/* tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux. * * Copyright 2001 MontaVista Software Inc. * Author: MontaVista Software, Inc. * ahennessy@mvista.com * * Based on skelton.c by Donald Becker. * Copyright (C) 2000-2001 Toshiba Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ static const char *version = "tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n"; #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/proc_fs.h> #include <linux/spinlock.h> #include <linux/bitops.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/byteorder.h> /* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */ static const char* cardname = "TC35815CF"; #define TC35815_PROC_ENTRY "net/tc35815" #define TC35815_MODULE_NAME "TC35815CF" #define TX_TIMEOUT (4*HZ) /* First, a few definitions that the brave might change. */ /* use 0 for production, 1 for verification, >2 for debug */ #ifndef TC35815_DEBUG #define TC35815_DEBUG 1 #endif static unsigned int tc35815_debug = TC35815_DEBUG; #define GATHER_TXINT /* On-Demand Tx Interrupt */ #define vtonocache(p) KSEG1ADDR(virt_to_phys(p)) /* * Registers */ struct tc35815_regs { volatile __u32 DMA_Ctl; /* 0x00 */ volatile __u32 TxFrmPtr; volatile __u32 TxThrsh; volatile __u32 TxPollCtr; volatile __u32 BLFrmPtr; volatile __u32 RxFragSize; volatile __u32 Int_En; volatile __u32 FDA_Bas; volatile __u32 FDA_Lim; /* 0x20 */ volatile __u32 Int_Src; volatile __u32 unused0[2]; volatile __u32 PauseCnt; volatile __u32 RemPauCnt; volatile __u32 TxCtlFrmStat; volatile __u32 unused1; volatile __u32 MAC_Ctl; /* 0x40 */ volatile __u32 CAM_Ctl; volatile __u32 Tx_Ctl; volatile __u32 Tx_Stat; volatile __u32 Rx_Ctl; volatile __u32 Rx_Stat; volatile __u32 MD_Data; volatile __u32 MD_CA; volatile __u32 CAM_Adr; /* 0x60 */ volatile __u32 CAM_Data; volatile __u32 CAM_Ena; volatile __u32 PROM_Ctl; volatile __u32 PROM_Data; volatile __u32 Algn_Cnt; volatile __u32 CRC_Cnt; volatile __u32 Miss_Cnt; }; /* * Bit assignments */ /* DMA_Ctl bit asign ------------------------------------------------------- */ #define DMA_IntMask 0x00040000 /* 1:Interupt mask */ #define DMA_SWIntReq 0x00020000 /* 1:Software Interrupt request */ #define DMA_TxWakeUp 0x00010000 /* 1:Transmit Wake Up */ #define DMA_RxBigE 0x00008000 /* 1:Receive Big Endian */ #define DMA_TxBigE 0x00004000 /* 1:Transmit Big Endian */ #define DMA_TestMode 0x00002000 /* 1:Test Mode */ #define DMA_PowrMgmnt 0x00001000 /* 1:Power Management */ #define DMA_DmBurst_Mask 0x000001fc /* DMA Burst size */ /* RxFragSize bit asign ---------------------------------------------------- */ #define RxFrag_EnPack 0x00008000 /* 1:Enable Packing */ #define RxFrag_MinFragMask 0x00000ffc /* Minimum Fragment */ /* MAC_Ctl bit asign ------------------------------------------------------- */ #define MAC_Link10 0x00008000 /* 1:Link Status 10Mbits */ #define MAC_EnMissRoll 0x00002000 /* 1:Enable Missed Roll */ #define MAC_MissRoll 0x00000400 /* 1:Missed Roll */ #define MAC_Loop10 0x00000080 /* 1:Loop 10 Mbps */ #define MAC_Conn_Auto 0x00000000 /*00:Connection mode (Automatic) */ #define MAC_Conn_10M 0x00000020 /*01: (10Mbps endec)*/ #define MAC_Conn_Mll 0x00000040 /*10: (Mll clock) */ #define MAC_MacLoop 0x00000010 /* 1:MAC Loopback */ #define MAC_FullDup 0x00000008 /* 1:Full Duplex 0:Half Duplex */ #define MAC_Reset 0x00000004 /* 1:Software Reset */ #define MAC_HaltImm 0x00000002 /* 1:Halt Immediate */ #define MAC_HaltReq 0x00000001 /* 1:Halt request */ /* PROM_Ctl bit asign ------------------------------------------------------ */ #define PROM_Busy 0x00008000 /* 1:Busy (Start Operation) */ #define PROM_Read 0x00004000 /*10:Read operation */ #define PROM_Write 0x00002000 /*01:Write operation */ #define PROM_Erase 0x00006000 /*11:Erase operation */ /*00:Enable or Disable Writting, */ /* as specified in PROM_Addr. */ #define PROM_Addr_Ena 0x00000030 /*11xxxx:PROM Write enable */ /*00xxxx: disable */ /* CAM_Ctl bit asign ------------------------------------------------------- */ #define CAM_CompEn 0x00000010 /* 1:CAM Compare Enable */ #define CAM_NegCAM 0x00000008 /* 1:Reject packets CAM recognizes,*/ /* accept other */ #define CAM_BroadAcc 0x00000004 /* 1:Broadcast assept */ #define CAM_GroupAcc 0x00000002 /* 1:Multicast assept */ #define CAM_StationAcc 0x00000001 /* 1:unicast accept */ /* CAM_Ena bit asign ------------------------------------------------------- */ #define CAM_ENTRY_MAX 21 /* CAM Data entry max count */ #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits) */ #define CAM_Ena_Bit(index) (1<<(index)) #define CAM_ENTRY_DESTINATION 0 #define CAM_ENTRY_SOURCE 1 #define CAM_ENTRY_MACCTL 20 /* Tx_Ctl bit asign -------------------------------------------------------- */ #define Tx_En 0x00000001 /* 1:Transmit enable */ #define Tx_TxHalt 0x00000002 /* 1:Transmit Halt Request */ #define Tx_NoPad 0x00000004 /* 1:Suppress Padding */ #define Tx_NoCRC 0x00000008 /* 1:Suppress Padding */ #define Tx_FBack 0x00000010 /* 1:Fast Back-off */ #define Tx_EnUnder 0x00000100 /* 1:Enable Underrun */ #define Tx_EnExDefer 0x00000200 /* 1:Enable Excessive Deferral */ #define Tx_EnLCarr 0x00000400 /* 1:Enable Lost Carrier */ #define Tx_EnExColl 0x00000800 /* 1:Enable Excessive Collision */ #define Tx_EnLateColl 0x00001000 /* 1:Enable Late Collision */ #define Tx_EnTxPar 0x00002000 /* 1:Enable Transmit Parity */ #define Tx_EnComp 0x00004000 /* 1:Enable Completion */ /* Tx_Stat bit asign ------------------------------------------------------- */ #define Tx_TxColl_MASK 0x0000000F /* Tx Collision Count */ #define Tx_ExColl 0x00000010 /* Excessive Collision */ #define Tx_TXDefer 0x00000020 /* Transmit Defered */ #define Tx_Paused 0x00000040 /* Transmit Paused */ #define Tx_IntTx 0x00000080 /* Interrupt on Tx */ #define Tx_Under 0x00000100 /* Underrun */ #define Tx_Defer 0x00000200 /* Deferral */ #define Tx_NCarr 0x00000400 /* No Carrier */ #define Tx_10Stat 0x00000800 /* 10Mbps Status */ #define Tx_LateColl 0x00001000 /* Late Collision */ #define Tx_TxPar 0x00002000 /* Tx Parity Error */ #define Tx_Comp 0x00004000 /* Completion */ #define Tx_Halted 0x00008000 /* Tx Halted */ #define Tx_SQErr 0x00010000 /* Signal Quality Error(SQE) */ /* Rx_Ctl bit asign -------------------------------------------------------- */ #define Rx_EnGood 0x00004000 /* 1:Enable Good */ #define Rx_EnRxPar 0x00002000 /* 1:Enable Receive Parity */ #define Rx_EnLongErr 0x00000800 /* 1:Enable Long Error */ #define Rx_EnOver 0x00000400 /* 1:Enable OverFlow */ #define Rx_EnCRCErr 0x00000200 /* 1:Enable CRC Error */ #define Rx_EnAlign 0x00000100 /* 1:Enable Alignment */ #define Rx_IgnoreCRC 0x00000040 /* 1:Ignore CRC Value */ #define Rx_StripCRC 0x00000010 /* 1:Strip CRC Value */ #define Rx_ShortEn 0x00000008 /* 1:Short Enable */ #define Rx_LongEn 0x00000004 /* 1:Long Enable */ #define Rx_RxHalt 0x00000002 /* 1:Receive Halt Request */ #define Rx_RxEn 0x00000001 /* 1:Receive Intrrupt Enable */ /* Rx_Stat bit asign ------------------------------------------------------- */ #define Rx_Halted 0x00008000 /* Rx Halted */ #define Rx_Good 0x00004000 /* Rx Good */ #define Rx_RxPar 0x00002000 /* Rx Parity Error */ /* 0x00001000 not use */ #define Rx_LongErr 0x00000800 /* Rx Long Error */ #define Rx_Over 0x00000400 /* Rx Overflow */ #define Rx_CRCErr 0x00000200 /* Rx CRC Error */ #define Rx_Align 0x00000100 /* Rx Alignment Error */ #define Rx_10Stat 0x00000080 /* Rx 10Mbps Status */ #define Rx_IntRx 0x00000040 /* Rx Interrupt */ #define Rx_CtlRecd 0x00000020 /* Rx Control Receive */ #define Rx_Stat_Mask 0x0000EFC0 /* Rx All Status Mask */ /* Int_En bit asign -------------------------------------------------------- */ #define Int_NRAbtEn 0x00000800 /* 1:Non-recoverable Abort Enable */ #define Int_TxCtlCmpEn 0x00000400 /* 1:Transmit Control Complete Enable */ #define Int_DmParErrEn 0x00000200 /* 1:DMA Parity Error Enable */ #define Int_DParDEn 0x00000100 /* 1:Data Parity Error Enable */ #define Int_EarNotEn 0x00000080 /* 1:Early Notify Enable */ #define Int_DParErrEn 0x00000040 /* 1:Detected Parity Error Enable */ #define Int_SSysErrEn 0x00000020 /* 1:Signalled System Error Enable */ #define Int_RMasAbtEn 0x00000010 /* 1:Received Master Abort Enable */ #define Int_RTargAbtEn 0x00000008 /* 1:Received Target Abort Enable */ #define Int_STargAbtEn 0x00000004 /* 1:Signalled Target Abort Enable */ #define Int_BLExEn 0x00000002 /* 1:Buffer List Exhausted Enable */ #define Int_FDAExEn 0x00000001 /* 1:Free Descriptor Area */ /* Exhausted Enable */ /* Int_Src bit asign ------------------------------------------------------- */ #define Int_NRabt 0x00004000 /* 1:Non Recoverable error */ #define Int_DmParErrStat 0x00002000 /* 1:DMA Parity Error & Clear */ #define Int_BLEx 0x00001000 /* 1:Buffer List Empty & Clear */ #define Int_FDAEx 0x00000800 /* 1:FDA Empty & Clear */ #define Int_IntNRAbt 0x00000400 /* 1:Non Recoverable Abort */ #define Int_IntCmp 0x00000200 /* 1:MAC control packet complete */ #define Int_IntExBD 0x00000100 /* 1:Interrupt Extra BD & Clear */ #define Int_DmParErr 0x00000080 /* 1:DMA Parity Error & Clear */ #define Int_IntEarNot 0x00000040 /* 1:Receive Data write & Clear */ #define Int_SWInt 0x00000020 /* 1:Software request & Clear */ #define Int_IntBLEx 0x00000010 /* 1:Buffer List Empty & Clear */ #define Int_IntFDAEx 0x00000008 /* 1:FDA Empty & Clear */ #define Int_IntPCI 0x00000004 /* 1:PCI controller & Clear */ #define Int_IntMacRx 0x00000002 /* 1:Rx controller & Clear */ #define Int_IntMacTx 0x00000001 /* 1:Tx controller & Clear */ /* MD_CA bit asign --------------------------------------------------------- */ #define MD_CA_PreSup 0x00001000 /* 1:Preamble Supress */ #define MD_CA_Busy 0x00000800 /* 1:Busy (Start Operation) */ #define MD_CA_Wr 0x00000400 /* 1:Write 0:Read */ /* MII register offsets */ #define MII_CONTROL 0x0000 #define MII_STATUS 0x0001 #define MII_PHY_ID0 0x0002 #define MII_PHY_ID1 0x0003 #define MII_ANAR 0x0004 #define MII_ANLPAR 0x0005 #define MII_ANER 0x0006 /* MII Control register bit definitions. */ #define MIICNTL_FDX 0x0100 #define MIICNTL_RST_AUTO 0x0200 #define MIICNTL_ISOLATE 0x0400 #define MIICNTL_PWRDWN 0x0800 #define MIICNTL_AUTO 0x1000 #define MIICNTL_SPEED 0x2000 #define MIICNTL_LPBK 0x4000 #define MIICNTL_RESET 0x8000 /* MII Status register bit significance. */ #define MIISTAT_EXT 0x0001 #define MIISTAT_JAB 0x0002 #define MIISTAT_LINK 0x0004 #define MIISTAT_CAN_AUTO 0x0008 #define MIISTAT_FAULT 0x0010 #define MIISTAT_AUTO_DONE 0x0020 #define MIISTAT_CAN_T 0x0800 #define MIISTAT_CAN_T_FDX 0x1000 #define MIISTAT_CAN_TX 0x2000 #define MIISTAT_CAN_TX_FDX 0x4000 #define MIISTAT_CAN_T4 0x8000 /* MII Auto-Negotiation Expansion/RemoteEnd Register Bits */ #define MII_AN_TX_FDX 0x0100 #define MII_AN_TX_HDX 0x0080 #define MII_AN_10_FDX 0x0040 #define MII_AN_10_HDX 0x0020 /* * Descriptors */ /* Frame descripter */ struct FDesc { volatile __u32 FDNext; volatile __u32 FDSystem; volatile __u32 FDStat; volatile __u32 FDCtl; }; /* Buffer descripter */ struct BDesc { volatile __u32 BuffData; volatile __u32 BDCtl; }; #define FD_ALIGN 16 /* Frame Descripter bit asign ---------------------------------------------- */ #define FD_FDLength_MASK 0x0000FFFF /* Length MASK */ #define FD_BDCnt_MASK 0x001F0000 /* BD count MASK in FD */ #define FD_FrmOpt_MASK 0x7C000000 /* Frame option MASK */ #define FD_FrmOpt_BigEndian 0x40000000 /* Tx/Rx */ #define FD_FrmOpt_IntTx 