/* * RTC subsystem, interface functions * * Copyright (C) 2005 Tower Technologies * Author: Alessandro Zummo <a.zummo@towertech.it> * * based on arch/arm/common/rtctime.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/rtc.h> #include <linux/sched.h> #include <linux/log2.h> #include <linux/workqueue.h> static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) { int err; if (!rtc->ops) err = -ENODEV; else if (!rtc->ops->read_time) err = -EINVAL; else { memset(tm, 0, sizeof(struct rtc_time)); err = rtc->ops->read_time(rtc->dev.parent, tm); } return err; } int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; err = __rtc_read_time(rtc, tm); mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_read_time); int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm) { int err; err = rtc_valid_tm(tm); if (err != 0) return err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (!rtc->ops) err = -ENODEV; else if (rtc->ops->set_time) err = rtc->ops->set_time(rtc->dev.parent, tm); else if (rtc->ops->set_mmss) { unsigned long secs; err = rtc_tm_to_time(tm, &secs); if (err == 0) err = rtc->ops->set_mmss(rtc->dev.parent, secs); } else err = -EINVAL; mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_set_time); int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (!rtc->ops) err = -ENODEV; else if (rtc->ops->set_mmss) err = rtc->ops->set_mmss(rtc->dev.parent, secs); else if (rtc->ops->read_time && rtc->ops->set_time) { struct rtc_time new, old; err = rtc->ops->read_time(rtc->dev.parent, &old); if (err == 0) { rtc_time_to_tm(secs, &new); /* * avoid writing when we're going to change the day of * the month. We will retry in the next minute. This * basically means that if the RTC must not drift * by more than 1 minute in 11 minutes. */ if (!((old.tm_hour == 23 && old.tm_min == 59) || (new.tm_hour == 23 && new.tm_min == 59))) err = rtc->ops->set_time(rtc->dev.parent, &new); } } else err = -EINVAL; mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_set_mmss); int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { int err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; alarm->enabled = rtc->aie_timer.enabled; if (alarm->enabled) alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires); mutex_unlock(&rtc->ops_lock); return 0; } EXPORT_SYMBOL_GPL(rtc_read_alarm); int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { struct rtc_time tm; long now, scheduled; int err; err = rtc_valid_tm(&alarm->time); if (err) return err; rtc_tm_to_time(&alarm->time, &scheduled); /* Make sure we're not setting alarms in the past */ err = __rtc_read_time(rtc, &tm); rtc_tm_to_time(&tm, &now); if (scheduled <= now) return -ETIME; /* * XXX - We just checked to make sure the alarm time is not * in the past, but there is still a race window where if * the is alarm set for the next second and the second ticks * over right here, before we set the alarm. */ if (!rtc->ops) err = -ENODEV; else if (!rtc->ops->set_alarm) err = -EINVAL; else err = rtc->ops->set_alarm(rtc->dev.parent, alarm); return err; } int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) { int err; err = rtc_valid_tm(&alarm->time); if (err != 0) return err; err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (rtc->aie_timer.enabled) { rtc_timer_remove(rtc, &rtc->aie_timer); rtc->aie_timer.enabled = 0; } rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time); rtc->aie_timer.period = ktime_set(0, 0); if (alarm->enabled) { rtc->aie_timer.enabled = 1; rtc_timer_enqueue(rtc, &rtc->aie_timer); } mutex_unlock(&rtc->ops_lock); return 0; } EXPORT_SYMBOL_GPL(rtc_set_alarm); int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled) { int err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; if (rtc->aie_timer.enabled != enabled) { if (enabled) { rtc->aie_timer.enabled = 1; rtc_timer_enqueue(rtc, &rtc->aie_timer); } else { rtc_timer_remove(rtc, &rtc->aie_timer); rtc->aie_timer.enabled = 0; } } if (!rtc->ops) err = -ENODEV; else if (!rtc->ops->alarm_irq_enable) err = -EINVAL; else err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled); mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable); int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled) { int err = mutex_lock_interruptible(&rtc->ops_lock); if (err) return err; /* make sure we're changing state */ if (rtc->uie_rtctimer.enabled == enabled) goto out; if (enabled) { struct rtc_time tm; ktime_t now, onesec; __rtc_read_time(rtc, &tm); onesec = ktime_set(1, 0); now = rtc_tm_to_ktime(tm); rtc->uie_rtctimer.node.expires = ktime_add(now, onesec); rtc->uie_rtctimer.period = ktime_set(1, 0); rtc->uie_rtctimer.enabled = 1; rtc_timer_enqueue(rtc, &rtc->uie_rtctimer); } else { rtc_timer_remove(rtc, &rtc->uie_rtctimer); rtc->uie_rtctimer.enabled = 0; } out: mutex_unlock(&rtc->ops_lock); return err; } EXPORT_SYMBOL_GPL(rtc_update_irq_enable); /** * rtc_handle_legacy_irq - AIE, UIE and PIE event hook * @rtc: pointer to the rtc device * * This function is called when an AIE, UIE or PIE mode interrupt * has occured (or been emulated). * * Triggers the registered irq_task function callback. */ static void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode) { unsigned long flags; /* mark one irq of the appropriate mode */ spin_lock_irqsave(&rtc->irq_lock, flags); rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode); spin_unlock_irqrestore(&rtc->irq_lock, flags); /* call the task func */ spin_lock_irqsave(&rtc->irq_task_lock, flags); if (rtc->irq_task) rtc->irq_task->func(rtc->irq_task->private_data); spin_unlock_irqrestore(&rtc->irq_task_lock, flags); wake_up_interruptible(&rtc->irq_queue); kill_fasync(&rtc->async_queue, SIGIO, POLL_IN); } /** * rtc_aie_update_irq - AIE mode rtctimer hook * @private: pointer to the rtc_device * * This functions is called when the aie_timer expires. */ void rtc_aie_update_irq(void *private) { struct rtc_device *rtc = (struct rtc_device *)private; rtc_handle_legacy_irq(rtc, 1, RTC_AF); } /** * rtc_uie_update_irq - UIE mode rtctimer hook * @private: pointer to the rtc_device * * This functions is called when the uie_timer expires. */ void rtc_uie_update_irq(void *private) { struct rtc_device *rtc = (struct rtc_device *)private; rtc_handle_legacy_irq(rtc, 1, RTC_UF); } /** * rtc_pie_update_irq - PIE mode hrtimer hook * @timer: pointer to the pie mode hrtimer * * This function is used to emulate PIE mode interrupts * using an hrtimer. This function is called when the periodic * hrtimer expires. */ enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer) { struct rtc_device *rtc; ktime_t period; int count; rtc = container_of(timer, struct rtc_device, pie_timer); period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); count = hrtimer_forward_now(timer, period); rtc_handle_legacy_irq(rtc, count, RTC_PF); return HRTIMER_RESTART; } /** * rtc_update_irq - Triggered when a RTC interrupt occurs. * @rtc: the rtc device * @num: how many irqs are being reported (usually one) * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF * Context: any */ void rtc_update_irq(struct rtc_device *rtc, unsigned long num, unsigned long events) { schedule_work(&rtc->irqwork); } EXPORT_SYMBOL_GPL(rtc_update_irq); static int __rtc_match(struct device *dev, void *data) { char *name = (char *)data; if (strcmp(dev_name(dev), name) == 0) return 1; return 0; } struct rtc_device *rtc_class_open(char *name) { struct device *dev; struct rtc_device *rtc = NULL; dev = class_find_device(rtc_class, NULL, name, __rtc_match); if (dev) rtc = to_rtc_device(dev); if (rtc) { if (!try_module_get(rtc->owner)) { put_device(dev); rtc = NULL; } } return rtc; } EXPORT_SYMBOL_GPL(rtc_class_open); void rtc_class_close(struct rtc_device *rtc) { module_put(rtc->owner); put_device(&rtc->dev); } EXPORT_SYMBOL_GPL(rtc_class_close); int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task) { int retval = -EBUSY; if (task == NULL || task->func == NULL) return -EINVAL; /* Cannot register while the char dev is in use */ if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags)) return -EBUSY; spin_lock_irq(&rtc->irq_task_lock); if (rtc->irq_task == NULL) { rtc->irq_task = task; retval = 0; } spin_unlock_irq(&rtc->irq_task_lock); clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags); return retval; } EXPORT_SYMBOL_GPL(rtc_irq_register); void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task) { spin_lock_irq(&rtc->irq_task_lock); if (rtc->irq_task == task) rtc->irq_task = NULL; spin_unlock_irq(&rtc->irq_task_lock); } EXPORT_SYMBOL_GPL(rtc_irq_unregister); /** * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs * @rtc: the rtc device * @task: currently registered with rtc_irq_register() * @enabled: true to enable periodic IRQs * Context: any * * Note that rtc_irq_set_freq() should previously have been used to * specify the desired frequency of periodic IRQ task->func() callbacks. */ int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled) { int err = 0; unsigned long flags; spin_lock_irqsave(&rtc->irq_task_lock, flags); if (rtc->irq_task != NULL && task == NULL) err = -EBUSY; if (rtc->irq_task != task) err = -EACCES; if (enabled) { ktime_t period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); } else { hrtimer_cancel(&rtc->pie_timer); } rtc->pie_enabled = enabled; spin_unlock_irqrestore(&rtc->irq_task_lock, flags); return err; } EXPORT_SYMBOL_GPL(rtc_irq_set_state); /** * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ * @rtc: the rtc device * @task: currently registered with rtc_irq_register() * @freq: positive frequency with which task->func() will be called * Context: any * * Note that rtc_irq_set_state() is used to enable or disable the * periodic IRQs. */ int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq) { int err = 0; unsigned long flags; spin_lock_irqsave(&rtc->irq_task_lock, flags); if (rtc->irq_task != NULL && task == NULL) err = -EBUSY; if (rtc->irq_task != task) err = -EACCES; if (err == 0) { rtc->irq_freq = freq; if (rtc->pie_enabled) { ktime_t period; hrtimer_cancel(&rtc->pie_timer); period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq); hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL); } } spin_unlock_irqrestore(&rtc->irq_task_lock, flags); return err; } EXPORT_SYMBOL_GPL(rtc_irq_set_freq); /** * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue * @rtc rtc device * @timer timer being added. * * Enqueues a timer onto the rtc devices timerqueue and sets * the next alarm event appropriately. * * Must hold ops_lock for proper serialization of timerqueue */ void rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer) { timerqueue_add(&rtc->timerqueue, &timer->node); if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) { struct rtc_wkalrm alarm; int err; alarm.time = rtc_ktime_to_tm(timer->node.expires); alarm.enabled = 1; err = __rtc_set_alarm(rtc, &alarm); if (err == -ETIME) schedule_work(&rtc->irqwork); } } /** * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue * @rtc rtc device * @timer timer being removed. * * Removes a timer onto the rtc devices timerqueue and sets * the next alarm event appropriately. * * Must hold ops_lock for proper serialization of timerqueue */ void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer) { struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue); timerqueue_del(&rtc->timerqueue, &timer->node); if (next == &timer->node) { struct rtc_wkalrm alarm; int err; next = timerqueue_getnext(&rtc->timerqueue); if (!next) return; alarm.time = rtc_ktime_to_tm(next->expires); alarm.enabled = 1; err = __rtc_set_alarm(rtc, &alarm); if (err == -ETIME) schedule_work(&rtc->irqwork); } } /** * rtc_timer_do_work - Expires rtc timers * @rtc rtc device * @timer timer being removed. * * Expires rtc timers. Reprograms next alarm event if needed. * Called via worktask. * * Serializes access to timerqueue via ops_lock mutex */ void rtc_timer_do_work(struct work_struct *work) { struct rtc_timer *timer; struct timerqueue_node *next; ktime_t now; struct rtc_time tm; struct rtc_device *rtc = container_of(work, struct rtc_device, irqwork); mutex_lock(&rtc->ops_lock); again: __rtc_read_time(rtc, &tm); now = rtc_tm_to_ktime(tm); while ((next = timerqueue_getnext(&rtc->timerqueue))) { if (next->expires.tv64 > now.tv64) break; /* expire timer */ timer = container_of(next, struct rtc_timer, node); timerqueue_del(&rtc->timerqueue, &timer->node); timer->enabled = 0; if (timer->task.func) timer->task.func(timer->task.private_data); /* Re-add/fwd periodic timers */ if (ktime_to_ns(timer->period)) { timer->node.expires = ktime_add(timer->node.expires, timer->period); timer->enabled = 1; timerqueue_add(&rtc->timerqueue, &timer->node); } } /* Set next alarm */ if (next) { struct rtc_wkalrm alarm; int err; alarm.time = rtc_ktime_to_tm(next->expires); alarm.enabled = 1; err = __rtc_set_alarm(rtc, &alarm); if (err == -ETIME) goto again; } mutex_unlock(&rtc->ops_lock); } /* rtc_timer_init - Initializes an rtc_timer * @timer: timer to be intiialized * @f: function pointer to be called when timer fires * @data: private data passed to function pointer * * Kernel interface to initializing an rtc_timer. */ void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data) { timerqueue_init(&timer->node); timer->enabled = 0; timer->task.func = f; timer->task.private_data = data; } /* rtc_timer_start - Sets an rtc_timer to fire in the future * @ rtc: rtc device to be used * @ timer: timer being set * @ expires: time at which to expire the timer * @ period: period that the timer will recur * * Kernel interface to set an rtc_timer */ int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer, ktime_t expires, ktime_t period) { int ret = 0; mutex_lock(&rtc->ops_lock); if (timer->enabled) rtc_timer_remove(rtc, timer); timer->node.expires = expires; timer->period = period; timer->enabled = 1; rtc_timer_enqueue(rtc, timer); mutex_unlock(&rtc->ops_lock); return ret; } /* rtc_timer_cancel - Stops an rtc_timer * @ rtc: rtc device to be used * @ timer: timer being set * * Kernel interface to cancel an rtc_timer */ int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer) { int ret = 0; mutex_lock(&rtc->ops_lock); if (timer->enabled) rtc_timer_remove(rtc, timer); timer->enabled = 0; mutex_unlock(&rtc->ops_lock); return ret; }