mapping && !mapping->a_ops->migratepage) + return ret; + } + } if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) return ret; -- cgit v1.1 From 5d62e5ca429b85ecadaa5042bdb1d8b88d4bfe80 Mon Sep 17 00:00:00 2001 From: Alex Shi Date: Mon, 31 Oct 2011 17:08:39 -0700 Subject: kswapd: avoid unnecessary rebalance after an unsuccessful balancing MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit commit d2ebd0f6b89567eb93ead4e2ca0cbe03021f344b upstream. Stable note: Fixes https://bugzilla.redhat.com/show_bug.cgi?id=712019. This patch reduces kswapd CPU usage. In commit 215ddd66 ("mm: vmscan: only read new_classzone_idx from pgdat when reclaiming successfully") , Mel Gorman said kswapd is better to sleep after a unsuccessful balancing if there is tighter reclaim request pending in the balancing. But in the following scenario, kswapd do something that is not matched our expectation. The patch fixes this issue. 1, Read pgdat request A (classzone_idx, order = 3) 2, balance_pgdat() 3, During pgdat, a new pgdat request B (classzone_idx, order = 5) is placed 4, balance_pgdat() returns but failed since returned order = 0 5, pgdat of request A assigned to balance_pgdat(), and do balancing again. While the expectation behavior of kswapd should try to sleep. Signed-off-by: Alex Shi Reviewed-by: Tim Chen Acked-by: Mel Gorman Tested-by: Pádraig Brady Cc: Rik van Riel Cc: KOSAKI Motohiro Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 14 +++++++++++--- 1 file changed, 11 insertions(+), 3 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 45c40d6..5cc0f92 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2844,7 +2844,9 @@ static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) static int kswapd(void *p) { unsigned long order, new_order; + unsigned balanced_order; int classzone_idx, new_classzone_idx; + int balanced_classzone_idx; pg_data_t *pgdat = (pg_data_t*)p; struct task_struct *tsk = current; @@ -2875,7 +2877,9 @@ static int kswapd(void *p) set_freezable(); order = new_order = 0; + balanced_order = 0; classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; + balanced_classzone_idx = classzone_idx; for ( ; ; ) { int ret; @@ -2884,7 +2888,8 @@ static int kswapd(void *p) * new request of a similar or harder type will succeed soon * so consider going to sleep on the basis we reclaimed at */ - if (classzone_idx >= new_classzone_idx && order == new_order) { + if (balanced_classzone_idx >= new_classzone_idx && + balanced_order == new_order) { new_order = pgdat->kswapd_max_order; new_classzone_idx = pgdat->classzone_idx; pgdat->kswapd_max_order = 0; @@ -2899,7 +2904,8 @@ static int kswapd(void *p) order = new_order; classzone_idx = new_classzone_idx; } else { - kswapd_try_to_sleep(pgdat, order, classzone_idx); + kswapd_try_to_sleep(pgdat, balanced_order, + balanced_classzone_idx); order = pgdat->kswapd_max_order; classzone_idx = pgdat->classzone_idx; pgdat->kswapd_max_order = 0; @@ -2916,7 +2922,9 @@ static int kswapd(void *p) */ if (!ret) { trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); - order = balance_pgdat(pgdat, order, &classzone_idx); + balanced_classzone_idx = classzone_idx; + balanced_order = balance_pgdat(pgdat, order, + &balanced_classzone_idx); } } return 0; -- cgit v1.1 From 9203b3fa57cc16bf1ad1be7c64b01b5e45cc6151 Mon Sep 17 00:00:00 2001 From: Alex Shi Date: Mon, 31 Oct 2011 17:08:45 -0700 Subject: kswapd: assign new_order and new_classzone_idx after wakeup in sleeping MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit commit f0dfcde099453aa4c0dc42473828d15a6d492936 upstream. Stable note: Fixes https://bugzilla.redhat.com/show_bug.cgi?id=712019. This patch reduces kswapd CPU usage. There 2 places to read pgdat in kswapd. One is return from a successful balance, another is waked up from kswapd sleeping. The new_order and new_classzone_idx represent the balance input order and classzone_idx. But current new_order and new_classzone_idx are not assigned after kswapd_try_to_sleep(), that will cause a bug in the following scenario. 1: after a successful balance, kswapd goes to sleep, and new_order = 0; new_classzone_idx = __MAX_NR_ZONES - 1; 2: kswapd waked up with order = 3 and classzone_idx = ZONE_NORMAL 3: in the balance_pgdat() running, a new balance wakeup happened with order = 5, and classzone_idx = ZONE_NORMAL 4: the first wakeup(order = 3) finished successufly, return order = 3 but, the new_order is still 0, so, this balancing will be treated as a failed balance. And then the second tighter balancing will be missed. So, to avoid the above problem, the new_order and new_classzone_idx need to be assigned for later successful comparison. Signed-off-by: Alex Shi Acked-by: Mel Gorman Reviewed-by: Minchan Kim Tested-by: Pádraig Brady Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 2 ++ 1 file changed, 2 insertions(+) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 5cc0f92..870cbcf 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2908,6 +2908,8 @@ static int kswapd(void *p) balanced_classzone_idx); order = pgdat->kswapd_max_order; classzone_idx = pgdat->classzone_idx; + new_order = order; + new_classzone_idx = classzone_idx; pgdat->kswapd_max_order = 0; pgdat->classzone_idx = pgdat->nr_zones - 1; } -- cgit v1.1 From f869774c37710ef2b773d167d184b9936988d07f Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:43 -0800 Subject: mm: compaction: introduce sync-light migration for use by compaction commit a6bc32b899223a877f595ef9ddc1e89ead5072b8 upstream. Stable note: Not tracked in Buzilla. This was part of a series that reduced interactivity stalls experienced when THP was enabled. These stalls were particularly noticable when copying data to a USB stick but the experiences for users varied a lot. This patch adds a lightweight sync migrate operation MIGRATE_SYNC_LIGHT mode that avoids writing back pages to backing storage. Async compaction maps to MIGRATE_ASYNC while sync compaction maps to MIGRATE_SYNC_LIGHT. For other migrate_pages users such as memory hotplug, MIGRATE_SYNC is used. This avoids sync compaction stalling for an excessive length of time, particularly when copying files to a USB stick where there might be a large number of dirty pages backed by a filesystem that does not support ->writepages. [aarcange@redhat.com: This patch is heavily based on Andrea's work] [akpm@linux-foundation.org: fix fs/nfs/write.c build] [akpm@linux-foundation.org: fix fs/btrfs/disk-io.c build] Signed-off-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Cc: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/compaction.c | 2 +- mm/memory-failure.c | 2 +- mm/memory_hotplug.c | 2 +- mm/mempolicy.c | 2 +- mm/migrate.c | 78 +++++++++++++++++++++++++++++------------------------ 5 files changed, 47 insertions(+), 39 deletions(-) (limited to 'mm') diff --git a/mm/compaction.c b/mm/compaction.c index da44920..8ea7308 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -577,7 +577,7 @@ static int compact_zone(struct zone *zone, struct compact_control *cc) nr_migrate = cc->nr_migratepages; err = migrate_pages(&cc->migratepages, compaction_alloc, (unsigned long)cc, false, - cc->sync); + cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC); update_nr_listpages(cc); nr_remaining = cc->nr_migratepages; diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 740c4f5..6496748 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -1464,7 +1464,7 @@ int soft_offline_page(struct page *page, int flags) page_is_file_cache(page)); list_add(&page->lru, &pagelist); ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, - 0, true); + 0, MIGRATE_SYNC); if (ret) { putback_lru_pages(&pagelist); pr_info("soft offline: %#lx: migration failed %d, type %lx\n", diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index c46887b..ae5a3f2 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -747,7 +747,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) } /* this function returns # of failed pages */ ret = migrate_pages(&source, hotremove_migrate_alloc, 0, - true, true); + true, MIGRATE_SYNC); if (ret) putback_lru_pages(&source); } diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 3dac2d1..dd5f874 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -926,7 +926,7 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest, if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, new_node_page, dest, - false, true); + false, MIGRATE_SYNC); if (err) putback_lru_pages(&pagelist); } diff --git a/mm/migrate.c b/mm/migrate.c index d43689a..480714b 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -222,12 +222,13 @@ out: #ifdef CONFIG_BLOCK /* Returns true if all buffers are successfully locked */ -static bool buffer_migrate_lock_buffers(struct buffer_head *head, bool sync) +static bool buffer_migrate_lock_buffers(struct buffer_head *head, + enum migrate_mode mode) { struct buffer_head *bh = head; /* Simple case, sync compaction */ - if (sync) { + if (mode != MIGRATE_ASYNC) { do { get_bh(bh); lock_buffer(bh); @@ -263,7 +264,7 @@ static bool buffer_migrate_lock_buffers(struct buffer_head *head, bool sync) } #else static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, - bool sync) + enum migrate_mode mode) { return true; } @@ -279,7 +280,7 @@ static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, */ static int migrate_page_move_mapping(struct address_space *mapping, struct page *newpage, struct page *page, - struct buffer_head *head, bool sync) + struct buffer_head *head, enum migrate_mode mode) { int expected_count; void **pslot; @@ -315,7 +316,8 @@ static int migrate_page_move_mapping(struct address_space *mapping, * the mapping back due to an elevated page count, we would have to * block waiting on other references to be dropped. */ - if (!sync && head && !buffer_migrate_lock_buffers(head, sync)) { + if (mode == MIGRATE_ASYNC && head && + !buffer_migrate_lock_buffers(head, mode)) { page_unfreeze_refs(page, expected_count); spin_unlock_irq(&mapping->tree_lock); return -EAGAIN; @@ -478,13 +480,14 @@ EXPORT_SYMBOL(fail_migrate_page); * Pages are locked upon entry and exit. */ int migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page, bool sync) + struct page *newpage, struct page *page, + enum migrate_mode mode) { int rc; BUG_ON(PageWriteback(page)); /* Writeback must be complete */ - rc = migrate_page_move_mapping(mapping, newpage, page, NULL, sync); + rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); if (rc) return rc; @@ -501,17 +504,17 @@ EXPORT_SYMBOL(migrate_page); * exist. */ int buffer_migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page, bool sync) + struct page *newpage, struct page *page, enum migrate_mode mode) { struct buffer_head *bh, *head; int rc; if (!page_has_buffers(page)) - return migrate_page(mapping, newpage, page, sync); + return migrate_page(mapping, newpage, page, mode); head = page_buffers(page); - rc = migrate_page_move_mapping(mapping, newpage, page, head, sync); + rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); if (rc) return rc; @@ -521,8 +524,8 @@ int buffer_migrate_page(struct address_space *mapping, * with an IRQ-safe spinlock held. In the sync case, the buffers * need to be locked now */ - if (sync) - BUG_ON(!buffer_migrate_lock_buffers(head, sync)); + if (mode != MIGRATE_ASYNC) + BUG_ON(!buffer_migrate_lock_buffers(head, mode)); ClearPagePrivate(page); set_page_private(newpage, page_private(page)); @@ -599,10 +602,11 @@ static int writeout(struct address_space *mapping, struct page *page) * Default handling if a filesystem does not provide a migration function. */ static int fallback_migrate_page(struct address_space *mapping, - struct page *newpage, struct page *page, bool sync) + struct page *newpage, struct page *page, enum migrate_mode mode) { if (PageDirty(page)) { - if (!sync) + /* Only writeback pages in full synchronous migration */ + if (mode != MIGRATE_SYNC) return -EBUSY; return writeout(mapping, page); } @@ -615,7 +619,7 @@ static int fallback_migrate_page(struct address_space *mapping, !try_to_release_page(page, GFP_KERNEL)) return -EAGAIN; - return migrate_page(mapping, newpage, page, sync); + return migrate_page(mapping, newpage, page, mode); } /* @@ -630,7 +634,7 @@ static int fallback_migrate_page(struct address_space *mapping, * == 0 - success */ static int move_to_new_page(struct page *newpage, struct page *page, - int remap_swapcache, bool sync) + int remap_swapcache, enum migrate_mode mode) { struct address_space *mapping; int rc; @@ -651,7 +655,7 @@ static int move_to_new_page(struct page *newpage, struct page *page, mapping = page_mapping(page); if (!mapping) - rc = migrate_page(mapping, newpage, page, sync); + rc = migrate_page(mapping, newpage, page, mode); else if (mapping->a_ops->migratepage) /* * Most pages have a mapping and most filesystems provide a @@ -660,9 +664,9 @@ static int move_to_new_page(struct page *newpage, struct page *page, * is the most common path for page migration. */ rc = mapping->a_ops->migratepage(mapping, - newpage, page, sync); + newpage, page, mode); else - rc = fallback_migrate_page(mapping, newpage, page, sync); + rc = fallback_migrate_page(mapping, newpage, page, mode); if (rc) { newpage->mapping = NULL; @@ -677,7 +681,7 @@ static int move_to_new_page(struct page *newpage, struct page *page, } static int __unmap_and_move(struct page *page, struct page *newpage, - int force, bool offlining, bool sync) + int force, bool offlining, enum migrate_mode mode) { int rc = -EAGAIN; int remap_swapcache = 1; @@ -686,7 +690,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, struct anon_vma *anon_vma = NULL; if (!trylock_page(page)) { - if (!force || !sync) + if (!force || mode == MIGRATE_ASYNC) goto out; /* @@ -732,10 +736,12 @@ static int __unmap_and_move(struct page *page, struct page *newpage, if (PageWriteback(page)) { /* - * For !sync, there is no point retrying as the retry loop - * is expected to be too short for PageWriteback to be cleared + * Only in the case of a full syncronous migration is it + * necessary to wait for PageWriteback. In the async case, + * the retry loop is too short and in the sync-light case, + * the overhead of stalling is too much */ - if (!sync) { + if (mode != MIGRATE_SYNC) { rc = -EBUSY; goto uncharge; } @@ -806,7 +812,7 @@ static int __unmap_and_move(struct page *page, struct page *newpage, skip_unmap: if (!page_mapped(page)) - rc = move_to_new_page(newpage, page, remap_swapcache, sync); + rc = move_to_new_page(newpage, page, remap_swapcache, mode); if (rc && remap_swapcache) remove_migration_ptes(page, page); @@ -829,7 +835,8 @@ out: * to the newly allocated page in newpage. */ static int unmap_and_move(new_page_t get_new_page, unsigned long private, - struct page *page, int force, bool offlining, bool sync) + struct page *page, int force, bool offlining, + enum migrate_mode mode) { int rc = 0; int *result = NULL; @@ -847,7 +854,7 @@ static int unmap_and_move(new_page_t get_new_page, unsigned long private, if (unlikely(split_huge_page(page))) goto out; - rc = __unmap_and_move(page, newpage, force, offlining, sync); + rc = __unmap_and_move(page, newpage, force, offlining, mode); out: if (rc != -EAGAIN) { /* @@ -895,7 +902,8 @@ out: */ static int unmap_and_move_huge_page(new_page_t get_new_page, unsigned long private, struct page *hpage, - int force, bool offlining, bool sync) + int force, bool offlining, + enum migrate_mode mode) { int rc = 0; int *result = NULL; @@ -908,7 +916,7 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, rc = -EAGAIN; if (!trylock_page(hpage)) { - if (!force || !sync) + if (!force || mode != MIGRATE_SYNC) goto out; lock_page(hpage); } @@ -919,7 +927,7 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); if (!page_mapped(hpage)) - rc = move_to_new_page(new_hpage, hpage, 1, sync); + rc = move_to_new_page(new_hpage, hpage, 1, mode); if (rc) remove_migration_ptes(hpage, hpage); @@ -962,7 +970,7 @@ out: */ int migrate_pages(struct list_head *from, new_page_t get_new_page, unsigned long private, bool offlining, - bool sync) + enum migrate_mode mode) { int retry = 1; int nr_failed = 0; @@ -983,7 +991,7 @@ int migrate_pages(struct list_head *from, rc = unmap_and_move(get_new_page, private, page, pass > 2, offlining, - sync); + mode); switch(rc) { case -ENOMEM: @@ -1013,7 +1021,7 @@ out: int migrate_huge_pages(struct list_head *from, new_page_t get_new_page, unsigned long private, bool offlining, - bool sync) + enum migrate_mode mode) { int retry = 1; int nr_failed = 0; @@ -1030,7 +1038,7 @@ int migrate_huge_pages(struct list_head *from, rc = unmap_and_move_huge_page(get_new_page, private, page, pass > 2, offlining, - sync); + mode); switch(rc) { case -ENOMEM: @@ -1159,7 +1167,7 @@ set_status: err = 0; if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, new_page_node, - (unsigned long)pm, 0, true); + (unsigned long)pm, 0, MIGRATE_SYNC); if (err) putback_lru_pages(&pagelist); } -- cgit v1.1 From d50462a3a29fc5f53ef4a5d74eb693b4d4cb1512 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:45 -0800 Subject: mm: vmscan: when reclaiming for compaction, ensure there are sufficient free pages available commit fe4b1b244bdb96136855f2c694071cb09d140766 upstream. Stable note: Not tracked on Bugzilla. THP and compaction was found to aggressively reclaim pages and stall systems under different situations that was addressed piecemeal over time. This patch addresses a problem where the fix regressed THP allocation success rates. In commit e0887c19 ("vmscan: limit direct reclaim for higher order allocations"), Rik noted that reclaim was too aggressive when THP was enabled. In his initial patch he used the number of free pages to decide if reclaim should abort for compaction. My feedback was that reclaim and compaction should be using the same logic when deciding if reclaim should be aborted. Unfortunately, this had the effect of reducing THP success rates when the workload included something like streaming reads that continually allocated pages. The window during which compaction could run and return a THP was too small. This patch combines Rik's two patches together. compaction_suitable() is still used to decide if reclaim should be aborted to allow compaction is used. However, it will also ensure that there is a reasonable buffer of free pages available. This improves upon the THP allocation success rates but bounds the number of pages that are freed for compaction. Signed-off-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Cc: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 44 +++++++++++++++++++++++++++++++++++++++----- 1 file changed, 39 insertions(+), 5 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 870cbcf..eadab09 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2075,6 +2075,42 @@ restart: throttle_vm_writeout(sc->gfp_mask); } +/* Returns true if compaction should go ahead for a high-order request */ +static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) +{ + unsigned long balance_gap, watermark; + bool watermark_ok; + + /* Do not consider compaction for orders reclaim is meant to satisfy */ + if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) + return false; + + /* + * Compaction takes time to run and there are potentially other + * callers using the pages just freed. Continue reclaiming until + * there is a buffer of free pages available to give compaction + * a reasonable chance of completing and allocating the page + */ + balance_gap = min(low_wmark_pages(zone), + (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / + KSWAPD_ZONE_BALANCE_GAP_RATIO); + watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); + watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); + + /* + * If compaction is deferred, reclaim up to a point where + * compaction will have a chance of success when re-enabled + */ + if (compaction_deferred(zone)) + return watermark_ok; + + /* If compaction is not ready to start, keep reclaiming */ + if (!compaction_suitable(zone, sc->order)) + return false; + + return watermark_ok; +} + /* * This is the direct reclaim path, for page-allocating processes. We only * try to reclaim pages from zones which will satisfy the caller's allocation @@ -2092,8 +2128,8 @@ restart: * scan then give up on it. * * This function returns true if a zone is being reclaimed for a costly - * high-order allocation and compaction is either ready to begin or deferred. - * This indicates to the caller that it should retry the allocation or fail. + * high-order allocation and compaction is ready to begin. This indicates to + * the caller that it should retry the allocation or fail. */ static bool shrink_zones(int priority, struct zonelist *zonelist, struct scan_control *sc) @@ -2127,9 +2163,7 @@ static bool shrink_zones(int priority, struct zonelist *zonelist, * noticable problem, like transparent huge page * allocations. */ - if (sc->order > PAGE_ALLOC_COSTLY_ORDER && - (compaction_suitable(zone, sc->order) || - compaction_deferred(zone))) { + if (compaction_ready(zone, sc)) { should_abort_reclaim = true; continue; } -- cgit v1.1 From da0dc52b5236e73d7d7b5a58e8e067236fd1323e Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:33 -0800 Subject: mm: vmscan: do not OOM if aborting reclaim to start compaction commit 7335084d446b83cbcb15da80497d03f0c1dc9e21 upstream. Stable note: Not tracked in Bugzilla. This patch makes later patches easier to apply but otherwise has little to justify it. The problem it fixes was never observed but the source of the theoretical problem did not exist for very long. During direct reclaim it is possible that reclaim will be aborted so that compaction can be attempted to satisfy a high-order allocation. If this decision is made before any pages are reclaimed, it is possible that 0 is returned to the page allocator potentially triggering an OOM. This has not been observed but it is a possibility so this patch addresses it. Signed-off-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Cc: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index eadab09..441f97e 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2240,6 +2240,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, struct zoneref *z; struct zone *zone; unsigned long writeback_threshold; + bool should_abort_reclaim; get_mems_allowed(); delayacct_freepages_start(); @@ -2251,7 +2252,8 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, sc->nr_scanned = 0; if (!priority) disable_swap_token(sc->mem_cgroup); - if (shrink_zones(priority, zonelist, sc)) + should_abort_reclaim = shrink_zones(priority, zonelist, sc); + if (should_abort_reclaim) break; /* @@ -2318,6 +2320,10 @@ out: if (oom_killer_disabled) return 0; + /* Aborting reclaim to try compaction? don't OOM, then */ + if (should_abort_reclaim) + return 1; + /* top priority shrink_zones still had more to do? don't OOM, then */ if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc)) return 1; -- cgit v1.1 From 9cad5d6a3ce8ffc5fee70c6514ccb7ce003b8792 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Thu, 12 Jan 2012 17:19:49 -0800 Subject: mm: vmscan: check if reclaim should really abort even if compaction_ready() is true for one zone commit 0cee34fd72c582b4f8ad8ce00645b75fb4168199 upstream. Stable note: Not tracked on Bugzilla. THP and compaction was found to aggressively reclaim pages and stall systems under different situations that was addressed piecemeal over time. If compaction can proceed for a given zone, shrink_zones() does not reclaim any more pages from it. After commit [e0c2327: vmscan: abort reclaim/compaction if compaction can proceed], do_try_to_free_pages() tries to finish as soon as possible once one zone can compact. This was intended to prevent slabs being shrunk unnecessarily but there are side-effects. One is that a small zone that is ready for compaction will abort reclaim even if the chances of successfully allocating a THP from that zone is small. It also means that reclaim can return too early even though sc->nr_to_reclaim pages were not reclaimed. This partially reverts the commit until it is proven that slabs are really being shrunk unnecessarily but preserves the check to return 1 to avoid OOM if reclaim was aborted prematurely. [aarcange@redhat.com: This patch replaces a revert from Andrea] Signed-off-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Andrea Arcangeli Cc: Minchan Kim Cc: Dave Jones Cc: Jan Kara Cc: Andy Isaacson Cc: Nai Xia Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 441f97e..f8c96c7 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2129,7 +2129,8 @@ static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) * * This function returns true