0x20000000 /* Tx only */ #define FD_FrmOpt_NoCRC 0x10000000 /* Tx only */ #define FD_FrmOpt_NoPadding 0x08000000 /* Tx only */ #define FD_FrmOpt_Packing 0x04000000 /* Rx only */ #define FD_CownsFD 0x80000000 /* FD Controller owner bit */ #define FD_Next_EOL 0x00000001 /* FD EOL indicator */ #define FD_BDCnt_SHIFT 16 /* Buffer Descripter bit asign --------------------------------------------- */ #define BD_BuffLength_MASK 0x0000FFFF /* Recieve Data Size */ #define BD_RxBDID_MASK 0x00FF0000 /* BD ID Number MASK */ #define BD_RxBDSeqN_MASK 0x7F000000 /* Rx BD Sequence Number */ #define BD_CownsBD 0x80000000 /* BD Controller owner bit */ #define BD_RxBDID_SHIFT 16 #define BD_RxBDSeqN_SHIFT 24 /* Some useful constants. */ #undef NO_CHECK_CARRIER /* Does not check No-Carrier with TP */ #ifdef NO_CHECK_CARRIER #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \ Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \ Tx_En) /* maybe 0x7d01 */ #else #define TX_CTL_CMD (Tx_EnComp | Tx_EnTxPar | Tx_EnLateColl | \ Tx_EnExColl | Tx_EnExDefer | Tx_EnUnder | \ Tx_En) /* maybe 0x7f01 */ #endif #define RX_CTL_CMD (Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \ | Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */ #define INT_EN_CMD (Int_NRAbtEn | \ Int_DParDEn | Int_DParErrEn | \ Int_SSysErrEn | Int_RMasAbtEn | Int_RTargAbtEn | \ Int_STargAbtEn | \ Int_BLExEn | Int_FDAExEn) /* maybe 0xb7f*/ /* Tuning parameters */ #define DMA_BURST_SIZE 32 #define TX_THRESHOLD 1024 #define FD_PAGE_NUM 2 #define FD_PAGE_ORDER 1 /* 16 + RX_BUF_PAGES * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*2 */ #define RX_BUF_PAGES 8 /* >= 2 */ #define RX_FD_NUM 250 /* >= 32 */ #define TX_FD_NUM 128 struct TxFD { struct FDesc fd; struct BDesc bd; struct BDesc unused; }; struct RxFD { struct FDesc fd; struct BDesc bd[0]; /* variable length */ }; struct FrFD { struct FDesc fd; struct BDesc bd[RX_BUF_PAGES]; }; extern unsigned long tc_readl(volatile __u32 *addr); extern void tc_writel(unsigned long data, volatile __u32 *addr); dma_addr_t priv_dma_handle; /* Information that need to be kept for each board. */ struct tc35815_local { struct net_device *next_module; /* statistics */ struct net_device_stats stats; struct { int max_tx_qlen; int tx_ints; int rx_ints; } lstats; int tbusy; int option; #define TC35815_OPT_AUTO 0x00 #define TC35815_OPT_10M 0x01 #define TC35815_OPT_100M 0x02 #define TC35815_OPT_FULLDUP 0x04 int linkspeed; /* 10 or 100 */ int fullduplex; /* * Transmitting: Batch Mode. * 1 BD in 1 TxFD. * Receiving: Packing Mode. * 1 circular FD for Free Buffer List. * RX_BUG_PAGES BD in Free Buffer FD. * One Free Buffer BD has PAGE_SIZE data buffer. */ struct pci_dev *pdev; dma_addr_t fd_buf_dma_handle; void * fd_buf; /* for TxFD, TxFD, FrFD */ struct TxFD *tfd_base; int tfd_start; int tfd_end; struct RxFD *rfd_base; struct RxFD *rfd_limit; struct RxFD *rfd_cur; struct FrFD *fbl_ptr; unsigned char fbl_curid; dma_addr_t data_buf_dma_handle[RX_BUF_PAGES]; void * data_buf[RX_BUF_PAGES]; /* packing */ spinlock_t lock; }; /* Index to functions, as function prototypes. */ static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq); static int tc35815_open(struct net_device *dev); static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev); static void tc35815_tx_timeout(struct net_device *dev); static irqreturn_t tc35815_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void tc35815_rx(struct net_device *dev); static void tc35815_txdone(struct net_device *dev); static int tc35815_close(struct net_device *dev); static struct net_device_stats *tc35815_get_stats(struct net_device *dev); static void tc35815_set_multicast_list(struct net_device *dev); static void tc35815_chip_reset(struct net_device *dev); static void tc35815_chip_init(struct net_device *dev); static void tc35815_phy_chip_init(struct net_device *dev); /* A list of all installed tc35815 devices. */ static struct net_device *root_tc35815_dev = NULL; /* * PCI device identifiers for "new style" Linux PCI Device Drivers */ static struct pci_device_id tc35815_pci_tbl[] = { { PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { 0, } }; MODULE_DEVICE_TABLE (pci, tc35815_pci_tbl); int tc35815_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err = 0; int ret; unsigned long pci_memaddr; unsigned int pci_irq_line; printk(KERN_INFO "tc35815_probe: found device %#08x.%#08x\n", ent->vendor, ent->device); err = pci_enable_device(pdev); if (err) return err; pci_memaddr = pci_resource_start (pdev, 1); printk(KERN_INFO " pci_memaddr=%#08lx resource_flags=%#08lx\n", pci_memaddr, pci_resource_flags (pdev, 0)); if (!pci_memaddr) { printk(KERN_WARNING "no PCI MEM resources, aborting\n"); ret = -ENODEV; goto err_out; } pci_irq_line = pdev->irq; /* irq disabled. */ if (pci_irq_line == 0) { printk(KERN_WARNING "no PCI irq, aborting\n"); ret = -ENODEV; goto err_out; } ret = tc35815_probe1(pdev, pci_memaddr, pci_irq_line); if (ret) goto err_out; pci_set_master(pdev); return 0; err_out: pci_disable_device(pdev); return ret; } static int __devinit tc35815_probe1(struct pci_dev *pdev, unsigned int base_addr, unsigned int irq) { static unsigned version_printed = 0; int i, ret; struct tc35815_local *lp; struct tc35815_regs *tr; struct net_device *dev; /* Allocate a new 'dev' if needed. */ dev = alloc_etherdev(sizeof(struct tc35815_local)); if (dev == NULL) return -ENOMEM; /* * alloc_etherdev allocs and zeros dev->priv */ lp = dev->priv; if (tc35815_debug && version_printed++ == 0) printk(KERN_DEBUG "%s", version); /* Fill in the 'dev' fields. */ dev->irq = irq; dev->base_addr = (unsigned long)ioremap(base_addr, sizeof(struct tc35815_regs)); if (!dev->base_addr) { ret = -ENOMEM; goto err_out; } tr = (struct tc35815_regs*)dev->base_addr; tc35815_chip_reset(dev); /* Retrieve and print the ethernet address. */ while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) ; for (i = 0; i < 6; i += 2) { unsigned short data; tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl); while (tc_readl(&tr->PROM_Ctl) & PROM_Busy) ; data = tc_readl(&tr->PROM_Data); dev->dev_addr[i] = data & 0xff; dev->dev_addr[i+1] = data >> 8; } /* Initialize the device structure. */ lp->pdev = pdev; lp->next_module = root_tc35815_dev; root_tc35815_dev = dev; spin_lock_init(&lp->lock); if (dev->mem_start > 0) { lp->option = dev->mem_start; if ((lp->option & TC35815_OPT_10M) && (lp->option & TC35815_OPT_100M)) { /* if both speed speficied, auto select. */ lp->option &= ~(TC35815_OPT_10M | TC35815_OPT_100M); } } //XXX fixme lp->option |= TC35815_OPT_10M; /* do auto negotiation */ tc35815_phy_chip_init(dev); dev->open = tc35815_open; dev->stop = tc35815_close; dev->tx_timeout = tc35815_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; dev->hard_start_xmit = tc35815_send_packet; dev->get_stats = tc35815_get_stats; dev->set_multicast_list = tc35815_set_multicast_list; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); ret = register_netdev(dev); if (ret) goto err_out_iounmap; printk(KERN_INFO "%s: %s found at %#x, irq %d, MAC", dev->name, cardname, base_addr, irq); for (i = 0; i < 6; i++) printk(" %2.2x", dev->dev_addr[i]); printk("\n"); printk(KERN_INFO "%s: linkspeed %dMbps, %s Duplex\n", dev->name, lp->linkspeed, lp->fullduplex ? "Full" : "Half"); return 0; err_out_iounmap: iounmap((void *) dev->base_addr); err_out: free_netdev(dev); return ret; } static int tc35815_init_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; unsigned long fd_addr; if (!lp->fd_buf) { if (sizeof(struct FDesc) + sizeof(struct BDesc) * RX_BUF_PAGES + sizeof(struct FDesc) * RX_FD_NUM + sizeof(struct TxFD) * TX_FD_NUM > PAGE_SIZE * FD_PAGE_NUM) { printk(KERN_WARNING "%s: Invalid Queue Size.\n", dev->name); return -ENOMEM; } if ((lp->fd_buf = (void *)__get_free_pages(GFP_KERNEL, FD_PAGE_ORDER)) == 0) return -ENOMEM; for (i = 0; i < RX_BUF_PAGES; i++) { if ((lp->data_buf[i] = (void *)get_zeroed_page(GFP_KERNEL)) == 0) { while (--i >= 0) { free_page((unsigned long)lp->data_buf[i]); lp->data_buf[i] = 0; } free_page((unsigned long)lp->fd_buf); lp->fd_buf = 0; return -ENOMEM; } #ifdef __mips__ dma_cache_wback_inv((unsigned long)lp->data_buf[i], PAGE_SIZE * FD_PAGE_NUM); #endif } #ifdef __mips__ dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM); #endif } else { clear_page(lp->fd_buf); #ifdef __mips__ dma_cache_wback_inv((unsigned long)lp->fd_buf, PAGE_SIZE * FD_PAGE_NUM); #endif } #ifdef __mips__ fd_addr = (unsigned long)vtonocache(lp->fd_buf); #else fd_addr = (unsigned long)lp->fd_buf; #endif /* Free Descriptors (for Receive) */ lp->rfd_base = (struct RxFD *)fd_addr; fd_addr += sizeof(struct RxFD) * RX_FD_NUM; for (i = 0; i < RX_FD_NUM; i++) { lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD); } lp->rfd_cur = lp->rfd_base; lp->rfd_limit = (struct RxFD *)(fd_addr - sizeof(struct FDesc) - sizeof(struct BDesc) * 30); /* Transmit Descriptors */ lp->tfd_base = (struct TxFD *)fd_addr; fd_addr += sizeof(struct TxFD) * TX_FD_NUM; for (i = 0; i < TX_FD_NUM; i++) { lp->tfd_base[i].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[i+1])); lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0); lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0); } lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(virt_to_bus(&lp->tfd_base[0])); lp->tfd_start = 0; lp->tfd_end = 0; /* Buffer List (for Receive) */ lp->fbl_ptr = (struct FrFD *)fd_addr; lp->fbl_ptr->fd.FDNext = cpu_to_le32(virt_to_bus(lp->fbl_ptr)); lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_PAGES | FD_CownsFD); for (i = 0; i < RX_BUF_PAGES; i++) { lp->fbl_ptr->bd[i].BuffData = cpu_to_le32(virt_to_bus(lp->data_buf[i])); /* BDID is index of FrFD.bd[] */ lp->fbl_ptr->bd[i].BDCtl = cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) | PAGE_SIZE); } lp->fbl_curid = 0; return 0; } static void tc35815_clear_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; for (i = 0; i < TX_FD_NUM; i++) { struct sk_buff *skb = (struct sk_buff *) le32_to_cpu(lp->tfd_base[i].fd.FDSystem); if (skb) dev_kfree_skb_any(skb); lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0); } tc35815_init_queues(dev); } static void tc35815_free_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; if (lp->tfd_base) { for (i = 0; i < TX_FD_NUM; i++) { struct sk_buff *skb = (struct sk_buff *) le32_to_cpu(lp->tfd_base[i].fd.FDSystem); if (skb) dev_kfree_skb_any(skb); lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0); } } lp->rfd_base = NULL; lp->rfd_base = NULL; lp->rfd_limit = NULL; lp->rfd_cur = NULL; lp->fbl_ptr = NULL; for (i = 0; i < RX_BUF_PAGES; i++) { if (lp->data_buf[i]) free_page((unsigned long)lp->data_buf[i]); lp->data_buf[i] = 0; } if (lp->fd_buf) __free_pages(lp->fd_buf, FD_PAGE_ORDER); lp->fd_buf = NULL; } static void dump_txfd(struct TxFD *fd) { printk("TxFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); printk("BD: "); printk(" %08x %08x", le32_to_cpu(fd->bd.BuffData), le32_to_cpu(fd->bd.BDCtl)); printk("\n"); } static int dump_rxfd(struct RxFD *fd) { int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; if (bd_count > 8) bd_count = 8; printk("RxFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD) return 0; printk("BD: "); for (i = 0; i < bd_count; i++) printk(" %08x %08x", le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BDCtl)); printk("\n"); return bd_count; } static void dump_frfd(struct FrFD *fd) { int