/* * libata-bmdma.c - helper library for PCI IDE BMDMA * * Maintained by: Jeff Garzik <jgarzik@pobox.com> * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2006 Red Hat, Inc. All rights reserved. * Copyright 2003-2006 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/libata.h> #include "libata.h" /** * ata_irq_on - Enable interrupts on a port. * @ap: Port on which interrupts are enabled. * * Enable interrupts on a legacy IDE device using MMIO or PIO, * wait for idle, clear any pending interrupts. * * LOCKING: * Inherited from caller. */ u8 ata_irq_on(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 tmp; ap->ctl &= ~ATA_NIEN; ap->last_ctl = ap->ctl; iowrite8(ap->ctl, ioaddr->ctl_addr); tmp = ata_wait_idle(ap); ap->ops->irq_clear(ap); return tmp; } u8 ata_dummy_irq_on (struct ata_port *ap) { return 0; } /** * ata_irq_ack - Acknowledge a device interrupt. * @ap: Port on which interrupts are enabled. * * Wait up to 10 ms for legacy IDE device to become idle (BUSY * or BUSY+DRQ clear). Obtain dma status and port status from * device. Clear the interrupt. Return port status. * * LOCKING: */ u8 ata_irq_ack(struct ata_port *ap, unsigned int chk_drq) { unsigned int bits = chk_drq ? ATA_BUSY | ATA_DRQ : ATA_BUSY; u8 host_stat, post_stat, status; status = ata_busy_wait(ap, bits, 1000); if (status & bits) if (ata_msg_err(ap)) printk(KERN_ERR "abnormal status 0x%X\n", status); /* get controller status; clear intr, err bits */ host_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); iowrite8(host_stat | ATA_DMA_INTR | ATA_DMA_ERR, ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); post_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); if (ata_msg_intr(ap)) printk(KERN_INFO "%s: irq ack: host_stat 0x%X, new host_stat 0x%X, drv_stat 0x%X\n", __FUNCTION__, host_stat, post_stat, status); return status; } u8 ata_dummy_irq_ack(struct ata_port *ap, unsigned int chk_drq) { return 0; } /** * ata_tf_load - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller. * * LOCKING: * Inherited from caller. */ void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { iowrite8(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { iowrite8(tf->hob_feature, ioaddr->feature_addr); iowrite8(tf->hob_nsect, ioaddr->nsect_addr); iowrite8(tf->hob_lbal, ioaddr->lbal_addr); iowrite8(tf->hob_lbam, ioaddr->lbam_addr); iowrite8(tf->hob_lbah, ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { iowrite8(tf->feature, ioaddr->feature_addr); iowrite8(tf->nsect, ioaddr->nsect_addr); iowrite8(tf->lbal, ioaddr->lbal_addr); iowrite8(tf->lbam, ioaddr->lbam_addr); iowrite8(tf->lbah, ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { iowrite8(tf->device, ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } /** * ata_exec_command - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues ATA command, with proper synchronization with interrupt * handler / other threads. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); iowrite8(tf->command, ap->ioaddr.command_addr); ata_pause(ap); } /** * ata_tf_read - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf. * * LOCKING: * Inherited from caller. */ void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = ata_check_status(ap); tf->feature = ioread8(ioaddr->error_addr); tf->nsect = ioread8(ioaddr->nsect_addr); tf->lbal = ioread8(ioaddr->lbal_addr); tf->lbam = ioread8(ioaddr->lbam_addr); tf->lbah = ioread8(ioaddr->lbah_addr); tf->device = ioread8(ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); tf->hob_feature = ioread8(ioaddr->error_addr); tf->hob_nsect = ioread8(ioaddr->nsect_addr); tf->hob_lbal = ioread8(ioaddr->lbal_addr); tf->hob_lbam = ioread8(ioaddr->lbam_addr); tf->hob_lbah = ioread8(ioaddr->lbah_addr); } } /** * ata_check_status - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * and return its value. This also clears pending interrupts * from this device * * LOCKING: * Inherited from caller. */ u8 ata_check_status(struct