if a zone is being reclaimed for a costly * high-order allocation and compaction is ready to begin. This indicates to - * the caller that it should retry the allocation or fail. + * the caller that it should consider retrying the allocation instead of + * further reclaim. */ static bool shrink_zones(int priority, struct zonelist *zonelist, struct scan_control *sc) @@ -2138,7 +2139,7 @@ static bool shrink_zones(int priority, struct zonelist *zonelist, struct zone *zone; unsigned long nr_soft_reclaimed; unsigned long nr_soft_scanned; - bool should_abort_reclaim = false; + bool aborted_reclaim = false; for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(sc->gfp_mask), sc->nodemask) { @@ -2164,7 +2165,7 @@ static bool shrink_zones(int priority, struct zonelist *zonelist, * allocations. */ if (compaction_ready(zone, sc)) { - should_abort_reclaim = true; + aborted_reclaim = true; continue; } } @@ -2186,7 +2187,7 @@ static bool shrink_zones(int priority, struct zonelist *zonelist, shrink_zone(priority, zone, sc); } - return should_abort_reclaim; + return aborted_reclaim; } static bool zone_reclaimable(struct zone *zone) @@ -2240,7 +2241,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, struct zoneref *z; struct zone *zone; unsigned long writeback_threshold; - bool should_abort_reclaim; + bool aborted_reclaim; get_mems_allowed(); delayacct_freepages_start(); @@ -2252,9 +2253,7 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, sc->nr_scanned = 0; if (!priority) disable_swap_token(sc->mem_cgroup); - should_abort_reclaim = shrink_zones(priority, zonelist, sc); - if (should_abort_reclaim) - break; + aborted_reclaim = shrink_zones(priority, zonelist, sc); /* * Don't shrink slabs when reclaiming memory from @@ -2320,8 +2319,8 @@ out: if (oom_killer_disabled) return 0; - /* Aborting reclaim to try compaction? don't OOM, then */ - if (should_abort_reclaim) + /* Aborted reclaim to try compaction? don't OOM, then */ + if (aborted_reclaim) return 1; /* top priority shrink_zones still had more to do? don't OOM, then */ -- cgit v1.1 From 03722816ec065d8c7a9306fc2d601251bc0c623e Mon Sep 17 00:00:00 2001 From: Konstantin Khlebnikov Date: Tue, 10 Jan 2012 15:06:59 -0800 Subject: vmscan: promote shared file mapped pages commit 34dbc67a644f11ab3475d822d72e25409911e760 upstream. Stable note: Not tracked in Bugzilla. There were reports of shared mapped pages being unfairly reclaimed in comparison to older kernels. This is being addressed over time. The specific workload being addressed here in described in paragraph four and while paragraph five says it did not help performance as such, it made a difference to major page faults. I'm aware of at least one bug for a large vendor that was due to increased major faults. Commit 645747462435 ("vmscan: detect mapped file pages used only once") greatly decreases lifetime of single-used mapped file pages. Unfortunately it also decreases life time of all shared mapped file pages. Because after commit bf3f3bc5e7347 ("mm: don't mark_page_accessed in fault path") page-fault handler does not mark page active or even referenced. Thus page_check_references() activates file page only if it was used twice while it stays in inactive list, meanwhile it activates anon pages after first access. Inactive list can be small enough, this way reclaimer can accidentally throw away any widely used page if it wasn't used twice in short period. After this patch page_check_references() also activate file mapped page at first inactive list scan if this page is already used multiple times via several ptes. I found this while trying to fix degragation in rhel6 (~2.6.32) from rhel5 (~2.6.18). There a complete mess with >100 web/mail/spam/ftp containers, they share all their files but there a lot of anonymous pages: ~500mb shared file mapped memory and 15-20Gb non-shared anonymous memory. In this situation major-pagefaults are very costly, because all containers share the same page. In my load kernel created a disproportionate pressure on the file memory, compared with the anonymous, they equaled only if I raise swappiness up to 150 =) These patches actually wasn't helped a lot in my problem, but I saw noticable (10-20 times) reduce in count and average time of major-pagefault in file-mapped areas. Actually both patches are fixes for commit v2.6.33-5448-g6457474, because it was aimed at one scenario (singly used pages), but it breaks the logic in other scenarios (shared and/or executable pages) Signed-off-by: Konstantin Khlebnikov Acked-by: Pekka Enberg Acked-by: Minchan Kim Reviewed-by: KAMEZAWA Hiroyuki Cc: Wu Fengguang Cc: Johannes Weiner Cc: Nick Piggin Cc: Mel Gorman Cc: Shaohua Li Cc: Rik van Riel Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman --- mm/vmscan.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index f8c96c7..811141e 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -723,7 +723,7 @@ static enum page_references page_check_references(struct page *page, */ SetPageReferenced(page); - if (referenced_page) + if (referenced_page || referenced_ptes > 1) return PAGEREF_ACTIVATE; return PAGEREF_KEEP; -- cgit v1.1 From 4391b5f49e28bdb78ddf67495abb2f767474216d Mon Sep 17 00:00:00 2001 From: Konstantin Khlebnikov Date: Tue, 10 Jan 2012 15:07:03 -0800 Subject: vmscan: activate executable pages after first usage commit c909e99364c8b6ca07864d752950b6b4ecf6bef4 upstream. Stable note: Not tracked in Bugzilla. There were reports of shared mapped pages being unfairly reclaimed in comparison to older kernels. This is being addressed over time. Logic added in commit 8cab4754d24a0 ("vmscan: make mapped executable pages the first class citizen") was noticeably weakened in commit 645747462435d84 ("vmscan: detect mapped file pages used only once"). Currently these pages can become "first class citizens" only after second usage. After this patch page_check_references() will activate they after first usage, and executable code gets yet better chance to stay in memory. Signed-off-by: Konstantin Khlebnikov Cc: Pekka Enberg Cc: Minchan Kim Cc: KAMEZAWA Hiroyuki Cc: Wu Fengguang Cc: Johannes Weiner Cc: Nick Piggin Cc: Mel Gorman Cc: Shaohua Li Cc: Rik van Riel Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 6 ++++++ 1 file changed, 6 insertions(+) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 811141e..fed3022 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -726,6 +726,12 @@ static enum page_references page_check_references(struct page *page, if (referenced_page || referenced_ptes > 1) return PAGEREF_ACTIVATE; + /* + * Activate file-backed executable pages after first usage. + */ + if (vm_flags & VM_EXEC) + return PAGEREF_ACTIVATE; + return PAGEREF_KEEP; } -- cgit v1.1 From 503e973ce4a57bc949ddbf35d4b4ecd1a90263f8 Mon Sep 17 00:00:00 2001 From: Minchan Kim Date: Tue, 10 Jan 2012 15:08:18 -0800 Subject: mm/vmscan.c: consider swap space when deciding whether to continue reclaim commit 86cfd3a45042ab242d47f3935a02811a402beab6 upstream. Stable note: Not tracked in Bugzilla. This patch reduces kswapd CPU usage on swapless systems with high anonymous memory usage. It's pointless to continue reclaiming when we have no swap space and lots of anon pages in the inactive list. Without this patch, it is possible when swap is disabled to continue trying to reclaim when there are only anonymous pages in the system even though that will not make any progress. Signed-off-by: Minchan Kim Cc: KOSAKI Motohiro Acked-by: Mel Gorman Reviewed-by: Rik van Riel Cc: Johannes Weiner Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index fed3022..7a56981 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2008,8 +2008,9 @@ static inline bool should_continue_reclaim(struct zone *zone, * inactive lists are large enough, continue reclaiming */ pages_for_compaction = (2UL << sc->order); - inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON) + - zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); + inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE); + if (nr_swap_pages > 0) + inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON); if (sc->nr_reclaimed < pages_for_compaction && inactive_lru_pages > pages_for_compaction) return true; -- cgit v1.1 From d2b02236b85226c9f2cd28e32a9fdf197584e448 Mon Sep 17 00:00:00 2001 From: Hugh Dickins Date: Tue, 10 Jan 2012 15:08:33 -0800 Subject: mm: test PageSwapBacked in lumpy reclaim commit 043bcbe5ec51e0478ef2b44acef17193e01d7f70 upstream. Stable note: Not tracked in Bugzilla. There were reports of shared mapped pages being unfairly reclaimed in comparison to older kernels. This is being addressed over time. Even though the subject refers to lumpy reclaim, it impacts compaction as well. Lumpy reclaim does well to stop at a PageAnon when there's no swap, but better is to stop at any PageSwapBacked, which includes shmem/tmpfs too. Signed-off-by: Hugh Dickins Reviewed-by: KOSAKI Motohiro Reviewed-by: Minchan Kim Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman --- mm/vmscan.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 7a56981..39bb416 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1199,7 +1199,7 @@ static unsigned long isolate_lru_pages(unsigned long nr_to_scan, * anon page which don't already have a swap slot is * pointless. */ - if (nr_swap_pages <= 0 && PageAnon(cursor_page) && + if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) && !PageSwapCache(cursor_page)) break; -- cgit v1.1 From 4d01a2e38a9c27d3de083ecc561b32b6a55fc7eb Mon Sep 17 00:00:00 2001 From: Johannes Weiner Date: Thu, 12 Jan 2012 17:18:06 -0800 Subject: mm: vmscan: convert global reclaim to per-memcg LRU lists commit b95a2f2d486d0d768a92879c023a03757b9c7e58 upstream - WARNING: this is a substitute patch. Stable note: Not tracked in Bugzilla. This is a partial backport of an upstream commit addressing a completely different issue that accidentally contained an important fix. The workload this patch helps was memcached when IO is started in the background. memcached should stay resident but without this patch it gets swapped. Sometimes this manifests as a drop in throughput but mostly it was observed through /proc/vmstat. Commit [246e87a9: memcg: fix get_scan_count() for small targets] was meant to fix a problem whereby small scan targets on memcg were ignored causing priority to raise too sharply. It forced scanning to take place if the target was small, memcg or kswapd. From the time it was introduced it caused excessive reclaim by kswapd with workloads being pushed to swap that previously would have stayed resident. This was accidentally fixed in commit [b95a2f2d: mm: vmscan: convert global reclaim to per-memcg LRU lists] by making it harder for kswapd to force scan small targets but that patchset is not suitable for backporting. This was later changed again by commit [90126375: mm/vmscan: push lruvec pointer into get_scan_count()] into a format that looks like it would be a straight-forward backport but there is a subtle difference due to the use of lruvecs. The impact of the accidental fix is to make it harder for kswapd to force scan small targets by taking zone->all_unreclaimable into account. This patch is the closest equivalent available based on what is backported. Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 39bb416..6697b7a 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -1850,7 +1850,8 @@ static void get_scan_count(struct zone *zone, struct scan_control *sc, unsigned long nr_force_scan[2]; /* kswapd does zone balancing and needs to scan this zone */ - if (scanning_global_lru(sc) && current_is_kswapd()) + if (scanning_global_lru(sc) && current_is_kswapd() && + zone->all_unreclaimable) force_scan = true; /* memcg may have small limit and need to avoid priority drop */ if (!scanning_global_lru(sc)) -- cgit v1.1 From 627c5c60b4ac673e9f4be758858073071684dce9 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Wed, 21 Mar 2012 16:34:11 -0700 Subject: cpuset: mm: reduce large amounts of memory barrier related damage v3 commit cc9a6c8776615f9c194ccf0b63a0aa5628235545 upstream. Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely expensive and severely impacted page allocator performance. This is part of a series of patches that reduce page allocator overhead. Commit c0ff7453bb5c ("cpuset,mm: fix no node to alloc memory when changing cpuset's mems") wins a super prize for the largest number of memory barriers entered into fast paths for one commit. [get|put]_mems_allowed is incredibly heavy with pairs of full memory barriers inserted into a number of hot paths. This was detected while investigating at large page allocator slowdown introduced some time after 2.6.32. The largest portion of this overhead was shown by oprofile to be at an mfence introduced by this commit into the page allocator hot path. For extra style points, the commit introduced the use of yield() in an implementation of what looks like a spinning mutex. This patch replaces the full memory barriers on both read and write sides with a sequence counter with just read barriers on the fast path side. This is much cheaper on some architectures, including x86. The main bulk of the patch is the retry logic if the nodemask changes in a manner that can cause a false failure. While updating the nodemask, a check is made to see if a false failure is a risk. If it is, the sequence number gets bumped and parallel allocators will briefly stall while the nodemask update takes place. In a page fault test microbenchmark, oprofile samples from __alloc_pages_nodemask went from 4.53% of all samples to 1.15%. The actual results were 3.3.0-rc3 3.3.0-rc3 rc3-vanilla nobarrier-v2r1 Clients 1 UserTime 0.07 ( 0.00%) 0.08 (-14.19%) Clients 2 UserTime 0.07 ( 0.00%) 0.07 ( 2.72%) Clients 4 UserTime 0.08 ( 0.00%) 0.07 ( 3.29%) Clients 1 SysTime 0.70 ( 0.00%) 0.65 ( 6.65%) Clients 2 SysTime 0.85 ( 0.00%) 0.82 ( 3.65%) Clients 4 SysTime 1.41 ( 0.00%) 1.41 ( 0.32%) Clients 1 WallTime 0.77 ( 0.00%) 0.74 ( 4.19%) Clients 2 WallTime 0.47 ( 0.00%) 0.45 ( 3.73%) Clients 4 WallTime 0.38 ( 0.00%) 0.37 ( 1.58%) Clients 1 Flt/sec/cpu 497620.28 ( 0.00%) 520294.53 ( 4.56%) Clients 2 Flt/sec/cpu 414639.05 ( 0.00%) 429882.01 ( 3.68%) Clients 4 Flt/sec/cpu 257959.16 ( 0.00%) 258761.48 ( 0.31%) Clients 1 Flt/sec 495161.39 ( 0.00%) 517292.87 ( 4.47%) Clients 2 Flt/sec 820325.95 ( 0.00%) 850289.77 ( 3.65%) Clients 4 Flt/sec 1020068.93 ( 0.00%) 1022674.06 ( 0.26%) MMTests Statistics: duration Sys Time Running Test (seconds) 135.68 132.17 User+Sys Time Running Test (seconds) 164.2 160.13 Total Elapsed Time (seconds) 123.46 120.87 The overall improvement is small but the System CPU time is much improved and roughly in correlation to what oprofile reported (these performance figures are without profiling so skew is expected). The actual number of page faults is noticeably improved. For benchmarks like kernel builds, the overall benefit is marginal but the system CPU time is slightly reduced. To test the actual bug the commit fixed I opened two terminals. The first ran within a cpuset and continually ran a small program that faulted 100M of anonymous data. In a second window, the nodemask of the cpuset was continually randomised in a loop. Without the commit, the program would fail every so often (usually within 10 seconds) and obviously with the commit everything worked fine. With this patch applied, it also worked fine so the fix should be functionally equivalent. Signed-off-by: Mel Gorman Cc: Miao Xie Cc: David Rientjes Cc: Peter Zijlstra Cc: Christoph Lameter Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/filemap.c | 11 +++++++---- mm/hugetlb.c | 15 +++++++++++---- mm/mempolicy.c | 28 +++++++++++++++++++++------- mm/page_alloc.c | 33 +++++++++++++++++++++++---------- mm/slab.c | 13 ++++++++----- mm/slub.c | 40 +++++++++++++++++++++++++--------------- mm/vmscan.c | 2 -- 7 files changed, 95 insertions(+), 47 deletions(-) (limited to 'mm') diff --git a/mm/filemap.c b/mm/filemap.c index b7d8603..10481eb 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -516,10 +516,13 @@ struct page *__page_cache_alloc(gfp_t gfp) struct page *page; if (cpuset_do_page_mem_spread()) { - get_mems_allowed(); - n = cpuset_mem_spread_node(); - page = alloc_pages_exact_node(n, gfp, 0); - put_mems_allowed(); + unsigned int cpuset_mems_cookie; + do { + cpuset_mems_cookie = get_mems_allowed(); + n = cpuset_mem_spread_node(); + page = alloc_pages_exact_node(n, gfp, 0); + } while (!put_mems_allowed(cpuset_mems_cookie) && !page); + return page; } return alloc_pages(gfp, 0); diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 05f8fd4..64f2b7a 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -454,14 +454,16 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address, int avoid_reserve) { - struct page *page = NULL; + struct page *page; struct mempolicy *mpol; nodemask_t *nodemask; struct zonelist *zonelist; struct zone *zone; struct zoneref *z; + unsigned int cpuset_mems_cookie; - get_mems_allowed(); +retry_cpuset: + cpuset_mems_cookie = get_mems_allowed(); zonelist = huge_zonelist(vma, address, htlb_alloc_mask, &mpol, &nodemask); /* @@ -488,10 +490,15 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, } } } -err: + mpol_cond_put(mpol); - put_mems_allowed(); + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; return page; + +err: + mpol_cond_put(mpol); + return NULL; } static void update_and_free_page(struct hstate *h, struct page *page) diff --git a/mm/mempolicy.c b/mm/mempolicy.c index dd5f874..cff919f 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -1810,18 +1810,24 @@ struct page * alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, unsigned long addr, int node) { - struct mempolicy *pol = get_vma_policy(current, vma, addr); + struct mempolicy *pol; struct zonelist *zl; struct page *page; + unsigned int cpuset_mems_cookie; + +retry_cpuset: + pol = get_vma_policy(current, vma, addr); + cpuset_mems_cookie = get_mems_allowed(); - get_mems_allowed(); if (unlikely(pol->mode == MPOL_INTERLEAVE)) { unsigned nid; nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order); mpol_cond_put(pol); page = alloc_page_interleave(gfp, order, nid); - put_mems_allowed(); + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; + return page; } zl = policy_zonelist(gfp, pol, node); @@ -1832,7 +1838,8 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, struct page *page = __alloc_pages_nodemask(gfp, order, zl, policy_nodemask(gfp, pol)); __mpol_put(pol); - put_mems_allowed(); + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; return page; } /* @@ -1840,7 +1847,8 @@ alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma, */ page = __alloc_pages_nodemask(gfp, order, zl, policy_nodemask(gfp, pol)); - put_mems_allowed(); + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; return page; } @@ -1867,11 +1875,14 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) { struct mempolicy *pol = current->mempolicy; struct page *page; + unsigned int cpuset_mems_cookie; if (!pol || in_interrupt() || (gfp & __GFP_THISNODE)) pol = &default_policy; - get_mems_allowed(); +retry_cpuset: + cpuset_mems_cookie = get_mems_allowed(); + /* * No reference counting needed for current->mempolicy * nor system default_policy @@ -1882,7 +1893,10 @@ struct page *alloc_pages_current(gfp_t gfp, unsigned order) page = __alloc_pages_nodemask(gfp, order, policy_zonelist(gfp, pol, numa_node_id()), policy_nodemask(gfp, pol)); - put_mems_allowed(); + + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; + return page; } EXPORT_SYMBOL(alloc_pages_current); diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 0d490ba..9177aa3 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -2293,8 +2293,9 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, { enum zone_type high_zoneidx = gfp_zone(gfp_mask); struct zone *preferred_zone; - struct page *page; + struct page *page = NULL; int migratetype = allocflags_to_migratetype(gfp_mask); + unsigned int cpuset_mems_cookie; gfp_mask &= gfp_allowed_mask; @@ -2313,15 +2314,15 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, if (unlikely(!zonelist->_zonerefs->zone)) return NULL; - get_mems_allowed(); +retry_cpuset: + cpuset_mems_cookie = get_mems_allowed(); + /* The preferred zone is used for statistics later */ first_zones_zonelist(zonelist, high_zoneidx, nodemask ? : &cpuset_current_mems_allowed, &preferred_zone); - if (!preferred_zone) { - put_mems_allowed(); - return NULL; - } + if (!preferred_zone) + goto out; /* First allocation attempt */ page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, @@ -2331,9 +2332,19 @@ __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, page = __alloc_pages_slowpath(gfp_mask, order, zonelist, high_zoneidx, nodemask, preferred_zone, migratetype); - put_mems_allowed(); trace_mm_page_alloc(page, order, gfp_mask, migratetype); + +out: + /* + * When updating a task's mems_allowed, it is possible to race with + * parallel threads in such a way that an allocation can fail while + * the mask is being updated. If a page allocation is about to fail, + * check if the cpuset changed during allocation and if so, retry. + */ + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) + goto retry_cpuset; + return page; } EXPORT_SYMBOL(__alloc_pages_nodemask); @@ -2557,13 +2568,15 @@ void si_meminfo_node(struct sysinfo *val, int nid) bool skip_free_areas_node(unsigned int flags, int nid) { bool ret = false; + unsigned int cpuset_mems_cookie; if (!(flags & SHOW_MEM_FILTER_NODES)) goto out; - get_mems_allowed(); - ret = !node_isset(nid, cpuset_current_mems_allowed); - put_mems_allowed(); + do { + cpuset_mems_cookie = get_mems_allowed(); + ret = !node_isset(nid, cpuset_current_mems_allowed); + } while (!put_mems_allowed(cpuset_mems_cookie)); out: return ret; } diff --git a/mm/slab.c b/mm/slab.c index d96e223..a67f812 100644 --- a/mm/slab.c +++ b/mm/slab.c @@ -3218,12 +3218,10 @@ static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) if (in_interrupt() || (flags & __GFP_THISNODE)) return NULL; nid_alloc = nid_here = numa_mem_id(); - get_mems_allowed(); if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) nid_alloc = cpuset_slab_spread_node(); else if (current->mempolicy) nid_alloc = slab_node(current->mempolicy); - put_mems_allowed(); if (nid_alloc != nid_here) return ____cache_alloc_node(cachep, flags, nid_alloc); return NULL; @@ -3246,14 +3244,17 @@ static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) enum zone_type high_zoneidx = gfp_zone(flags); void *obj = NULL; int nid; + unsigned int cpuset_mems_cookie; if (flags & __GFP_THISNODE) return NULL; - get_mems_allowed(); - zonelist = node_zonelist(slab_node(current->mempolicy), flags); local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); +retry_cpuset: + cpuset_mems_cookie = get_mems_allowed(); + zonelist = node_zonelist(slab_node(current->mempolicy), flags); + retry: /* * Look through allowed nodes for objects available @@ -3306,7 +3307,9 @@ retry: } } } - put_mems_allowed(); + + if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) + goto retry_cpuset; return obj; } diff --git a/mm/slub.c b/mm/slub.c index 10ab233..ae6e80e 100644 --- a/mm/slub.c +++ b/mm/slub.c @@ -1457,6 +1457,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) struct zone *zone; enum zone_type high_zoneidx = gfp_zone(flags); struct page *page; + unsigned int cpuset_mems_cookie; /* * The defrag ratio allows a configuration of the tradeoffs between @@ -1480,23 +1481,32 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) get_cycles() % 1024 > s->remote_node_defrag_ratio) return NULL; - get_mems_allowed(); - zonelist = node_zonelist(slab_node(current->mempolicy), flags); - for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { - struct kmem_cache_node *n; - - n = get_node(s, zone_to_nid(zone)); - - if (n && cpuset_zone_allowed_hardwall(zone, flags) && - n->nr_partial > s->min_partial) { - page = get_partial_node(n); - if (page) { - put_mems_allowed(); - return page; + do { + cpuset_mems_cookie = get_mems_allowed(); + zonelist = node_zonelist(slab_node(current->mempolicy), flags); + for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { + struct kmem_cache_node *n; + + n = get_node(s, zone_to_nid(zone)); + + if (n && cpuset_zone_allowed_hardwall(zone, flags) && + n->nr_partial > s->min_partial) { + page = get_partial_node(n); + if (page) { + /* + * Return the object even if + * put_mems_allowed indicated that + * the cpuset mems_allowed was + * updated in parallel. It's a + * harmless race between the alloc + * and the cpuset update. + */ + put_mems_allowed(cpuset_mems_cookie); + return page; + } } } - } - put_mems_allowed(); + } while (!put_mems_allowed(cpuset_mems_cookie)); #endif return NULL; } diff --git a/mm/vmscan.c b/mm/vmscan.c index 6697b7a..1378487 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -2251,7 +2251,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, unsigned long writeback_threshold; bool aborted_reclaim; - get_mems_allowed(); delayacct_freepages_start(); if (scanning_global_lru(sc)) @@ -2314,7 +2313,6 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, out: delayacct_freepages_end(); - put_mems_allowed(); if (sc->nr_reclaimed) return sc->nr_reclaimed; -- cgit v1.1 From ad04b9e911d7bc1edaa599a85f44b5fc83f9e90e Mon Sep 17 00:00:00 2001 From: Konstantin Khlebnikov Date: Wed, 25 Apr 2012 16:01:46 -0700 Subject: mm/hugetlb: fix warning in alloc_huge_page/dequeue_huge_page_vma commit b1c12cbcd0a02527c180a862e8971e249d3b347d upstream. Stable note: Not tracked in Bugzilla. [get|put]_mems_allowed() is extremely expensive and severely impacted page allocator performance. This is part of a series of patches that reduce page allocator overhead. Fix a gcc warning (and bug?) introduced in cc9a6c877 ("cpuset: mm: reduce large amounts of memory barrier related damage v3") Local variable "page" can be uninitialized if the nodemask from vma policy does not intersects with nodemask from cpuset. Even if it doesn't happens it is better to initialize this variable explicitly than to introduce a kernel oops in a weird corner case. mm/hugetlb.c: In function `alloc_huge_page': mm/hugetlb.c:1135:5: warning: `page' may be used uninitialized in this function Signed-off-by: Konstantin Khlebnikov Acked-by: Mel Gorman Acked-by: David Rientjes Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/hugetlb.