i; printk("FrFD(%p): %08x %08x %08x %08x\n", fd, le32_to_cpu(fd->fd.FDNext), le32_to_cpu(fd->fd.FDSystem), le32_to_cpu(fd->fd.FDStat), le32_to_cpu(fd->fd.FDCtl)); printk("BD: "); for (i = 0; i < RX_BUF_PAGES; i++) printk(" %08x %08x", le32_to_cpu(fd->bd[i].BuffData), le32_to_cpu(fd->bd[i].BDCtl)); printk("\n"); } static void panic_queues(struct net_device *dev) { struct tc35815_local *lp = dev->priv; int i; printk("TxFD base %p, start %d, end %d\n", lp->tfd_base, lp->tfd_start, lp->tfd_end); printk("RxFD base %p limit %p cur %p\n", lp->rfd_base, lp->rfd_limit, lp->rfd_cur); printk("FrFD %p\n", lp->fbl_ptr); for (i = 0; i < TX_FD_NUM; i++) dump_txfd(&lp->tfd_base[i]); for (i = 0; i < RX_FD_NUM; i++) { int bd_count = dump_rxfd(&lp->rfd_base[i]); i += (bd_count + 1) / 2; /* skip BDs */ } dump_frfd(lp->fbl_ptr); panic("%s: Illegal queue state.", dev->name); } #if 0 static void print_buf(char *add, int length) { int i; int len = length; printk("print_buf(%08x)(%x)\n", (unsigned int) add,length); if (len > 100) len = 100; for (i = 0; i < len; i++) { printk(" %2.2X", (unsigned char) add[i]); if (!(i % 16)) printk("\n"); } printk("\n"); } #endif static void print_eth(char *add) { int i; printk("print_eth(%08x)\n", (unsigned int) add); for (i = 0; i < 6; i++) printk(" %2.2X", (unsigned char) add[i + 6]); printk(" =>"); for (i = 0; i < 6; i++) printk(" %2.2X", (unsigned char) add[i]); printk(" : %2.2X%2.2X\n", (unsigned char) add[12], (unsigned char) add[13]); } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int tc35815_open(struct net_device *dev) { struct tc35815_local *lp = dev->priv; /* * This is used if the interrupt line can turned off (shared). * See 3c503.c for an example of selecting the IRQ at config-time. */ if (dev->irq == 0 || request_irq(dev->irq, &tc35815_interrupt, IRQF_SHARED, cardname, dev)) { return -EAGAIN; } tc35815_chip_reset(dev); if (tc35815_init_queues(dev) != 0) { free_irq(dev->irq, dev); return -EAGAIN; } /* Reset the hardware here. Don't forget to set the station address. */ tc35815_chip_init(dev); lp->tbusy = 0; netif_start_queue(dev); return 0; } static void tc35815_tx_timeout(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); printk(KERN_WARNING "%s: transmit timed out, status %#lx\n", dev->name, tc_readl(&tr->Tx_Stat)); /* Try to restart the adaptor. */ tc35815_chip_reset(dev); tc35815_clear_queues(dev); tc35815_chip_init(dev); lp->tbusy=0; spin_unlock_irqrestore(&lp->lock, flags); dev->trans_start = jiffies; netif_wake_queue(dev); } static int tc35815_send_packet(struct sk_buff *skb, struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs *)dev->base_addr; if (netif_queue_stopped(dev)) { /* * If we get here, some higher level has decided we are broken. * There should really be a "kick me" function call instead. */ int tickssofar = jiffies - dev->trans_start; if (tickssofar < 5) return 1; printk(KERN_WARNING "%s: transmit timed out, status %#lx\n", dev->name, tc_readl(&tr->Tx_Stat)); /* Try to restart the adaptor. */ tc35815_chip_reset(dev); tc35815_clear_queues(dev); tc35815_chip_init(dev); lp->tbusy=0; dev->trans_start = jiffies; netif_wake_queue(dev); } /* * Block a timer-based transmit from overlapping. This could better be * done with atomic_swap(1, lp->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&lp->tbusy) != 0) { printk(KERN_WARNING "%s: Transmitter access conflict.\n", dev->name); dev_kfree_skb_any(skb); } else { short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; unsigned char *buf = skb->data; struct TxFD *txfd = &lp->tfd_base[lp->tfd_start]; unsigned long flags; lp->stats.tx_bytes += skb->len; #ifdef __mips__ dma_cache_wback_inv((unsigned long)buf, length); #endif spin_lock_irqsave(&lp->lock, flags); /* failsafe... */ if (lp->tfd_start != lp->tfd_end) tc35815_txdone(dev); txfd->bd.BuffData = cpu_to_le32(virt_to_bus(buf)); txfd->bd.BDCtl = cpu_to_le32(length); txfd->fd.FDSystem = cpu_to_le32((__u32)skb); txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT)); if (lp->tfd_start == lp->tfd_end) { /* Start DMA Transmitter. */ txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL); #ifdef GATHER_TXINT txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); #endif if (tc35815_debug > 2) { printk("%s: starting TxFD.\n", dev->name); dump_txfd(txfd); if (tc35815_debug > 3) print_eth(buf); } tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr); } else { txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL); if (tc35815_debug > 2) { printk("%s: queueing TxFD.\n", dev->name); dump_txfd(txfd); if (tc35815_debug > 3) print_eth(buf); } } lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM; dev->trans_start = jiffies; if ((lp->tfd_start + 1) % TX_FD_NUM != lp->tfd_end) { /* we can send another packet */ lp->tbusy = 0; netif_start_queue(dev); } else { netif_stop_queue(dev); if (tc35815_debug > 1) printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name); } spin_unlock_irqrestore(&lp->lock, flags); } return 0; } #define FATAL_ERROR_INT \ (Int_IntPCI | Int_DmParErr | Int_IntNRAbt) static void tc35815_fatal_error_interrupt(struct net_device *dev, int status) { static int count; printk(KERN_WARNING "%s: Fatal Error Intterrupt (%#x):", dev->name, status); if (status & Int_IntPCI) printk(" IntPCI"); if (status & Int_DmParErr) printk(" DmParErr"); if (status & Int_IntNRAbt) printk(" IntNRAbt"); printk("\n"); if (count++ > 100) panic("%s: Too many fatal errors.", dev->name); printk(KERN_WARNING "%s: Resetting %s...