/* * Copyright (C) 2008 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/pagemap.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/math64.h> #include "ctree.h" #include "free-space-cache.h" #include "transaction.h" #include "disk-io.h" #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8) #define MAX_CACHE_BYTES_PER_GIG (32 * 1024) static void recalculate_thresholds(struct btrfs_block_group_cache *block_group); static int link_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info); struct inode *lookup_free_space_inode(struct btrfs_root *root, struct btrfs_block_group_cache *block_group, struct btrfs_path *path) { struct btrfs_key key; struct btrfs_key location; struct btrfs_disk_key disk_key; struct btrfs_free_space_header *header; struct extent_buffer *leaf; struct inode *inode = NULL; int ret; spin_lock(&block_group->lock); if (block_group->inode) inode = igrab(block_group->inode); spin_unlock(&block_group->lock); if (inode) return inode; key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = block_group->key.objectid; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret < 0) return ERR_PTR(ret); if (ret > 0) { btrfs_release_path(root, path); return ERR_PTR(-ENOENT); } leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); btrfs_free_space_key(leaf, header, &disk_key); btrfs_disk_key_to_cpu(&location, &disk_key); btrfs_release_path(root, path); inode = btrfs_iget(root->fs_info->sb, &location, root, NULL); if (!inode) return ERR_PTR(-ENOENT); if (IS_ERR(inode)) return inode; if (is_bad_inode(inode)) { iput(inode); return ERR_PTR(-ENOENT); } spin_lock(&block_group->lock); if (!root->fs_info->closing) { block_group->inode = igrab(inode); block_group->iref = 1; } spin_unlock(&block_group->lock); return inode; } int create_free_space_inode(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_block_group_cache *block_group, struct btrfs_path *path) { struct btrfs_key key; struct btrfs_disk_key disk_key; struct btrfs_free_space_header *header; struct btrfs_inode_item *inode_item; struct extent_buffer *leaf; u64 objectid; int ret; ret = btrfs_find_free_objectid(trans, root, 0, &objectid); if (ret < 0) return ret; ret = btrfs_insert_empty_inode(trans, root, path, objectid); if (ret) return ret; leaf = path->nodes[0]; inode_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); btrfs_item_key(leaf, &disk_key, path->slots[0]); memset_extent_buffer(leaf, 0, (unsigned long)inode_item, sizeof(*inode_item)); btrfs_set_inode_generation(leaf, inode_item, trans->transid); btrfs_set_inode_size(leaf, inode_item, 0); btrfs_set_inode_nbytes(leaf, inode_item, 0); btrfs_set_inode_uid(leaf, inode_item, 0); btrfs_set_inode_gid(leaf, inode_item, 0); btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600); btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM); btrfs_set_inode_nlink(leaf, inode_item, 1); btrfs_set_inode_transid(leaf, inode_item, trans->transid); btrfs_set_inode_block_group(leaf, inode_item, block_group->key.objectid); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(root, path); key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = block_group->key.objectid; key.type = 0; ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(struct btrfs_free_space_header)); if (ret < 0) { btrfs_release_path(root, path); return ret; } leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header)); btrfs_set_free_space_key(leaf, header, &disk_key); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(root, path); return 0; } int btrfs_truncate_free_space_cache(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_path *path, struct inode *inode) { loff_t oldsize; int ret = 0; trans->block_rsv = root->orphan_block_rsv; ret = btrfs_block_rsv_check(trans, root, root->orphan_block_rsv, 0, 5); if (ret) return ret; oldsize = i_size_read(inode); btrfs_i_size_write(inode, 0); truncate_pagecache(inode, oldsize, 0); /* * We don't need an orphan item because truncating the free space cache * will never be split across transactions. */ ret = btrfs_truncate_inode_items(trans, root, inode, 0, BTRFS_EXTENT_DATA_KEY); if (ret) { WARN_ON(1); return ret; } return btrfs_update_inode(trans, root, inode); } static int readahead_cache(struct inode *inode) { struct file_ra_state *ra; unsigned long last_index; ra = kzalloc(sizeof(*ra), GFP_NOFS); if (!ra) return -ENOMEM; file_ra_state_init(ra, inode->i_mapping); last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index); kfree(ra); return 0; } int load_free_space_cache(struct btrfs_fs_info *fs_info, struct btrfs_block_group_cache *block_group) { struct btrfs_root *root = fs_info->tree_root; struct inode *inode; struct btrfs_free_space_header *header; struct extent_buffer *leaf; struct page *page; struct btrfs_path *path; u32 *checksums = NULL, *crc; char *disk_crcs = NULL; struct btrfs_key key; struct list_head bitmaps; u64 num_entries; u64 num_bitmaps; u64 generation; u32 cur_crc = ~(u32)0; pgoff_t index = 0; unsigned long first_page_offset; int