ata_port *ap) { return ioread8(ap->ioaddr.status_addr); } /** * ata_altstatus - Read device alternate status reg * @ap: port where the device is * * Reads ATA taskfile alternate status register for * currently-selected device and return its value. * * Note: may NOT be used as the check_altstatus() entry in * ata_port_operations. * * LOCKING: * Inherited from caller. */ u8 ata_altstatus(struct ata_port *ap) { if (ap->ops->check_altstatus) return ap->ops->check_altstatus(ap); return ioread8(ap->ioaddr.altstatus_addr); } /** * ata_bmdma_setup - Set up PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u8 dmactl; /* load PRD table addr. */ mb(); /* make sure PRD table writes are visible to controller */ iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); /* specify data direction, triple-check start bit is clear */ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); if (!rw) dmactl |= ATA_DMA_WR; iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); /* issue r/w command */ ap->ops->exec_command(ap, &qc->tf); } /** * ata_bmdma_start - Start a PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_start (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 dmactl; /* start host DMA transaction */ dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); /* Strictly, one may wish to issue a readb() here, to * flush the mmio write. However, control also passes * to the hardware at this point, and it will interrupt * us when we are to resume control. So, in effect, * we don't care when the mmio write flushes. * Further, a read of the DMA status register _immediately_ * following the write may not be what certain flaky hardware * is expected, so I think it is best to not add a readb() * without first all the MMIO ATA cards/mobos. * Or maybe I'm just being paranoid. */ } /** * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. * @ap: Port associated with this ATA transaction. * * Clear interrupt and error flags in DMA status register. * * May be used as the irq_clear() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_irq_clear(struct ata_port *ap) { void __iomem *mmio = ap->ioaddr.bmdma_addr; if (!mmio) return; iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); } /** * ata_bmdma_status - Read PCI IDE BMDMA status * @ap: Port associated with this ATA transaction. * * Read and return BMDMA status register. * * May be used as the bmdma_status() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ u8 ata_bmdma_status(struct ata_port *ap) { return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); } /** * ata_bmdma_stop - Stop PCI IDE BMDMA transfer * @qc: Command we are ending DMA for * * Clears the ATA_DMA_START flag in the dma control register * * May be used as the bmdma_stop() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host lock) */ void ata_bmdma_stop(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *mmio = ap->ioaddr.bmdma_addr; /* clear start/stop bit */ iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, mmio + ATA_DMA_CMD); /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ ata_altstatus(ap); /* dummy read */ } /** * ata_bmdma_freeze - Freeze BMDMA controller port * @ap: port to freeze * * Freeze BMDMA controller port. * * LOCKING: * Inherited from caller. */ void ata_bmdma_freeze(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; ap->ctl |= ATA_NIEN; ap->last_ctl = ap->ctl; iowrite8(ap->ctl, ioaddr->ctl_addr); /* Under certain circumstances, some controllers raise IRQ on * ATA_NIEN manipulation. Also, many controllers fail to mask * previously pending IRQ on ATA_NIEN assertion. Clear it. */ ata_chk_status(ap); ap->ops->irq_clear(ap); } /** * ata_bmdma_thaw - Thaw BMDMA controller port * @ap: port to thaw * * Thaw BMDMA controller port. * * LOCKING: * Inherited from caller. */ void ata_bmdma_thaw(struct ata_port *ap) { /* clear & re-enable interrupts */ ata_chk_status(ap); ap->ops->irq_clear(ap); ap->ops->irq_on(ap); } /** * ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller * @ap: port to handle error for * @prereset: prereset method (can be NULL) * @softreset: softreset method (can be NULL) * @hardreset: hardreset method (can be NULL) * @postreset: postreset method (can be NULL) * * Handle error for ATA BMDMA controller. It can handle both * PATA and SATA controllers. Many controllers should be able to * use this EH as-is or with some added handling before and * after. * * This function is intended to be used for constructing * ->error_handler callback by low level drivers. * * LOCKING: * Kernel thread context (may sleep) */ void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset, ata_reset_fn_t softreset, ata_reset_fn_t hardreset, ata_postreset_fn_t postreset) { struct ata_queued_cmd *qc; unsigned long flags; int thaw = 0; qc = __ata_qc_from_tag(ap, ap->active_tag); if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) qc = NULL; /* reset PIO HSM and stop DMA engine */ spin_lock_irqsave(ap->lock, flags); ap->hsm_task_state = HSM_ST_IDLE; if (qc && (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATA_PROT_ATAPI_DMA)) { u8 host_stat; host_stat = ap->ops->bmdma_status(ap); /* BMDMA controllers indicate host bus error by * setting DMA_ERR bit and timing out. As it wasn't * really a timeout event, adjust error mask and * cancel frozen state. */ if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { qc->err_mask = AC_ERR_HOST_BUS; thaw = 1; } ap->ops->bmdma_stop(qc); } ata_altstatus(ap); ata_chk_status(ap); ap->ops->irq_clear(ap); spin_unlock_irqrestore(ap->lock, flags); if (thaw) ata_eh_thaw_port(ap); /* PIO and DMA engines have been stopped, perform recovery */ ata_do_eh(ap, prereset, softreset, hardreset, postreset); } /** * ata_bmdma_error_handler - Stock error handler for BMDMA controller * @ap: port to handle error for * * Stock error handler for BMDMA controller. * * LOCKING: * Kernel thread context (may sleep) */ void ata_bmdma_error_handler(struct ata_port *ap) { ata_reset_fn_t hardreset; hardreset = NULL; if (sata_scr_valid(ap)) hardreset = sata_std_hardreset; ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset, ata_std_postreset); } /** * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for * BMDMA controller * @qc: internal command to clean up * * LOCKING: * Kernel thread context (may sleep) */ void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) { if (qc->ap->ioaddr.bmdma_addr) ata_bmdma_stop(qc); } #ifdef CONFIG_PCI static int ata_resources_present(struct pci_dev *pdev, int port) { int i; /* Check the PCI resources for this channel are enabled */ port = port * 2; for (i = 0; i < 2; i ++) { if (pci_resource_start(pdev, port + i) == 0 || pci_resource_len(pdev, port + i) == 0) return 0; } return 1; } /** * ata_pci_init_bmdma - acquire PCI BMDMA resources and init ATA host * @host: target ATA host * * Acquire PCI BMDMA resources and initialize @host accordingly. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ static int ata_pci_init_bmdma(struct ata_host *host) { struct device *gdev = host->dev; struct pci_dev *pdev = to_pci_dev(gdev); int i, rc; /* TODO: If we get no DMA mask we should fall back to PIO */ rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); if (rc) return rc; rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); if (rc) return rc; /* request and iomap DMA region */ rc = pcim_iomap_regions(pdev, 1 << 4, DRV_NAME); if (rc) { dev_printk(KERN_ERR, gdev, "failed to request/iomap BAR4\n"); return -ENOMEM; } host->iomap = pcim_iomap_table(pdev); for (i = 0; i < host->n_ports; i++) { struct ata_port *ap = host->ports[i]; void __iomem *bmdma = host->iomap[4] + 8 * i; if (ata_port_is_dummy(ap)) continue; ap->ioaddr.bmdma_addr = bmdma; if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && (ioread8(bmdma + 2) & 0x80)) host->flags |= ATA_HOST_SIMPLEX; } return 0; } /** * ata_pci_init_native_host - acquire native ATA resources and init host * @host: target ATA host * @port_mask: ports to consider * * Acquire native PCI ATA resources for @host and initialize * @host accordoingly. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_pci_init_native_host(struct ata_host *host, unsigned int port_mask) { struct device *gdev = host->dev; struct pci_dev *pdev = to_pci_dev(gdev); int i, rc; /* Discard disabled ports. Some controllers show their unused * channels this way. Disabled ports are made dummy. */ for (i = 0; i < 2; i++) { if ((port_mask & (1 << i)) && !ata_resources_present(pdev, i)) { host->ports[i]->ops = &ata_dummy_port_ops; port_mask &= ~(1 << i); } } if (!port_mask) { dev_printk(KERN_ERR, gdev, "no available port\n"); return -ENODEV; } /* request, iomap BARs and init port addresses accordingly */ for (i = 0; i < 2; i++) { struct ata_port *ap = host->ports[i]; int base = i * 2; void __iomem * const *iomap; if (!(port_mask & (1 << i))) continue; rc = pcim_iomap_regions(pdev, 0x3 << base, DRV_NAME); if (rc) { dev_printk(KERN_ERR, gdev, "failed to request/iomap " "BARs for port %d (errno=%d)\n", i, rc); if (rc == -EBUSY) pcim_pin_device(pdev); return rc; } host->iomap = iomap = pcim_iomap_table(pdev); ap->ioaddr.cmd_addr = iomap[base]; ap->ioaddr.altstatus_addr = ap->ioaddr.ctl_addr = (void __iomem *) ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); ata_std_ports(&ap->ioaddr); } return 0; } /** * ata_pci_prepare_native_host - helper to prepare native PCI ATA host * @pdev: target PCI device * @ppi: array of port_info * @n_ports: number of ports to allocate * @r_host: out argument for the initialized ATA host * * Helper to allocate ATA host for @pdev, acquire all native PCI * resources and initialize it accordingly in one go. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ int ata_pci_prepare_native_host(struct pci_dev *pdev, const struct ata_port_info * const * ppi, int n_ports, struct ata_host **r_host) { struct ata_host *host; unsigned int port_mask; int rc; if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) return -ENOMEM; host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); if (!host) { dev_printk(KERN_ERR, &pdev->dev, "failed to allocate ATA host\n"); rc = -ENOMEM; goto err_out; } port_mask = ATA_PORT_PRIMARY; if (n_ports > 1) port_mask |= ATA_PORT_SECONDARY; rc = ata_pci_init_native_host(host, port_mask); if (rc) goto err_out; /* init DMA related stuff */ rc = ata_pci_init_bmdma(host); if (rc) goto err_bmdma; devres_remove_group(&pdev->dev, NULL); *r_host = host; return 0; err_bmdma: /* This is necessary because PCI and iomap resources are * merged and releasing the top group won't release the * acquired resources if some of those have been acquired * before entering this function. */ pcim_iounmap_regions(pdev, 0xf); err_out: devres_release_group(&pdev->dev, NULL); return rc; } struct ata_legacy_devres { unsigned int mask; unsigned long cmd_port[2]; void __iomem * cmd_addr[2]; void __iomem * ctl_addr[2]; unsigned int irq[2]; void * irq_dev_id[2]; }; static void ata_legacy_free_irqs(struct ata_legacy_devres *legacy_dr) { int i; for (i = 0; i < 2; i++) { if (!legacy_dr->irq[i]) continue; free_irq(legacy_dr->irq[i], legacy_dr->irq_dev_id[i]); legacy_dr->irq[i] = 0; legacy_dr->irq_dev_id[i] = NULL; } } static void ata_legacy_release(struct device *gdev, void *res) { struct ata_legacy_devres *this = res; int i; ata_legacy_free_irqs(this); for (i = 0; i < 2; i++) { if (this->cmd_addr[i]) ioport_unmap(this->cmd_addr[i]); if (this->ctl_addr[i]) ioport_unmap(this->ctl_addr[i]); if (this->cmd_port[i]) release_region(this->cmd_port[i], 8); } } static int ata_init_legacy_port(struct ata_port *ap, struct ata_legacy_devres *legacy_dr) { struct ata_host *host = ap->host; int port_no = ap->port_no; unsigned long cmd_port, ctl_port; if (port_no == 0) { cmd_port = ATA_PRIMARY_CMD; ctl_port = ATA_PRIMARY_CTL; } else { cmd_port = ATA_SECONDARY_CMD; ctl_port = ATA_SECONDARY_CTL; } /* request cmd_port */ if (request_region(cmd_port, 8, "libata")) legacy_dr->cmd_port[port_no] = cmd_port; else { dev_printk(KERN_WARNING, host->dev, "0x%0lX IDE port busy\n", cmd_port); return -EBUSY; } /* iomap cmd and ctl ports */ legacy_dr->cmd_addr[port_no] = ioport_map(cmd_port, 8); legacy_dr->ctl_addr[port_no] = ioport_map(ctl_port, 1); if (!legacy_dr->cmd_addr[port_no] || !legacy_dr->ctl_addr[port_no]) return -ENOMEM; /* init IO addresses */ ap->ioaddr.cmd_addr = legacy_dr->cmd_addr[port_no]; ap->ioaddr.altstatus_addr = legacy_dr->ctl_addr[port_no]; ap->ioaddr.ctl_addr = legacy_dr->ctl_addr[port_no]; ata_std_ports(&ap->ioaddr); return 0; } /** * ata_init_legacy_host - acquire legacy ATA resources and init ATA host * @host: target ATA host * @legacy_mask: out parameter, mask indicating ports is in legacy mode * @was_busy: out parameter, indicates whether any port was busy * * Acquire legacy ATA resources for ports. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ static int ata_init_legacy_host(struct ata_host *host, unsigned int *legacy_mask, int *was_busy) { struct device *gdev = host->dev; struct ata_legacy_devres *legacy_dr; int i, rc; if (!devres_open_group(gdev, NULL, GFP_KERNEL)) return -ENOMEM; rc = -ENOMEM; legacy_dr = devres_alloc(ata_legacy_release, sizeof(*legacy_dr), GFP_KERNEL); if (!legacy_dr) goto err_out; devres_add(gdev, legacy_dr); for (i = 0; i < 2; i++) { *legacy_mask &= ~(1 << i); rc = ata_init_legacy_port(host->ports[i], legacy_dr); if (rc == 0) legacy_dr->mask |= 1 << i; else if (rc == -EBUSY) (*was_busy)++; } if (!legacy_dr->mask) return -EBUSY; for (i = 0; i < 2; i++) if (!(legacy_dr->mask & (1 << i))) host->ports[i]->ops = &ata_dummy_port_ops; *legacy_mask |= legacy_dr->mask; devres_remove_group(gdev, NULL); return 0; err_out: devres_release_group(gdev, NULL); return rc; } /** * ata_request_legacy_irqs - request legacy ATA IRQs * @host: target ATA host * @handler: array of IRQ handlers * @irq_flags: array of IRQ flags * @dev_id: array of IRQ dev_ids * * Request legacy IRQs for non-dummy legacy ports in @host. All * IRQ parameters are passed as array to allow ports to have * separate IRQ handlers. * * LOCKING: * Inherited from calling layer (may sleep). * * RETURNS: * 0 on success, -errno otherwise. */ static int ata_request_legacy_irqs(struct ata_host *host, irq_handler_t const *handler, const unsigned int *irq_flags, void * const *dev_id) { struct device *gdev = host->dev; struct ata_legacy_devres *legacy_dr; int i, rc; legacy_dr = devres_find(host->dev, ata_legacy_release, NULL, NULL); BUG_ON(!legacy_dr); for (i = 0; i < host->n_ports; i++) { unsigned int irq; /* FIXME: ATA_*_IRQ() should take generic device not pci_dev */ if (i == 0) irq = ATA_PRIMARY_IRQ(to_pci_dev(gdev)); else irq = ATA_SECONDARY_IRQ(to_pci_dev(gdev)); if (!(legacy_dr->mask & (1 << i))) continue; if (!handler[i]) { dev_printk(KERN_ERR, gdev, "NULL handler specified for port %d\n", i); rc = -EINVAL; goto err_out; } rc = request_irq(irq, handler[i], irq_flags[i], DRV_NAME, dev_id[i]); if (rc) { dev_printk(KERN_ERR, gdev, "irq %u request failed (errno=%d)\n", irq, rc); goto err_out; } /* record irq allocation in legacy_dr */ legacy_dr->irq[i] = irq; legacy_dr->irq_dev_id[i] = dev_id[i]; /* only used to print info */ if (i == 0) host->irq = irq; else host->irq2 = irq; } return 0; err_out: ata_legacy_free_irqs(legacy_dr); return rc; } /** * ata_pci_init_one - Initialize/register PCI IDE host controller * @pdev: Controller to be initialized * @port_info: Information from low-level host driver * @n_ports: Number of ports attached to host controller * * This is a helper function which can be called from a driver's * xxx_init_one() probe function if the hardware uses traditional * IDE taskfile registers. * * This function calls pci_enable_device(), reserves its register * regions, sets the dma mask, enables bus master mode, and