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 64f2b7a..ae60a53 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -454,7 +454,7 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, unsigned long address, int avoid_reserve) { - struct page *page; + struct page *page = NULL; struct mempolicy *mpol; nodemask_t *nodemask; struct zonelist *zonelist; -- cgit v1.1 From 909e0a4e5c3a9d3b60c1eecb34de75afa64ade95 Mon Sep 17 00:00:00 2001 From: Konstantin Khlebnikov Date: Thu, 8 Dec 2011 14:33:51 -0800 Subject: vmscan: fix initial shrinker size handling commit 635697c663f38106063d5659f0cf2e45afcd4bb5 upstream. Stable note: The commit [acf92b48: vmscan: shrinker->nr updates race and go wrong] aimed to reduce excessive reclaim of slab objects but had bug in how it treated shrinker functions that returned -1. A shrinker function can return -1, means that it cannot do anything without a risk of deadlock. For example prune_super() does this if it cannot grab a superblock refrence, even if nr_to_scan=0. Currently we interpret this -1 as a ULONG_MAX size shrinker and evaluate `total_scan' according to this. So the next time around this shrinker can cause really big pressure. Let's skip such shrinkers instead. Also make total_scan signed, otherwise the check (total_scan < 0) below never works. Signed-off-by: Konstantin Khlebnikov Cc: Dave Chinner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Mel Gorman Signed-off-by: Greg Kroah-Hartman --- mm/vmscan.c | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) (limited to 'mm') diff --git a/mm/vmscan.c b/mm/vmscan.c index 1378487..5326f98 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -248,12 +248,16 @@ unsigned long shrink_slab(struct shrink_control *shrink, list_for_each_entry(shrinker, &shrinker_list, list) { unsigned long long delta; - unsigned long total_scan; - unsigned long max_pass; + long total_scan; + long max_pass; int shrink_ret = 0; long nr; long new_nr; + max_pass = do_shrinker_shrink(shrinker, shrink, 0); + if (max_pass <= 0) + continue; + /* * copy the current shrinker scan count into a local variable * and zero it so that other concurrent shrinker invocations @@ -264,7 +268,6 @@ unsigned long shrink_slab(struct shrink_control *shrink, } while (cmpxchg(&shrinker->nr, nr, 0) != nr); total_scan = nr; - max_pass = do_shrinker_shrink(shrinker, shrink, 0); delta = (4 * nr_pages_scanned) / shrinker->seeks; delta *= max_pass; do_div(delta, lru_pages + 1); -- cgit v1.1 From cad33da5ceedac56481dd3168e42580e9bec6343 Mon Sep 17 00:00:00 2001 From: Joonsoo Kim Date: Mon, 30 Jul 2012 14:39:04 -0700 Subject: mm: fix wrong argument of migrate_huge_pages() in soft_offline_huge_page() commit dc32f63453f56d07a1073a697dcd843dd3098c09 upstream. Commit a6bc32b89922 ("mm: compaction: introduce sync-light migration for use by compaction") changed the declaration of migrate_pages() and migrate_huge_pages(). But it missed changing the argument of migrate_huge_pages() in soft_offline_huge_page(). In this case, we should call migrate_huge_pages() with MIGRATE_SYNC. Additionally, there is a mismatch between type the of argument and the function declaration for migrate_pages(). Signed-off-by: Joonsoo Kim Cc: Christoph Lameter Cc: Mel Gorman Acked-by: David Rientjes Cc: "Aneesh Kumar K.V" Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/memory-failure.c | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'mm') diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 6496748..2f49dcf 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -1334,8 +1334,8 @@ static int soft_offline_huge_page(struct page *page, int flags) /* Keep page count to indicate a given hugepage is isolated. */ list_add(&hpage->lru, &pagelist); - ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0, - true); + ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false, + MIGRATE_SYNC); if (ret) { struct page *page1, *page2; list_for_each_entry_safe(page1, page2, &pagelist, lru) @@ -1464,7 +1464,7 @@ int soft_offline_page(struct page *page, int flags) page_is_file_cache(page)); list_add(&page->lru, &pagelist); ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, - 0, MIGRATE_SYNC); + false, MIGRATE_SYNC); if (ret) { putback_lru_pages(&pagelist); pr_info("soft offline: %#lx: migration failed %d, type %lx\n", -- cgit v1.1 From 8bda26e33846b53e2c70a2ccff13e3f5b69ab067 Mon Sep 17 00:00:00 2001 From: Xiao Guangrong Date: Tue, 31 Jul 2012 16:45:52 -0700 Subject: mm: mmu_notifier: fix freed page still mapped in secondary MMU commit 3ad3d901bbcfb15a5e4690e55350db0899095a68 upstream. mmu_notifier_release() is called when the process is exiting. It will delete all the mmu notifiers. But at this time the page belonging to the process is still present in page tables and is present on the LRU list, so this race will happen: CPU 0 CPU 1 mmu_notifier_release: try_to_unmap: hlist_del_init_rcu(&mn->hlist); ptep_clear_flush_notify: mmu nofifler not found free page !!!!!! /* * At the point, the page has been * freed, but it is still mapped in * the secondary MMU. */ mn->ops->release(mn, mm); Then the box is not stable and sometimes we can get this bug: [ 738.075923] BUG: Bad page state in process migrate-perf pfn:03bec [ 738.075931] page:ffffea00000efb00 count:0 mapcount:0 mapping: (null) index:0x8076 [ 738.075936] page flags: 0x20000000000014(referenced|dirty) The same issue is present in mmu_notifier_unregister(). We can call ->release before deleting the notifier to ensure the page has been unmapped from the secondary MMU before it is freed. Signed-off-by: Xiao Guangrong Cc: Avi Kivity Cc: Marcelo Tosatti Cc: Paul Gortmaker Cc: Andrea Arcangeli Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mmu_notifier.c | 45 +++++++++++++++++++++++---------------------- 1 file changed, 23 insertions(+), 22 deletions(-) (limited to 'mm') diff --git a/mm/mmu_notifier.c b/mm/mmu_notifier.c index 8d032de..71c7811 100644 --- a/mm/mmu_notifier.c +++ b/mm/mmu_notifier.c @@ -33,6 +33,24 @@ void __mmu_notifier_release(struct mm_struct *mm) { struct mmu_notifier *mn; + struct hlist_node *n; + + /* + * RCU here will block mmu_notifier_unregister until + * ->release returns. + */ + rcu_read_lock(); + hlist_for_each_entry_rcu(mn, n, &mm->mmu_notifier_mm->list, hlist) + /* + * if ->release runs before mmu_notifier_unregister it + * must be handled as it's the only way for the driver + * to flush all existing sptes and stop the driver + * from establishing any more sptes before all the + * pages in the mm are freed. + */ + if (mn->ops->release) + mn->ops->release(mn, mm); + rcu_read_unlock(); spin_lock(&mm->mmu_notifier_mm->lock); while (unlikely(!hlist_empty(&mm->mmu_notifier_mm->list))) { @@ -46,23 +64,6 @@ void __mmu_notifier_release(struct mm_struct *mm) * mmu_notifier_unregister to return. */ hlist_del_init_rcu(&mn->hlist); - /* - * RCU here will block mmu_notifier_unregister until - * ->release returns. - */ - rcu_read_lock(); - spin_unlock(&mm->mmu_notifier_mm->lock); - /* - * if ->release runs before mmu_notifier_unregister it - * must be handled as it's the only way for the driver - * to flush all existing sptes and stop the driver - * from establishing any more sptes before all the - * pages in the mm are freed. - */ - if (mn->ops->release) - mn->ops->release(mn, mm); - rcu_read_unlock(); - spin_lock(&mm->mmu_notifier_mm->lock); } spin_unlock(&mm->mmu_notifier_mm->lock); @@ -284,16 +285,13 @@ void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) { BUG_ON(atomic_read(&mm->mm_count) <= 0); - spin_lock(&mm->mmu_notifier_mm->lock); if (!hlist_unhashed(&mn->hlist)) { - hlist_del_rcu(&mn->hlist); - /* * RCU here will force exit_mmap to wait ->release to finish * before freeing the pages. */ rcu_read_lock(); - spin_unlock(&mm->mmu_notifier_mm->lock); + /* * exit_mmap will block in mmu_notifier_release to * guarantee ->release is called before freeing the @@ -302,8 +300,11 @@ void mmu_notifier_unregister(struct mmu_notifier *mn, struct mm_struct *mm) if (mn->ops->release) mn->ops->release(mn, mm); rcu_read_unlock(); - } else + + spin_lock(&mm->mmu_notifier_mm->lock); + hlist_del_rcu(&mn->hlist); spin_unlock(&mm->mmu_notifier_mm->lock); + } /* * Wait any running method to finish, of course including -- cgit v1.1 From 4c9682c5269e3c63ef9009ad20ea4e150370b7e0 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Tue, 31 Jul 2012 16:46:20 -0700 Subject: mm: hugetlbfs: close race during teardown of hugetlbfs shared page tables commit d833352a4338dc31295ed832a30c9ccff5c7a183 upstream. If a process creates a large hugetlbfs mapping that is eligible for page table sharing and forks heavily with children some of whom fault and others which destroy the mapping then it is possible for page tables to get corrupted. Some teardowns of the mapping encounter a "bad pmd" and output a message to the kernel log. The final teardown will trigger a BUG_ON in mm/filemap.c. This was reproduced in 3.4 but is known to have existed for a long time and goes back at least as far as 2.6.37. It was probably was introduced in 2.6.20 by [39dde65c: shared page table for hugetlb page]. The messages look like this; [ ..........] Lots of bad pmd messages followed by this [ 127.164256] mm/memory.c:391: bad pmd ffff880412e04fe8(80000003de4000e7). [ 127.164257] mm/memory.c:391: bad pmd ffff880412e04ff0(80000003de6000e7). [ 127.164258] mm/memory.c:391: bad pmd ffff880412e04ff8(80000003de0000e7). [ 127.186778] ------------[ cut here ]------------ [ 127.186781] kernel BUG at mm/filemap.c:134! [ 127.186782] invalid opcode: 0000 [#1] SMP [ 127.186783] CPU 7 [ 127.186784] Modules linked in: af_packet cpufreq_conservative cpufreq_userspace cpufreq_powersave acpi_cpufreq mperf ext3 jbd dm_mod coretemp crc32c_intel usb_storage ghash_clmulni_intel aesni_intel i2c_i801 r8169 mii uas sr_mod cdrom sg iTCO_wdt iTCO_vendor_support shpchp serio_raw cryptd aes_x86_64 e1000e pci_hotplug dcdbas aes_generic container microcode ext4 mbcache jbd2 crc16 sd_mod crc_t10dif i915 drm_kms_helper drm i2c_algo_bit ehci_hcd ahci libahci usbcore rtc_cmos usb_common button i2c_core intel_agp video intel_gtt fan processor thermal thermal_sys hwmon ata_generic pata_atiixp libata scsi_mod [ 127.186801] [ 127.186802] Pid: 9017, comm: hugetlbfs-test Not tainted 3.4.0-autobuild #53 Dell Inc. OptiPlex 990/06D7TR [ 127.186804] RIP: 0010:[] [] __delete_from_page_cache+0x15e/0x160 [ 127.186809] RSP: 0000:ffff8804144b5c08 EFLAGS: 00010002 [ 127.186810] RAX: 0000000000000001 RBX: ffffea000a5c9000 RCX: 00000000ffffffc0 [ 127.186811] RDX: 0000000000000000 RSI: 0000000000000009 RDI: ffff88042dfdad00 [ 127.186812] RBP: ffff8804144b5c18 R08: 0000000000000009 R09: 0000000000000003 [ 127.186813] R10: 0000000000000000 R11: 000000000000002d R12: ffff880412ff83d8 [ 127.186814] R13: ffff880412ff83d8 R14: 0000000000000000 R15: ffff880412ff83d8 [ 127.186815] FS: 00007fe18ed2c700(0000) GS:ffff88042dce0000(0000) knlGS:0000000000000000 [ 127.186816] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 127.186817] CR2: 00007fe340000503 CR3: 0000000417a14000 CR4: 00000000000407e0 [ 127.186818] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 127.186819] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 [ 127.186820] Process hugetlbfs-test (pid: 9017, threadinfo ffff8804144b4000, task ffff880417f803c0) [ 127.186821] Stack: [ 127.186822] ffffea000a5c9000 0000000000000000 ffff8804144b5c48 ffffffff810ed83b [ 127.186824] ffff8804144b5c48 000000000000138a 0000000000001387 ffff8804144b5c98 [ 127.186825] ffff8804144b5d48 ffffffff811bc925 ffff8804144b5cb8 0000000000000000 [ 127.186827] Call Trace: [ 127.186829] [] delete_from_page_cache+0x3b/0x80 [ 127.186832] [] truncate_hugepages+0x115/0x220 [ 127.186834] [] hugetlbfs_evict_inode+0x13/0x30 [ 127.186837] [] evict+0xa7/0x1b0 [ 127.186839] [] iput_final+0xd3/0x1f0 [ 127.186840] [] iput+0x39/0x50 [ 127.186842] [] d_kill+0xf8/0x130 [ 127.186843] [] dput+0xd2/0x1a0 [ 127.186845] [] __fput+0x170/0x230 [ 127.186848] [] ? rb_erase+0xce/0x150 [ 127.186849] [] fput+0x1d/0x30 [ 127.186851] [] remove_vma+0x37/0x80 [ 127.186853] [] do_munmap+0x2d2/0x360 [ 127.186855] [] sys_shmdt+0xc9/0x170 [ 127.186857] [] system_call_fastpath+0x16/0x1b [ 127.186858] Code: 0f 1f 44 00 00 48 8b 43 08 48 8b 00 48 8b 40 28 8b b0 40 03 00 00 85 f6 0f 88 df fe ff ff 48 89 df e8 e7 cb 05 00 e9 d2 fe ff ff <0f> 0b 55 83 e2 fd 48 89 e5 48 83 ec 30 48 89 5d d8 4c 89 65 e0 [ 127.186868] RIP [] __delete_from_page_cache+0x15e/0x160 [ 127.186870] RSP [ 127.186871] ---[ end trace 7cbac5d1db69f426 ]--- The bug is a race and not always easy to reproduce. To reproduce it I was doing the following on a single socket I7-based machine with 16G of RAM. $ hugeadm --pool-pages-max DEFAULT:13G $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmmax $ echo $((18*1048576*1024)) > /proc/sys/kernel/shmall $ for i in `seq 1 9000`; do ./hugetlbfs-test; done On my particular machine, it usually triggers within 10 minutes but enabling debug options can change the timing such that it never hits. Once the bug is triggered, the machine is in trouble and needs to be rebooted. The machine will respond but processes accessing proc like "ps aux" will hang due to the BUG_ON. shutdown will also hang and needs a hard reset or a sysrq-b. The basic problem is a race between page table sharing and teardown. For the most part page table sharing depends on i_mmap_mutex. In some cases, it is also taking the mm->page_table_lock for the PTE updates but with shared page tables, it is the i_mmap_mutex that is more important. Unfortunately it appears to be also insufficient. Consider the following situation Process A Process B --------- --------- hugetlb_fault shmdt LockWrite(mmap_sem) do_munmap unmap_region unmap_vmas unmap_single_vma unmap_hugepage_range Lock(i_mmap_mutex) Lock(mm->page_table_lock) huge_pmd_unshare/unmap tables <--- (1) Unlock(mm->page_table_lock) Unlock(i_mmap_mutex) huge_pte_alloc ... Lock(i_mmap_mutex) ... vma_prio_walk, find svma, spte ... Lock(mm->page_table_lock) ... share spte ... Unlock(mm->page_table_lock) ... Unlock(i_mmap_mutex) ... hugetlb_no_page <--- (2) free_pgtables unlink_file_vma hugetlb_free_pgd_range remove_vma_list In this scenario, it is possible for Process A to share page tables with Process B that is trying to tear them down. The i_mmap_mutex on its own does not prevent Process A walking Process B's page tables. At (1) above, the page tables are not shared yet so it unmaps the PMDs. Process A sets up page table sharing and at (2) faults a new entry. Process B then trips up on it in free_pgtables. This patch fixes the problem by adding a new function __unmap_hugepage_range_final that is only called when the VMA is about to be destroyed. This function clears VM_MAYSHARE during unmap_hugepage_range() under the i_mmap_mutex. This makes the VMA ineligible for sharing and avoids the race. Superficially this looks like it would then be vunerable to truncate and madvise issues but hugetlbfs has its own truncate handlers so does not use unmap_mapping_range() and does not support madvise(DONTNEED). This should be treated as a -stable candidate if it is merged. Test program is as follows. The test case was mostly written by Michal Hocko with a few minor changes to reproduce this bug. ==== CUT HERE ==== static size_t huge_page_size = (2UL << 20); static size_t nr_huge_page_A = 512; static size_t nr_huge_page_B = 5632; unsigned int get_random(unsigned int max) { struct timeval tv; gettimeofday(&tv, NULL); srandom(tv.tv_usec); return random() % max; } static void play(void *addr, size_t size) { unsigned char *start = addr, *end = start + size, *a; start += get_random(size/2); /* we could itterate on huge pages but let's give it more time. */ for (a = start; a < end; a += 4096) *a = 0; } int main(int argc, char **argv) { key_t key = IPC_PRIVATE; size_t sizeA = nr_huge_page_A * huge_page_size; size_t sizeB = nr_huge_page_B * huge_page_size; int shmidA, shmidB; void *addrA = NULL, *addrB = NULL; int nr_children = 300, n = 0; if ((shmidA = shmget(key, sizeA, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrA = shmat(shmidA, addrA, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } if ((shmidB = shmget(key, sizeB, IPC_CREAT|SHM_HUGETLB|0660)) == -1) { perror("shmget:"); return 1; } if ((addrB = shmat(shmidB, addrB, SHM_R|SHM_W)) == (void *)-1UL) { perror("shmat"); return 1; } fork_child: switch(fork()) { case 0: switch (n%3) { case 0: play(addrA, sizeA); break; case 1: play(addrB, sizeB); break; case 2: break; } break; case -1: perror("fork:"); break; default: if (++n < nr_children) goto fork_child; play(addrA, sizeA); break; } shmdt(addrA); shmdt(addrB); do { wait(NULL); } while (--n > 0); shmctl(shmidA, IPC_RMID, NULL); shmctl(shmidB, IPC_RMID, NULL); return 0; } [akpm@linux-foundation.org: name the declaration's args, fix CONFIG_HUGETLBFS=n build] Signed-off-by: Hugh Dickins Reviewed-by: Michal Hocko Signed-off-by: Mel Gorman Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/hugetlb.c | 25 +++++++++++++++++++++++-- 1 file changed, 23 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/hugetlb.c b/mm/hugetlb.c index ae60a53..037f077 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -2301,6 +2301,22 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, { mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); __unmap_hugepage_range(vma, start, end, ref_page); + /* + * Clear this flag so that x86's huge_pmd_share page_table_shareable + * test will fail on a vma being torn down, and not grab a page table + * on its way out. We're lucky that the flag has such an appropriate + * name, and can in fact be safely cleared here. We could clear it + * before the __unmap_hugepage_range above, but all that's necessary + * is to clear it before releasing the i_mmap_mutex below. + * + * This works because in the contexts this is called, the VMA is + * going to be destroyed. It is not vunerable to madvise(DONTNEED) + * because madvise is not supported on hugetlbfs. The same applies + * for direct IO. unmap_hugepage_range() is only being called just + * before free_pgtables() so clearing VM_MAYSHARE will not cause + * surprises later. + */ + vma->vm_flags &= ~VM_MAYSHARE; mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); } @@ -2853,9 +2869,14 @@ void hugetlb_change_protection(struct vm_area_struct *vma, } } spin_unlock(&mm->page_table_lock); - mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); - + /* + * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare + * may have cleared our pud entry and done put_page on the page table: + * once we release i_mmap_mutex, another task can do the final put_page + * and that page table be reused and filled with junk. + */ flush_tlb_range(vma, start, end); + mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); } int hugetlb_reserve_pages(struct inode *inode, -- cgit v1.1 From 3ee8d648935cc63a611c454103419f2100d45c56 Mon Sep 17 00:00:00 2001 From: Dave Jones Date: Thu, 6 Sep 2012 12:01:00 -0400 Subject: Remove user-triggerable BUG from mpol_to_str commit 80de7c3138ee9fd86a98696fd2cf7ad89b995d0a upstream. Trivially triggerable, found by trinity: kernel BUG at mm/mempolicy.c:2546! Process trinity-child2 (pid: 23988, threadinfo ffff88010197e000, task ffff88007821a670) Call Trace: show_numa_map+0xd5/0x450 show_pid_numa_map+0x13/0x20 traverse+0xf2/0x230 seq_read+0x34b/0x3e0 vfs_read+0xac/0x180 sys_pread64+0xa2/0xc0 system_call_fastpath+0x1a/0x1f RIP: mpol_to_str+0x156/0x360 Signed-off-by: Dave Jones Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index cff919f..3f3cc56 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -2500,7 +2500,7 @@ int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context) break; default: - BUG(); + return -EINVAL; } l = strlen(policy_modes[mode]); -- cgit v1.1 From 54fd21ca117a5dd36a1bf7e0b92bef2c89c2201e Mon Sep 17 00:00:00 2001 From: Li Haifeng Date: Mon, 17 Sep 2012 14:09:21 -0700 Subject: mm/page_alloc: fix the page address of higher page's buddy calculation commit 0ba8f2d59304dfe69b59c034de723ad80f7ab9ac upstream. The heuristic method for buddy has been introduced since commit 43506fad21ca ("mm/page_alloc.c: simplify calculation of combined index of adjacent buddy lists"). But the page address of higher page's buddy was wrongly calculated, which will lead page_is_buddy to fail for ever. IOW, the heuristic method would be disabled with the wrong page address of higher page's buddy. Calculating the page address of higher page's buddy should be based higher_page with the offset between index of higher page and index of higher page's buddy. Signed-off-by: Haifeng Li Signed-off-by: Gavin Shan Reviewed-by: Michal Hocko Cc: KyongHo Cho Cc: Mel Gorman Cc: Minchan Kim Cc: Johannes Weiner Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/page_alloc.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/page_alloc.c b/mm/page_alloc.c index 9177aa3..eb6b3fd 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -540,7 +540,7 @@ static inline void __free_one_page(struct page *page, combined_idx = buddy_idx & page_idx; higher_page = page + (combined_idx - page_idx); buddy_idx = __find_buddy_index(combined_idx, order + 1); - higher_buddy = page + (buddy_idx - combined_idx); + higher_buddy = higher_page + (buddy_idx - combined_idx); if (page_is_buddy(higher_page, higher_buddy, order + 1)) { list_add_tail(&page->lru, &zone->free_area[order].free_list[migratetype]); -- cgit v1.1 From 2aab4667576b39a1cba50b0322da6d21bbdfc9dd Mon Sep 17 00:00:00 2001 From: qiuxishi Date: Mon, 17 Sep 2012 14:09:24 -0700 Subject: memory hotplug: fix section info double registration bug commit f14851af0ebb32745c6c5a2e400aa0549f9d20df upstream. There may be a bug when registering section info. For example, on my Itanium platform, the pfn range of node0 includes the other nodes, so other nodes' section info will be double registered, and memmap's page count will equal to 3. node0: start_pfn=0x100, spanned_pfn=0x20fb00, present_pfn=0x7f8a3, => 0x000100-0x20fc00 node1: start_pfn=0x80000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x080000-0x100000 node2: start_pfn=0x100000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x100000-0x180000 node3: start_pfn=0x180000, spanned_pfn=0x80000, present_pfn=0x80000, => 0x180000-0x200000 free_all_bootmem_node() register_page_bootmem_info_node() register_page_bootmem_info_section() When hot remove memory, we can't free the memmap's page because page_count() is 2 after put_page_bootmem(). sparse_remove_one_section() free_section_usemap() free_map_bootmem() put_page_bootmem() [akpm@linux-foundation.org: add code comment] Signed-off-by: Xishi Qiu Signed-off-by: Jiang Liu Acked-by: Mel Gorman Cc: "Luck, Tony" Cc: Yasuaki Ishimatsu Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/memory_hotplug.c | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) (limited to 'mm') diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index