\n", dev->name, cardname); /* Try to restart the adaptor. */ tc35815_chip_reset(dev); tc35815_clear_queues(dev); tc35815_chip_init(dev); } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static irqreturn_t tc35815_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; struct tc35815_regs *tr; struct tc35815_local *lp; int status, boguscount = 0; int handled = 0; if (dev == NULL) { printk(KERN_WARNING "%s: irq %d for unknown device.\n", cardname, irq); return IRQ_NONE; } tr = (struct tc35815_regs*)dev->base_addr; lp = dev->priv; do { status = tc_readl(&tr->Int_Src); if (status == 0) break; handled = 1; tc_writel(status, &tr->Int_Src); /* write to clear */ /* Fatal errors... */ if (status & FATAL_ERROR_INT) { tc35815_fatal_error_interrupt(dev, status); break; } /* recoverable errors */ if (status & Int_IntFDAEx) { /* disable FDAEx int. (until we make rooms...) */ tc_writel(tc_readl(&tr->Int_En) & ~Int_FDAExEn, &tr->Int_En); printk(KERN_WARNING "%s: Free Descriptor Area Exhausted (%#x).\n", dev->name, status); lp->stats.rx_dropped++; } if (status & Int_IntBLEx) { /* disable BLEx int. (until we make rooms...) */ tc_writel(tc_readl(&tr->Int_En) & ~Int_BLExEn, &tr->Int_En); printk(KERN_WARNING "%s: Buffer List Exhausted (%#x).\n", dev->name, status); lp->stats.rx_dropped++; } if (status & Int_IntExBD) { printk(KERN_WARNING "%s: Excessive Buffer Descriptiors (%#x).\n", dev->name, status); lp->stats.rx_length_errors++; } /* normal notification */ if (status & Int_IntMacRx) { /* Got a packet(s). */ lp->lstats.rx_ints++; tc35815_rx(dev); } if (status & Int_IntMacTx) { lp->lstats.tx_ints++; tc35815_txdone(dev); } } while (++boguscount < 20) ; return IRQ_RETVAL(handled); } /* We have a good packet(s), get it/them out of the buffers. */ static void tc35815_rx(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; unsigned int fdctl; int i; int buf_free_count = 0; int fd_free_count = 0; while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) { int status = le32_to_cpu(lp->rfd_cur->fd.FDStat); int pkt_len = fdctl & FD_FDLength_MASK; struct RxFD *next_rfd; int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT; if (tc35815_debug > 2) dump_rxfd(lp->rfd_cur); if (status & Rx_Good) { /* Malloc up new buffer. */ struct sk_buff *skb; unsigned char *data; int cur_bd, offset; lp->stats.rx_bytes += pkt_len; skb = dev_alloc_skb(pkt_len + 2); /* +2: for reserve */ if (skb == NULL) { printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } skb_reserve(skb, 2); /* 16 bit alignment */ skb->dev = dev; data = skb_put(skb, pkt_len); /* copy from receive buffer */ cur_bd = 0; offset = 0; while (offset < pkt_len && cur_bd < bd_count) { int len = le32_to_cpu(lp->rfd_cur->bd[cur_bd].BDCtl) & BD_BuffLength_MASK; void *rxbuf = bus_to_virt(le32_to_cpu(lp->rfd_cur->bd[cur_bd].BuffData)); #ifdef __mips__ dma_cache_inv((unsigned long)rxbuf, len); #endif memcpy(data + offset, rxbuf, len); offset += len; cur_bd++; } #if 0 print_buf(data,pkt_len); #endif if (tc35815_debug > 3) print_eth(data); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); lp->stats.rx_packets++; } else { lp->stats.rx_errors++; /* WORKAROUND: LongErr and CRCErr means Overflow. */ if ((status & Rx_LongErr) && (status & Rx_CRCErr)) { status &= ~(Rx_LongErr|Rx_CRCErr); status |= Rx_Over; } if (status & Rx_LongErr) lp->stats.rx_length_errors++; if (status & Rx_Over) lp->stats.rx_fifo_errors++; if (status & Rx_CRCErr) lp->stats.rx_crc_errors++; if (status & Rx_Align) lp->stats.rx_frame_errors++; } if (bd_count > 0) { /* put Free Buffer back to controller */ int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl); unsigned char id = (bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT; if (id >= RX_BUF_PAGES) { printk("%s: invalid BDID.\n", dev->name); panic_queues(dev); } /* free old buffers */ while (lp->fbl_curid != id) { bdctl = le32_to_cpu(lp->fbl_ptr->bd[lp->fbl_curid].BDCtl); if (bdctl & BD_CownsBD) { printk("%s: Freeing invalid BD.\n", dev->name); panic_queues(dev); } /* pass BD to controler */ /* Note: BDLength was modified by chip. */ lp->fbl_ptr->bd[lp->fbl_curid].BDCtl = cpu_to_le32(BD_CownsBD | (lp->fbl_curid << BD_RxBDID_SHIFT) | PAGE_SIZE); lp->fbl_curid = (lp->fbl_curid + 1) % RX_BUF_PAGES; if (tc35815_debug > 2) { printk("%s: Entering new FBD %d\n", dev->name, lp->fbl_curid); dump_frfd(lp->fbl_ptr); } buf_free_count++; } } /* put RxFD back to controller */ next_rfd = bus_to_virt(le32_to_cpu(lp->rfd_cur->fd.FDNext)); #ifdef __mips__ next_rfd = (struct RxFD *)vtonocache(next_rfd); #endif if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) { printk("%s: RxFD FDNext invalid.\n", dev->name); panic_queues(dev); } for (i = 0; i < (bd_count + 1) / 2 + 1; i++) { /* pass FD to controler */ lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead); /* for debug */ lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD); lp->rfd_cur++; fd_free_count++; } lp->rfd_cur = next_rfd; } /* re-enable BL/FDA Exhaust interrupts. */ if (fd_free_count) { tc_writel(tc_readl(&tr->Int_En) | Int_FDAExEn, &tr->Int_En); if (buf_free_count) tc_writel(tc_readl(&tr->Int_En) | Int_BLExEn, &tr->Int_En); } } #ifdef NO_CHECK_CARRIER #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_LateColl|Tx_TxPar|Tx_SQErr) #else #define TX_STA_ERR (Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr) #endif static void tc35815_check_tx_stat(struct net_device *dev, int status) { struct tc35815_local *lp = dev->priv; const char *msg = NULL; /* count collisions */ if (status & Tx_ExColl) lp->stats.collisions += 16; if (status & Tx_TxColl_MASK) lp->stats.collisions += status & Tx_TxColl_MASK; /* WORKAROUND: ignore LostCrS in full duplex operation */ if (lp->fullduplex) status &= ~Tx_NCarr; if (!