calls * ata_device_add() * * ASSUMPTION: * Nobody makes a single channel controller that appears solely as * the secondary legacy port on PCI. * * LOCKING: * Inherited from PCI layer (may sleep). * * RETURNS: * Zero on success, negative on errno-based value on error. */ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, unsigned int n_ports) { struct device *dev = &pdev->dev; struct ata_host *host = NULL; const struct ata_port_info *port[2]; u8 mask; unsigned int legacy_mode = 0; int rc; DPRINTK("ENTER\n"); if (!devres_open_group(dev, NULL, GFP_KERNEL)) return -ENOMEM; BUG_ON(n_ports < 1 || n_ports > 2); port[0] = port_info[0]; port[1] = (n_ports > 1) ? port_info[1] : NULL; /* FIXME: Really for ATA it isn't safe because the device may be multi-purpose and we want to leave it alone if it was already enabled. Secondly for shared use as Arjan says we want refcounting Checking dev->is_enabled is insufficient as this is not set at boot for the primary video which is BIOS enabled */ rc = pcim_enable_device(pdev); if (rc) goto err_out; if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { u8 tmp8; /* TODO: What if one channel is in native mode ... */ pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); mask = (1 << 2) | (1 << 0); if ((tmp8 & mask) != mask) legacy_mode = (1 << 3); #if defined(CONFIG_NO_ATA_LEGACY) /* Some platforms with PCI limits cannot address compat port space. In that case we punt if their firmware has left a device in compatibility mode */ if (legacy_mode) { printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); rc = -EOPNOTSUPP; goto err_out; } #endif } /* alloc and init host */ host = ata_host_alloc_pinfo(dev, port, n_ports); if (!host) { dev_printk(KERN_ERR, &pdev->dev, "failed to allocate ATA host\n"); rc = -ENOMEM; goto err_out; } if (!legacy_mode) { unsigned int port_mask; port_mask = ATA_PORT_PRIMARY; if (n_ports > 1) port_mask |= ATA_PORT_SECONDARY; rc = ata_pci_init_native_host(host, port_mask); if (rc) goto err_out; } else { int was_busy = 0; rc = ata_init_legacy_host(host, &legacy_mode, &was_busy); if (was_busy) pcim_pin_device(pdev); if (rc) goto err_out; /* request respective PCI regions, may fail */ rc = pci_request_region(pdev, 1, DRV_NAME); rc = pci_request_region(pdev, 3, DRV_NAME); } /* init BMDMA, may fail */ ata_pci_init_bmdma(host); pci_set_master(pdev); /* start host and request IRQ */ rc = ata_host_start(host); if (rc) goto err_out; if (!legacy_mode) rc = devm_request_irq(dev, pdev->irq, port_info[0]->port_ops->irq_handler, IRQF_SHARED, DRV_NAME, host); else { irq_handler_t handler[2] = { host->ops->irq_handler, host->ops->irq_handler }; unsigned int irq_flags[2] = { IRQF_SHARED, IRQF_SHARED }; void *dev_id[2] = { host, host }; rc = ata_request_legacy_irqs(host, handler, irq_flags, dev_id); } if (rc) goto err_out; /* register */ rc = ata_host_register(host, port_info[0]->sht); if (rc) goto err_out; devres_remove_group(dev, NULL); return 0; err_out: devres_release_group(dev, NULL); return rc; } /** * ata_pci_clear_simplex - attempt to kick device out of simplex * @pdev: PCI device * * Some PCI ATA devices report simplex mode but in fact can be told to * enter non simplex mode. This implements the neccessary logic to * perform the task on such devices. Calling it on other devices will * have -undefined- behaviour. */ int ata_pci_clear_simplex(struct pci_dev *pdev) { unsigned long bmdma = pci_resource_start(pdev, 4); u8 simplex; if (bmdma == 0) return -ENOENT; simplex = inb(bmdma + 0x02); outb(simplex & 0x60, bmdma + 0x02); simplex = inb(bmdma + 0x02); if (simplex & 0x80) return -EOPNOTSUPP; return 0; } unsigned long ata_pci_default_filter(struct ata_device *adev, unsigned long xfer_mask) { /* Filter out DMA modes if the device has been configured by the BIOS as PIO only */ if (adev->ap->ioaddr.bmdma_addr == 0) xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); return xfer_mask; } #endif /* CONFIG_PCI */