ae5a3f2..e0a3e51 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -116,9 +116,6 @@ static void register_page_bootmem_info_section(unsigned long start_pfn) struct mem_section *ms; struct page *page, *memmap; - if (!pfn_valid(start_pfn)) - return; - section_nr = pfn_to_section_nr(start_pfn); ms = __nr_to_section(section_nr); @@ -177,9 +174,16 @@ void register_page_bootmem_info_node(struct pglist_data *pgdat) end_pfn = pfn + pgdat->node_spanned_pages; /* register_section info */ - for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) - register_page_bootmem_info_section(pfn); - + for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) { + /* + * Some platforms can assign the same pfn to multiple nodes - on + * node0 as well as nodeN. To avoid registering a pfn against + * multiple nodes we check that this pfn does not already + * reside in some other node. + */ + if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node)) + register_page_bootmem_info_section(pfn); + } } #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ -- cgit v1.1 From 49996738e9a7a8d0192c80d210b3a08853cd1f6c Mon Sep 17 00:00:00 2001 From: Hugh Dickins Date: Mon, 8 Oct 2012 16:33:14 -0700 Subject: mm: fix invalidate_complete_page2() lock ordering commit ec4d9f626d5908b6052c2973f37992f1db52e967 upstream. In fuzzing with trinity, lockdep protested "possible irq lock inversion dependency detected" when isolate_lru_page() reenabled interrupts while still holding the supposedly irq-safe tree_lock: invalidate_inode_pages2 invalidate_complete_page2 spin_lock_irq(&mapping->tree_lock) clear_page_mlock isolate_lru_page spin_unlock_irq(&zone->lru_lock) isolate_lru_page() is correct to enable interrupts unconditionally: invalidate_complete_page2() is incorrect to call clear_page_mlock() while holding tree_lock, which is supposed to nest inside lru_lock. Both truncate_complete_page() and invalidate_complete_page() call clear_page_mlock() before taking tree_lock to remove page from radix_tree. I guess invalidate_complete_page2() preferred to test PageDirty (again) under tree_lock before committing to the munlock; but since the page has already been unmapped, its state is already somewhat inconsistent, and no worse if clear_page_mlock() moved up. Reported-by: Sasha Levin Deciphered-by: Andrew Morton Signed-off-by: Hugh Dickins Acked-by: Mel Gorman Cc: Rik van Riel Cc: Johannes Weiner Cc: Michel Lespinasse Cc: Ying Han Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/truncate.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/truncate.c b/mm/truncate.c index e13f22e..3e9829f 100644 --- a/mm/truncate.c +++ b/mm/truncate.c @@ -398,11 +398,12 @@ invalidate_complete_page2(struct address_space *mapping, struct page *page) if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) return 0; + clear_page_mlock(page); + spin_lock_irq(&mapping->tree_lock); if (PageDirty(page)) goto failed; - clear_page_mlock(page); BUG_ON(page_has_private(page)); __delete_from_page_cache(page); spin_unlock_irq(&mapping->tree_lock); -- cgit v1.1 From bdd779425e01c7247230b23051b1ab2144f9226d Mon Sep 17 00:00:00 2001 From: KOSAKI Motohiro Date: Mon, 8 Oct 2012 16:29:14 -0700 Subject: revert "mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages" commit 8d34694c1abf29df1f3c7317936b7e3e2e308d9b upstream. Commit 05f144a0d5c2 ("mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages") removed vma->vm_policy updates code but it is the purpose of mbind_range(). Now, mbind_range() is virtually a no-op and while it does not allow memory corruption it is not the right fix. This patch is a revert. [mgorman@suse.de: Edited changelog] Signed-off-by: KOSAKI Motohiro Signed-off-by: Mel Gorman Cc: Christoph Lameter Cc: Josh Boyer Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 41 ++++++++++++++++++++++++----------------- 1 file changed, 24 insertions(+), 17 deletions(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 3f3cc56..464b844 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -606,6 +606,27 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, return first; } +/* Apply policy to a single VMA */ +static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) +{ + int err = 0; + struct mempolicy *old = vma->vm_policy; + + pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", + vma->vm_start, vma->vm_end, vma->vm_pgoff, + vma->vm_ops, vma->vm_file, + vma->vm_ops ? vma->vm_ops->set_policy : NULL); + + if (vma->vm_ops && vma->vm_ops->set_policy) + err = vma->vm_ops->set_policy(vma, new); + if (!err) { + mpol_get(new); + vma->vm_policy = new; + mpol_put(old); + } + return err; +} + /* Step 2: apply policy to a range and do splits. */ static int mbind_range(struct mm_struct *mm, unsigned long start, unsigned long end, struct mempolicy *new_pol) @@ -645,23 +666,9 @@ static int mbind_range(struct mm_struct *mm, unsigned long start, if (err) goto out; } - - /* - * Apply policy to a single VMA. The reference counting of - * policy for vma_policy linkages has already been handled by - * vma_merge and split_vma as necessary. If this is a shared - * policy then ->set_policy will increment the reference count - * for an sp node. - */ - pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", - vma->vm_start, vma->vm_end, vma->vm_pgoff, - vma->vm_ops, vma->vm_file, - vma->vm_ops ? vma->vm_ops->set_policy : NULL); - if (vma->vm_ops && vma->vm_ops->set_policy) { - err = vma->vm_ops->set_policy(vma, new_pol); - if (err) - goto out; - } + err = policy_vma(vma, new_pol); + if (err) + goto out; } out: -- cgit v1.1 From e12681ffb14f5c3bcd25ace39b9fac3941ad6961 Mon Sep 17 00:00:00 2001 From: KOSAKI Motohiro Date: Mon, 8 Oct 2012 16:29:16 -0700 Subject: mempolicy: remove mempolicy sharing commit 869833f2c5c6e4dd09a5378cfc665ffb4615e5d2 upstream. Dave Jones' system call fuzz testing tool "trinity" triggered the following bug error with slab debugging enabled ============================================================================= BUG numa_policy (Not tainted): Poison overwritten ----------------------------------------------------------------------------- INFO: 0xffff880146498250-0xffff880146498250. First byte 0x6a instead of 0x6b INFO: Allocated in mpol_new+0xa3/0x140 age=46310 cpu=6 pid=32154 __slab_alloc+0x3d3/0x445 kmem_cache_alloc+0x29d/0x2b0 mpol_new+0xa3/0x140 sys_mbind+0x142/0x620 system_call_fastpath+0x16/0x1b INFO: Freed in __mpol_put+0x27/0x30 age=46268 cpu=6 pid=32154 __slab_free+0x2e/0x1de kmem_cache_free+0x25a/0x260 __mpol_put+0x27/0x30 remove_vma+0x68/0x90 exit_mmap+0x118/0x140 mmput+0x73/0x110 exit_mm+0x108/0x130 do_exit+0x162/0xb90 do_group_exit+0x4f/0xc0 sys_exit_group+0x17/0x20 system_call_fastpath+0x16/0x1b INFO: Slab 0xffffea0005192600 objects=27 used=27 fp=0x (null) flags=0x20000000004080 INFO: Object 0xffff880146498250 @offset=592 fp=0xffff88014649b9d0 The problem is that the structure is being prematurely freed due to a reference count imbalance. In the following case mbind(addr, len) should replace the memory policies of both vma1 and vma2 and thus they will become to share the same mempolicy and the new mempolicy will have the MPOL_F_SHARED flag. +-------------------+-------------------+ | vma1 | vma2(shmem) | +-------------------+-------------------+ | | addr addr+len alloc_pages_vma() uses get_vma_policy() and mpol_cond_put() pair for maintaining the mempolicy reference count. The current rule is that get_vma_policy() only increments refcount for shmem VMA and mpol_conf_put() only decrements refcount if the policy has MPOL_F_SHARED. In above case, vma1 is not shmem vma and vma->policy has MPOL_F_SHARED! The reference count will be decreased even though was not increased whenever alloc_page_vma() is called. This has been broken since commit [52cd3b07: mempolicy: rework mempolicy Reference Counting] in 2008. There is another serious bug with the sharing of memory policies. Currently, mempolicy rebind logic (it is called from cpuset rebinding) ignores a refcount of mempolicy and override it forcibly. Thus, any mempolicy sharing may cause mempolicy corruption. The bug was introduced by commit [68860ec1: cpusets: automatic numa mempolicy rebinding]. Ideally, the shared policy handling would be rewritten to either properly handle COW of the policy structures or at least reference count MPOL_F_SHARED based exclusively on information within the policy. However, this patch takes the easier approach of disabling any policy sharing between VMAs. Each new range allocated with sp_alloc will allocate a new policy, set the reference count to 1 and drop the reference count of the old policy. This increases the memory footprint but is not expected to be a major problem as mbind() is unlikely to be used for fine-grained ranges. It is also inefficient because it means we allocate a new policy even in cases where mbind_range() could use the new_policy passed to it. However, it is more straight-forward and the change should be invisible to the user. [mgorman@suse.de: Edited changelog] Reported-by: Dave Jones Cc: Christoph Lameter Reviewed-by: Christoph Lameter Signed-off-by: KOSAKI Motohiro Signed-off-by: Mel Gorman Cc: Josh Boyer Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 52 ++++++++++++++++++++++++++++++++++++++-------------- 1 file changed, 38 insertions(+), 14 deletions(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 464b844..52df0b5 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -606,24 +606,39 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, return first; } -/* Apply policy to a single VMA */ -static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new) +/* + * Apply policy to a single VMA + * This must be called with the mmap_sem held for writing. + */ +static int vma_replace_policy(struct vm_area_struct *vma, + struct mempolicy *pol) { - int err = 0; - struct mempolicy *old = vma->vm_policy; + int err; + struct mempolicy *old; + struct mempolicy *new; pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n", vma->vm_start, vma->vm_end, vma->vm_pgoff, vma->vm_ops, vma->vm_file, vma->vm_ops ? vma->vm_ops->set_policy : NULL); - if (vma->vm_ops && vma->vm_ops->set_policy) + new = mpol_dup(pol); + if (IS_ERR(new)) + return PTR_ERR(new); + + if (vma->vm_ops && vma->vm_ops->set_policy) { err = vma->vm_ops->set_policy(vma, new); - if (!err) { - mpol_get(new); - vma->vm_policy = new; - mpol_put(old); + if (err) + goto err_out; } + + old = vma->vm_policy; + vma->vm_policy = new; /* protected by mmap_sem */ + mpol_put(old); + + return 0; + err_out: + mpol_put(new); return err; } @@ -666,7 +681,7 @@ static int mbind_range(struct mm_struct *mm, unsigned long start, if (err) goto out; } - err = policy_vma(vma, new_pol); + err = vma_replace_policy(vma, new_pol); if (err) goto out; } @@ -2091,15 +2106,24 @@ static void sp_delete(struct shared_policy *sp, struct sp_node *n) static struct sp_node *sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol) { - struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL); + struct sp_node *n; + struct mempolicy *newpol; + n = kmem_cache_alloc(sn_cache, GFP_KERNEL); if (!n) return NULL; + + newpol = mpol_dup(pol); + if (IS_ERR(newpol)) { + kmem_cache_free(sn_cache, n); + return NULL; + } + newpol->flags |= MPOL_F_SHARED; + n->start = start; n->end = end; - mpol_get(pol); - pol->flags |= MPOL_F_SHARED; /* for unref */ - n->policy = pol; + n->policy = newpol; + return n; } -- cgit v1.1 From cedd186e31dacfb400ec74e0cdd59b02c3d55da8 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Mon, 8 Oct 2012 16:29:17 -0700 Subject: mempolicy: fix a race in shared_policy_replace() commit b22d127a39ddd10d93deee3d96e643657ad53a49 upstream. shared_policy_replace() use of sp_alloc() is unsafe. 