(status & TX_STA_ERR)) { /* no error. */ lp->stats.tx_packets++; return; } lp->stats.tx_errors++; if (status & Tx_ExColl) { lp->stats.tx_aborted_errors++; msg = "Excessive Collision."; } if (status & Tx_Under) { lp->stats.tx_fifo_errors++; msg = "Tx FIFO Underrun."; } if (status & Tx_Defer) { lp->stats.tx_fifo_errors++; msg = "Excessive Deferral."; } #ifndef NO_CHECK_CARRIER if (status & Tx_NCarr) { lp->stats.tx_carrier_errors++; msg = "Lost Carrier Sense."; } #endif if (status & Tx_LateColl) { lp->stats.tx_aborted_errors++; msg = "Late Collision."; } if (status & Tx_TxPar) { lp->stats.tx_fifo_errors++; msg = "Transmit Parity Error."; } if (status & Tx_SQErr) { lp->stats.tx_heartbeat_errors++; msg = "Signal Quality Error."; } if (msg) printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status); } static void tc35815_txdone(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; struct TxFD *txfd; unsigned int fdctl; int num_done = 0; txfd = &lp->tfd_base[lp->tfd_end]; while (lp->tfd_start != lp->tfd_end && !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) { int status = le32_to_cpu(txfd->fd.FDStat); struct sk_buff *skb; unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext); if (tc35815_debug > 2) { printk("%s: complete TxFD.\n", dev->name); dump_txfd(txfd); } tc35815_check_tx_stat(dev, status); skb = (struct sk_buff *)le32_to_cpu(txfd->fd.FDSystem); if (skb) { dev_kfree_skb_any(skb); } txfd->fd.FDSystem = cpu_to_le32(0); num_done++; lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM; txfd = &lp->tfd_base[lp->tfd_end]; if ((fdnext & ~FD_Next_EOL) != virt_to_bus(txfd)) { printk("%s: TxFD FDNext invalid.\n", dev->name); panic_queues(dev); } if (fdnext & FD_Next_EOL) { /* DMA Transmitter has been stopping... */ if (lp->tfd_end != lp->tfd_start) { int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM; struct TxFD* txhead = &lp->tfd_base[head]; int qlen = (lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM; if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) { printk("%s: TxFD FDCtl invalid.\n", dev->name); panic_queues(dev); } /* log max queue length */ if (lp->lstats.max_tx_qlen < qlen) lp->lstats.max_tx_qlen = qlen; /* start DMA Transmitter again */ txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL); #ifdef GATHER_TXINT txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx); #endif if (tc35815_debug > 2) { printk("%s: start TxFD on queue.\n", dev->name); dump_txfd(txfd); } tc_writel(virt_to_bus(txfd), &tr->TxFrmPtr); } break; } } if (num_done > 0 && lp->tbusy) { lp->tbusy = 0; netif_start_queue(dev); } } /* The inverse routine to tc35815_open(). */ static int tc35815_close(struct net_device *dev) { struct tc35815_local *lp = dev->priv; lp->tbusy = 1; netif_stop_queue(dev); /* Flush the Tx and disable Rx here. */ tc35815_chip_reset(dev); free_irq(dev->irq, dev); tc35815_free_queues(dev); return 0; } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats *tc35815_get_stats(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; unsigned long flags; if (netif_running(dev)) { spin_lock_irqsave(&lp->lock, flags); /* Update the statistics from the device registers. */ lp->stats.rx_missed_errors = tc_readl(&tr->Miss_Cnt); spin_unlock_irqrestore(&lp->lock, flags); } return &lp->stats; } static void tc35815_set_cam_entry(struct tc35815_regs *tr, int index, unsigned char *addr) { int cam_index = index * 6; unsigned long cam_data; unsigned long saved_addr; saved_addr = tc_readl(&tr->CAM_Adr); if (tc35815_debug > 1) { int i; printk(KERN_DEBUG "%s: CAM %d:", cardname, index); for (i = 0; i < 6; i++) printk(" %02x", addr[i]); printk("\n"); } if (index & 1) { /* read modify write */ tc_writel(cam_index - 2, &tr->CAM_Adr); cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000; cam_data |= addr[0] << 8 | addr[1]; tc_writel(cam_data, &tr->CAM_Data); /* write whole word */ tc_writel(cam_index + 2, &tr->CAM_Adr); cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; tc_writel(cam_data, &tr->CAM_Data); } else { /* write whole word */ tc_writel(cam_index, &tr->CAM_Adr); cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3]; tc_writel(cam_data, &tr->CAM_Data); /* read modify write */ tc_writel(cam_index + 4, &tr->CAM_Adr); cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff; cam_data |= addr[4] << 24 | (addr[5] << 16); tc_writel(cam_data, &tr->CAM_Data); } if (tc35815_debug > 2) { int i; for (i = cam_index / 4; i < cam_index / 4 + 2; i++) { tc_writel(i * 4, &tr->CAM_Adr); printk("CAM 0x%x: %08lx", i * 4, tc_readl(&tr->CAM_Data)); } } tc_writel(saved_addr, &tr->CAM_Adr); } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void tc35815_set_multicast_list(struct net_device *dev) { struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; if (dev->flags&IFF_PROMISC) { /* Enable promiscuous mode */ tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl); } else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > CAM_ENTRY_MAX - 3) { /* CAM 0, 1, 20 are reserved. */ /* Disable promiscuous mode, use normal mode. */ tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl); } else if(dev->mc_count) { struct dev_mc_list* cur_addr = dev->mc_list; int i; int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE); tc_writel(0, &tr->CAM_Ctl); /* Walk the address list, and load the filter */ for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) { if (!cur_addr) break; /* entry 0,1 is reserved. */ tc35815_set_cam_entry(tr, i + 2, cur_addr->dmi_addr); ena_bits |= CAM_Ena_Bit(i + 2); } tc_writel(ena_bits, &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); } else { tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); } } static unsigned long tc_phy_read(struct net_device *dev, struct tc35815_regs *tr, int phy, int phy_reg) { struct tc35815_local *lp = dev->priv; unsigned long data; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); tc_writel(MD_CA_Busy | (phy << 5) | phy_reg, &tr->MD_CA); while (tc_readl(&tr->MD_CA) & MD_CA_Busy) ; data = tc_readl(&tr->MD_Data); spin_unlock_irqrestore(&lp->lock, flags); return data; } static void tc_phy_write(struct net_device *dev, unsigned long d, struct tc35815_regs *tr, int phy, int phy_reg) { struct tc35815_local *lp = dev->priv; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); tc_writel(d, &tr->MD_Data); tc_writel(MD_CA_Busy | MD_CA_Wr | (phy << 5) | phy_reg, &tr->MD_CA); while (tc_readl(&tr->MD_CA) & MD_CA_Busy) ; spin_unlock_irqrestore(&lp->lock, flags); } static void tc35815_phy_chip_init(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; static int first = 1; unsigned short ctl; if (first) { unsigned short id0, id1; int count; first = 0; /* first data written to the PHY will be an ID number */ tc_phy_write(dev, 0, tr, 0, MII_CONTROL); /* ID:0 */ #if 0 tc_phy_write(dev, MIICNTL_RESET, tr, 0, MII_CONTROL); printk(KERN_INFO "%s: Resetting PHY...", dev->name); while (tc_phy_read(dev, tr, 0, MII_CONTROL) & MIICNTL_RESET) ; printk("\n"); tc_phy_write(dev, MIICNTL_AUTO|MIICNTL_SPEED|MIICNTL_FDX, tr, 0, MII_CONTROL); #endif id0 = tc_phy_read(dev, tr, 0, MII_PHY_ID0); id1 = tc_phy_read(dev, tr, 0, MII_PHY_ID1); printk(KERN_DEBUG "%s: PHY ID %04x %04x\n", dev->name, id0, id1); if (lp->option & TC35815_OPT_10M) { lp->linkspeed = 10; lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0; } else if (lp->option & TC35815_OPT_100M) { lp->linkspeed = 100; lp->fullduplex = (lp->option & TC35815_OPT_FULLDUP) != 0; } else { /* auto negotiation */ unsigned long neg_result; tc_phy_write(dev, MIICNTL_AUTO | MIICNTL_RST_AUTO, tr, 0, MII_CONTROL); printk(KERN_INFO "%s: Auto Negotiation...", dev->name); count = 0; while (!(tc_phy_read(dev, tr, 0, MII_STATUS) & MIISTAT_AUTO_DONE)) { if (count++ > 5000) { printk(" failed. Assume 10Mbps\n"); lp->linkspeed = 10; lp->fullduplex = 0; goto done; } if (count % 512 == 0) printk("."); mdelay(1); } printk(" done.\n"); neg_result = tc_phy_read(dev, tr, 0, MII_ANLPAR); if (neg_result & (MII_AN_TX_FDX | MII_AN_TX_HDX)) lp->linkspeed = 100; else lp->linkspeed = 10; if (neg_result & (MII_AN_TX_FDX | MII_AN_10_FDX)) lp->fullduplex = 1; else lp->fullduplex = 0; done: ; } } ctl = 0; if (lp->linkspeed == 100) ctl |= MIICNTL_SPEED; if (lp->fullduplex) ctl |= MIICNTL_FDX; tc_phy_write(dev, ctl, tr, 0, MII_CONTROL); if (lp->fullduplex) { tc_writel(tc_readl(&tr->MAC_Ctl) | MAC_FullDup, &tr->MAC_Ctl); } } static void tc35815_chip_reset(struct net_device *dev) { struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; /* reset the controller */ tc_writel(MAC_Reset, &tr->MAC_Ctl); while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) ; tc_writel(0, &tr->MAC_Ctl); /* initialize registers to default value */ tc_writel(0, &tr->DMA_Ctl); tc_writel(0, &tr->TxThrsh); tc_writel(0, &tr->TxPollCtr); tc_writel(0, &tr->RxFragSize); tc_writel(0, &tr->Int_En); tc_writel(0, &tr->FDA_Bas); tc_writel(0, &tr->FDA_Lim); tc_writel(0xffffffff, &tr->Int_Src); /* Write 1 to clear */ tc_writel(0, &tr->CAM_Ctl); tc_writel(0, &tr->Tx_Ctl); tc_writel(0, &tr->Rx_Ctl); tc_writel(0, &tr->CAM_Ena); (void)tc_readl(&tr->Miss_Cnt); /* Read to clear */ } static void tc35815_chip_init(struct net_device *dev) { struct tc35815_local *lp = dev->priv; struct tc35815_regs *tr = (struct tc35815_regs*)dev->base_addr; unsigned long flags; unsigned long txctl = TX_CTL_CMD; tc35815_phy_chip_init(dev); /* load station address to CAM */ tc35815_set_cam_entry(tr, CAM_ENTRY_SOURCE, dev->dev_addr); /* Enable CAM (broadcast and unicast) */ tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena); tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl); spin_lock_irqsave(&lp->lock, flags); tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl); tc_writel(RxFrag_EnPack | ETH_ZLEN, &tr->RxFragSize); /* Packing */ tc_writel(0, &tr->TxPollCtr); /* Batch mode */ tc_writel(TX_THRESHOLD, &tr->TxThrsh); tc_writel(INT_EN_CMD, &tr->Int_En); /* set queues */ tc_writel(virt_to_bus(lp->rfd_base), &tr->FDA_Bas); tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base, &tr->FDA_Lim); /* * Activation method: * First, enable eht MAC Transmitter and the DMA Receive circuits. * Then enable the DMA Transmitter and the MAC Receive circuits. */ tc_writel(virt_to_bus(lp->fbl_ptr), &tr->BLFrmPtr); /* start DMA receiver */ tc_writel(RX_CTL_CMD, &tr->Rx_Ctl); /* start MAC receiver */ /* start MAC transmitter */ /* WORKAROUND: ignore LostCrS in full duplex operation */ if (lp->fullduplex) txctl = TX_CTL_CMD & ~Tx_EnLCarr; #ifdef GATHER_TXINT txctl &= ~Tx_EnComp; /* disable global tx completion int. */ #endif tc_writel(txctl, &tr->Tx_Ctl); #if 0 /* No need to polling */ tc_writel(virt_to_bus(lp->tfd_base), &tr->TxFrmPtr); /* start DMA transmitter */ #endif spin_unlock_irqrestore(&lp->lock, flags); } /* XXX */ void tc35815_killall(void) { struct net_device *dev; for (dev = root_tc35815_dev; dev; dev = ((struct tc35815_local *)dev->priv)->next_module) { if (dev->flags&IFF_UP){ dev->stop(dev); } } } static struct pci_driver tc35815_driver = { .name = TC35815_MODULE_NAME, .probe = tc35815_probe, .remove = NULL, .id_table = tc35815_pci_tbl, }; static int __init tc35815_init_module(void) { return pci_module_init(&tc35815_driver); } static void __exit tc35815_cleanup_module(void) { struct net_device *next_dev; while (root_tc35815_dev) { struct net_device *dev = root_tc35815_dev; next_dev = ((struct tc35815_local *)dev->priv)->next_module; iounmap((void *)(dev->base_addr)); unregister_netdev(dev); free_netdev(dev); root_tc35815_dev = next_dev; } } module_init(tc35815_init_module); module_exit(tc35815_cleanup_module);