1) sp_node cannot be dereferenced if sp->lock is not held and 2) another thread can modify sp_node between spin_unlock for allocating a new sp node and next spin_lock. The bug was introduced before 2.6.12-rc2. Kosaki's original patch for this problem was to allocate an sp node and policy within shared_policy_replace and initialise it when the lock is reacquired. I was not keen on this approach because it partially duplicates sp_alloc(). As the paths were sp->lock is taken are not that performance critical this patch converts sp->lock to sp->mutex so it can sleep when calling sp_alloc(). [kosaki.motohiro@jp.fujitsu.com: Original patch] Signed-off-by: Mel Gorman Acked-by: KOSAKI Motohiro Reviewed-by: Christoph Lameter Cc: Josh Boyer Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 37 ++++++++++++++++--------------------- 1 file changed, 16 insertions(+), 21 deletions(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 52df0b5..a768692 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -2021,7 +2021,7 @@ int __mpol_equal(struct mempolicy *a, struct mempolicy *b) */ /* lookup first element intersecting start-end */ -/* Caller holds sp->lock */ +/* Caller holds sp->mutex */ static struct sp_node * sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end) { @@ -2085,13 +2085,13 @@ mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) if (!sp->root.rb_node) return NULL; - spin_lock(&sp->lock); + mutex_lock(&sp->mutex); sn = sp_lookup(sp, idx, idx+1); if (sn) { mpol_get(sn->policy); pol = sn->policy; } - spin_unlock(&sp->lock); + mutex_unlock(&sp->mutex); return pol; } @@ -2131,10 +2131,10 @@ static struct sp_node *sp_alloc(unsigned long start, unsigned long end, static int shared_policy_replace(struct shared_policy *sp, unsigned long start, unsigned long end, struct sp_node *new) { - struct sp_node *n, *new2 = NULL; + struct sp_node *n; + int ret = 0; -restart: - spin_lock(&sp->lock); + mutex_lock(&sp->mutex); n = sp_lookup(sp, start, end); /* Take care of old policies in the same range. */ while (n && n->start < end) { @@ -2147,16 +2147,14 @@ restart: } else { /* Old policy spanning whole new range. */ if (n->end > end) { + struct sp_node *new2; + new2 = sp_alloc(end, n->end, n->policy); if (!new2) { - spin_unlock(&sp->lock); - new2 = sp_alloc(end, n->end, n->policy); - if (!new2) - return -ENOMEM; - goto restart; + ret = -ENOMEM; + goto out; } n->end = start; sp_insert(sp, new2); - new2 = NULL; break; } else n->end = start; @@ -2167,12 +2165,9 @@ restart: } if (new) sp_insert(sp, new); - spin_unlock(&sp->lock); - if (new2) { - mpol_put(new2->policy); - kmem_cache_free(sn_cache, new2); - } - return 0; +out: + mutex_unlock(&sp->mutex); + return ret; } /** @@ -2190,7 +2185,7 @@ void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) int ret; sp->root = RB_ROOT; /* empty tree == default mempolicy */ - spin_lock_init(&sp->lock); + mutex_init(&sp->mutex); if (mpol) { struct vm_area_struct pvma; @@ -2256,7 +2251,7 @@ void mpol_free_shared_policy(struct shared_policy *p) if (!p->root.rb_node) return; - spin_lock(&p->lock); + mutex_lock(&p->mutex); next = rb_first(&p->root); while (next) { n = rb_entry(next, struct sp_node, nd); @@ -2265,7 +2260,7 @@ void mpol_free_shared_policy(struct shared_policy *p) mpol_put(n->policy); kmem_cache_free(sn_cache, n); } - spin_unlock(&p->lock); + mutex_unlock(&p->mutex); } /* assumes fs == KERNEL_DS */ -- cgit v1.1 From 29715fe22f6e7ea5d84c2872fd5dd2d407ed5083 Mon Sep 17 00:00:00 2001 From: KOSAKI Motohiro Date: Mon, 8 Oct 2012 16:29:19 -0700 Subject: mempolicy: fix refcount leak in mpol_set_shared_policy() commit 63f74ca21f1fad36d075e063f06dcc6d39fe86b2 upstream. When shared_policy_replace() fails to allocate new->policy is not freed correctly by mpol_set_shared_policy(). The problem is that shared mempolicy code directly call kmem_cache_free() in multiple places where it is easy to make a mistake. This patch creates an sp_free wrapper function and uses it. The bug was introduced pre-git age (IOW, before 2.6.12-rc2). [mgorman@suse.de: Editted changelog] Signed-off-by: KOSAKI Motohiro Signed-off-by: Mel Gorman Reviewed-by: Christoph Lameter Cc: Josh Boyer Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 15 +++++++++------ 1 file changed, 9 insertions(+), 6 deletions(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index a768692..6a569cc 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -2095,12 +2095,17 @@ mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) return pol; } +static void sp_free(struct sp_node *n) +{ + mpol_put(n->policy); + kmem_cache_free(sn_cache, n); +} + static void sp_delete(struct shared_policy *sp, struct sp_node *n) { pr_debug("deleting %lx-l%lx\n", n->start, n->end); rb_erase(&n->nd, &sp->root); - mpol_put(n->policy); - kmem_cache_free(sn_cache, n); + sp_free(n); } static struct sp_node *sp_alloc(unsigned long start, unsigned long end, @@ -2239,7 +2244,7 @@ int mpol_set_shared_policy(struct shared_policy *info, } err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new); if (err && new) - kmem_cache_free(sn_cache, new); + sp_free(new); return err; } @@ -2256,9 +2261,7 @@ void mpol_free_shared_policy(struct shared_policy *p) while (next) { n = rb_entry(next, struct sp_node, nd); next = rb_next(&n->nd); - rb_erase(&n->nd, &p->root); - mpol_put(n->policy); - kmem_cache_free(sn_cache, n); + sp_delete(p, n); } mutex_unlock(&p->mutex); } -- cgit v1.1 From d08719c499bb9996ea6edd30e2342b3bbb3826b4 Mon Sep 17 00:00:00 2001 From: Mel Gorman Date: Mon, 8 Oct 2012 16:29:20 -0700 Subject: mempolicy: fix a memory corruption by refcount imbalance in alloc_pages_vma() commit 00442ad04a5eac08a98255697c510e708f6082e2 upstream. Commit cc9a6c877661 ("cpuset: mm: reduce large amounts of memory barrier related damage v3") introduced a potential memory corruption. shmem_alloc_page() uses a pseudo vma and it has one significant unique combination, vma->vm_ops=NULL and vma->policy->flags & MPOL_F_SHARED. get_vma_policy() does NOT increase a policy ref when vma->vm_ops=NULL and mpol_cond_put() DOES decrease a policy ref when a policy has MPOL_F_SHARED. Therefore, when a cpuset update race occurs, alloc_pages_vma() falls in 'goto retry_cpuset' path, decrements the reference count and frees the policy prematurely. Signed-off-by: KOSAKI Motohiro Signed-off-by: Mel Gorman Reviewed-by: Christoph Lameter Cc: Josh Boyer Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/mempolicy.c | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) (limited to 'mm') diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 6a569cc..5dce7d4 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -1511,8 +1511,18 @@ struct mempolicy *get_vma_policy(struct task_struct *task, addr); if (vpol) pol = vpol; - } else if (vma->vm_policy) + } else if (vma->vm_policy) { pol = vma->vm_policy; + + /* + * shmem_alloc_page() passes MPOL_F_SHARED policy with + * a pseudo vma whose vma->vm_ops=NULL. Take a reference + * count on these policies which will be dropped by + * mpol_cond_put() later + */ + if (mpol_needs_cond_ref(pol)) + mpol_get(pol); + } } if (!pol) pol = &default_policy; -- cgit v1.1 From f38039a248831d279cca77ab1dab773684a96c1e Mon Sep 17 00:00:00 2001 From: Hugh Dickins Date: Sun, 7 Oct 2012 20:32:51 -0700 Subject: tmpfs,ceph,gfs2,isofs,reiserfs,xfs: fix fh_len checking commit 35c2a7f4908d404c9124c2efc6ada4640ca4d5d5 upstream. Fuzzing with trinity oopsed on the 1st instruction of shmem_fh_to_dentry(), u64 inum = fid->raw[2]; which is unhelpfully reported as at the end of shmem_alloc_inode(): BUG: unable to handle kernel paging request at ffff880061cd3000 IP: [] shmem_alloc_inode+0x40/0x40 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Call Trace: [] ? exportfs_decode_fh+0x79/0x2d0 [] do_handle_open+0x163/0x2c0 [] sys_open_by_handle_at+0xc/0x10 [] tracesys+0xe1/0xe6 Right, tmpfs is being stupid to access fid->raw[2] before validating that fh_len includes it: the buffer kmalloc'ed by do_sys_name_to_handle() may fall at the end of a page, and the next page not be present. But some other filesystems (ceph, gfs2, isofs, reiserfs, xfs) are being careless about fh_len too, in fh_to_dentry() and/or fh_to_parent(), and could oops in the same way: add the missing fh_len checks to those. Reported-by: Sasha Levin Signed-off-by: Hugh Dickins Cc: Al Viro Cc: Sage Weil Cc: Steven Whitehouse Cc: Christoph Hellwig Signed-off-by: Al Viro Signed-off-by: Greg Kroah-Hartman --- mm/shmem.c | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'mm') diff --git a/mm/shmem.c b/mm/shmem.c index fcedf54..769941f 100644 --- a/mm/shmem.c +++ b/mm/shmem.c @@ -2348,12 +2348,14 @@ static struct dentry *shmem_fh_to_dentry(struct super_block *sb, { struct inode *inode; struct dentry *dentry = NULL; - u64 inum = fid->raw[2]; - inum = (inum << 32) | fid->raw[1]; + u64 inum; if (fh_len < 3) return NULL; + inum = fid->raw[2]; + inum = (inum << 32) | fid->raw[1]; + inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]), shmem_match, fid->raw); if (inode) { -- cgit v1.1 From e418b3bbe9a34fc75a148ff890e0b3442628c5c7 Mon Sep 17 00:00:00 2001 From: Jan Kara Date: Thu, 25 Oct 2012 13:37:31 -0700 Subject: mm: fix XFS oops due to dirty pages without buffers on s390 commit ef5d437f71afdf4afdbab99213add99f4b1318fd upstream. On s390 any write to a page (even from kernel itself) sets architecture specific page dirty bit. Thus when a page is written to via buffered write, HW dirty bit gets set and when we later map and unmap the page, page_remove_rmap() finds the dirty bit and calls set_page_dirty(). Dirtying of a page which shouldn't be dirty can cause all sorts of problems to filesystems. The bug we observed in practice is that buffers from the page get freed, so when the page gets later marked as dirty and writeback writes it, XFS crashes due to an assertion BUG_ON(!PagePrivate(page)) in page_buffers() called from xfs_count_page_state(). Similar problem can also happen when zero_user_segment() call from xfs_vm_writepage() (or block_write_full_page() for that matter) set the hardware dirty bit during writeback, later buffers get freed, and then page unmapped. Fix the issue by ignoring s390 HW dirty bit for page cache pages of mappings with mapping_cap_account_dirty(). This is safe because for such mappings when a page gets marked as writeable in PTE it is also marked dirty in do_wp_page() or do_page_fault(). When the dirty bit is cleared by clear_page_dirty_for_io(), the page gets writeprotected in page_mkclean(). So pagecache page is writeable if and only if it is dirty. Thanks to Hugh Dickins for pointing out mapping has to have mapping_cap_account_dirty() for things to work and proposing a cleaned up variant of the patch. The patch has survived about two hours of running fsx-linux on tmpfs while heavily swapping and several days of running on out build machines where the original problem was triggered. Signed-off-by: Jan Kara Cc: Martin Schwidefsky Cc: Mel Gorman Cc: Hugh Dickins Cc: Heiko Carstens Signed-off-by: Andrew Morton Signed-off-by: Linus Torvalds Signed-off-by: Greg Kroah-Hartman --- mm/rmap.c | 21 ++++++++++++++++----- 1 file changed, 16 insertions(+), 5 deletions(-) (limited to 'mm') diff --git a/mm/rmap.c b/mm/rmap.c index 23295f6..30e44cb 100644 --- a/mm/rmap.c +++ b/mm/rmap.c @@ -57,6 +57,7 @@ #include #include #include +#include #include @@ -936,11 +937,8 @@ int page_mkclean(struct page *page) if (page_mapped(page)) { struct address_space *mapping = page_mapping(page); - if (mapping) { + if (mapping) ret = page_mkclean_file(mapping, page); - if (page_test_and_clear_dirty(page_to_pfn(page), 1)) - ret = 1; - } } return ret; @@ -1121,6 +1119,8 @@ void page_add_file_rmap(struct page *page) */ void page_remove_rmap(struct page *page) { + struct address_space *mapping = page_mapping(page); + /* page still mapped by someone else? */ if (!atomic_add_negative(-1, &page->_mapcount)) return; @@ -1131,8 +1131,19 @@ void page_remove_rmap(struct page *page) * this if the page is anon, so about to be freed; but perhaps * not if it's in swapcache - there might be another pte slot * containing the swap entry, but page not yet written to swap. + * + * And we can skip it on file pages, so long as the filesystem + * participates in dirty tracking; but need to catch shm and tmpfs + * and ramfs pages which have been modified since creation by read + * fault. + * + * Note that mapping must be decided above, before decrementing + * mapcount (which luckily provides a barrier): once page is unmapped, + * it could be truncated and page->mapping reset to NULL at any moment. + * Note also that we are relying on page_mapping(page) to set mapping + * to &swapper_space when PageSwapCache(page). */ - if ((!PageAnon(page) || PageSwapCache(page)) && + if (mapping && !mapping_cap_account_dirty(mapping) && page_test_and_clear_dirty(page_to_pfn(page), 1)) set_page_dirty(page); /* -- cgit v1.1