num_checksums; int ret = 0; /* * If we're unmounting then just return, since this does a search on the * normal root and not the commit root and we could deadlock. */ smp_mb(); if (fs_info->closing) return 0; /* * If this block group has been marked to be cleared for one reason or * another then we can't trust the on disk cache, so just return. */ spin_lock(&block_group->lock); if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) { spin_unlock(&block_group->lock); return 0; } spin_unlock(&block_group->lock); INIT_LIST_HEAD(&bitmaps); path = btrfs_alloc_path(); if (!path) return 0; inode = lookup_free_space_inode(root, block_group, path); if (IS_ERR(inode)) { btrfs_free_path(path); return 0; } /* Nothing in the space cache, goodbye */ if (!i_size_read(inode)) { btrfs_free_path(path); goto out; } key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = block_group->key.objectid; key.type = 0; ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); if (ret) { btrfs_free_path(path); goto out; } leaf = path->nodes[0]; header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); num_entries = btrfs_free_space_entries(leaf, header); num_bitmaps = btrfs_free_space_bitmaps(leaf, header); generation = btrfs_free_space_generation(leaf, header); btrfs_free_path(path); if (BTRFS_I(inode)->generation != generation) { printk(KERN_ERR "btrfs: free space inode generation (%llu) did" " not match free space cache generation (%llu) for " "block group %llu\n", (unsigned long long)BTRFS_I(inode)->generation, (unsigned long long)generation, (unsigned long long)block_group->key.objectid); goto free_cache; } if (!num_entries) goto out; /* Setup everything for doing checksumming */ num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE; checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS); if (!checksums) goto out; first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64); disk_crcs = kzalloc(first_page_offset, GFP_NOFS); if (!disk_crcs) goto out; ret = readahead_cache(inode); if (ret) { ret = 0; goto out; } while (1) { struct btrfs_free_space_entry *entry; struct btrfs_free_space *e; void *addr; unsigned long offset = 0; unsigned long start_offset = 0; int need_loop = 0; if (!num_entries && !num_bitmaps) break; if (index == 0) { start_offset = first_page_offset; offset = start_offset; } page = grab_cache_page(inode->i_mapping, index); if (!page) { ret = 0; goto free_cache; } if (!PageUptodate(page)) { btrfs_readpage(NULL, page); lock_page(page); if (!PageUptodate(page)) { unlock_page(page); page_cache_release(page); printk(KERN_ERR "btrfs: error reading free " "space cache: %llu\n", (unsigned long long) block_group->key.objectid); goto free_cache; } } addr = kmap(page); if (index == 0) { u64 *gen; memcpy(disk_crcs, addr, first_page_offset); gen = addr + (sizeof(u32) * num_checksums); if (*gen != BTRFS_I(inode)->generation) { printk(KERN_ERR "btrfs: space cache generation" " (%llu) does not match inode (%llu) " "for block group %llu\n", (unsigned long long)*gen, (unsigned long long) BTRFS_I(inode)->generation, (unsigned long long) block_group->key.objectid); kunmap(page); unlock_page(page); page_cache_release(page); goto free_cache; } crc = (u32 *)disk_crcs; } entry = addr + start_offset; /* First lets check our crc before we do anything fun */ cur_crc = ~(u32)0; cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc, PAGE_CACHE_SIZE - start_offset); btrfs_csum_final(cur_crc, (char *)&cur_crc); if (cur_crc != *crc) { printk(KERN_ERR "btrfs: crc mismatch for page %lu in " "block group %llu\n", index, (unsigned long long)block_group->key.objectid); kunmap(page); unlock_page(page); page_cache_release(page); goto free_cache; } crc++; while (1) { if (!num_entries) break; need_loop = 1; e = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); if (!e) { kunmap(page); unlock_page(page); page_cache_release(page); goto free_cache; } e->offset = le64_to_cpu(entry->offset); e->bytes = le64_to_cpu(entry->bytes); if (!e->bytes) { kunmap(page); kfree(e); unlock_page(page); page_cache_release(page); goto free_cache; } if (entry->type == BTRFS_FREE_SPACE_EXTENT) { spin_lock(&block_group->tree_lock); ret = link_free_space(block_group, e); spin_unlock(&block_group->tree_lock); BUG_ON(ret); } else { e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); if (!e->bitmap) { kunmap(page); kfree(e); unlock_page(page); page_cache_release(page); goto free_cache; } spin_lock(&block_group->tree_lock); ret = link_free_space(block_group, e); block_group->total_bitmaps++; recalculate_thresholds(block_group); spin_unlock(&block_group->tree_lock); list_add_tail(&e->list, &bitmaps); } num_entries--; offset += sizeof(struct btrfs_free_space_entry); if (offset + sizeof(struct btrfs_free_space_entry) >= PAGE_CACHE_SIZE) break; entry++; } /* * We read an entry out of this page, we need to move on to the * next page. */ if (need_loop) { kunmap(page); goto next; } /* * We add the bitmaps at the end of the entries in order that * the bitmap entries are added to the cache. */ e = list_entry(bitmaps.next, struct btrfs_free_space, list); list_del_init(&e->list); memcpy(e->bitmap, addr, PAGE_CACHE_SIZE); kunmap(page); num_bitmaps--; next: unlock_page(page); page_cache_release(page); index++; } ret = 1; out: kfree(checksums); kfree(disk_crcs); iput(inode); return ret; free_cache: /* This cache is bogus, make sure it gets cleared */ spin_lock(&block_group->lock); block_group->disk_cache_state = BTRFS_DC_CLEAR; spin_unlock(&block_group->lock); btrfs_remove_free_space_cache(block_group); goto out; } int btrfs_write_out_cache(struct btrfs_root *root, struct btrfs_trans_handle *trans, struct btrfs_block_group_cache *block_group, struct btrfs_path *path) { struct btrfs_free_space_header *header; struct extent_buffer *leaf; struct inode *inode; struct rb_node *node; struct list_head *pos, *n; struct page *page; struct extent_state *cached_state = NULL; struct list_head bitmap_list; struct btrfs_key key; u64 bytes = 0; u32 *crc, *checksums; pgoff_t index = 0, last_index = 0; unsigned long first_page_offset; int num_checksums; int entries = 0; int bitmaps = 0; int ret = 0; root = root->fs_info->tree_root; INIT_LIST_HEAD(&bitmap_list); spin_lock(&block_group->lock); if (block_group->disk_cache_state < BTRFS_DC_SETUP) { spin_unlock(&block_group->lock); return 0; } spin_unlock(&block_group->lock); inode = lookup_free_space_inode(root, block_group, path); if (IS_ERR(inode)) return 0; if (!i_size_read(inode)) { iput(inode); return 0; } node = rb_first(&block_group->free_space_offset); if (!node) { iput(inode); return 0; } last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT; filemap_write_and_wait(inode->i_mapping); btrfs_wait_ordered_range(inode, inode->i_size & ~(root->sectorsize - 1), (u64)-1); /* We need a checksum per page. */ num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE; crc = checksums = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS); if (!crc) { iput(inode); return 0; } /* Since the first page has all of our checksums and our generation we * need to calculate the offset into the page that we can start writing * our entries. */ first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64); /* * Lock all pages first so we can lock the extent safely. * * NOTE: Because we hold the ref the entire time we're going to write to * the page find_get_page should never fail, so we don't do a check * after find_get_page at this point. Just putting this here so people * know and don't freak out. */ while (index <= last_index) { page = grab_cache_page(inode->i_mapping, index); if (!page) { pgoff_t i = 0; while (i < index) { page = find_get_page(inode->i_mapping, i); unlock_page(page); page_cache_release(page); page_cache_release(page); i++; } goto out_free; } index++; } index = 0; lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, 0, &cached_state, GFP_NOFS); /* Write out the extent entries */ do { struct btrfs_free_space_entry *entry; void *addr; unsigned long offset = 0; unsigned long start_offset = 0; if (index == 0) { start_offset = first_page_offset; offset = start_offset; } page = find_get_page(inode->i_mapping, index); addr = kmap(page); entry = addr + start_offset; memset(addr, 0, PAGE_CACHE_SIZE); while (1) { struct btrfs_free_space *e; e = rb_entry(node, struct btrfs_free_space, offset_index); entries++; entry->offset = cpu_to_le64(e->offset); entry->bytes = cpu_to_le64(e->bytes); if (e->bitmap) { entry->type = BTRFS_FREE_SPACE_BITMAP; list_add_tail(&e->list, &bitmap_list); bitmaps++; } else { entry->type = BTRFS_FREE_SPACE_EXTENT; } node = rb_next(node); if (!node) break; offset += sizeof(struct btrfs_free_space_entry); if (offset + sizeof(struct btrfs_free_space_entry) >= PAGE_CACHE_SIZE) break; entry++; } *crc = ~(u32)0; *crc = btrfs_csum_data(root, addr + start_offset, *crc, PAGE_CACHE_SIZE - start_offset); kunmap(page); btrfs_csum_final(*crc, (char *)crc); crc++; bytes += PAGE_CACHE_SIZE; ClearPageChecked(page); set_page_extent_mapped(page); SetPageUptodate(page); set_page_dirty(page); /* * We need to release our reference we got for grab_cache_page, * except for the first page which will hold our checksums, we * do that below. */ if (index != 0) { unlock_page(page); page_cache_release(page); } page_cache_release(page); index++; } while (node); /* Write out the bitmaps */ list_for_each_safe(pos, n, &bitmap_list) { void *addr; struct btrfs_free_space *entry = list_entry(pos, struct btrfs_free_space, list); page = find_get_page(inode->i_mapping, index); addr = kmap(page); memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE); *crc = ~(u32)0; *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE); kunmap(page); btrfs_csum_final(*crc, (char *)crc); crc++; bytes += PAGE_CACHE_SIZE; ClearPageChecked(page); set_page_extent_mapped(page); SetPageUptodate(page); set_page_dirty(page); unlock_page(page); page_cache_release(page); page_cache_release(page); list_del_init(&entry->list); index++; } /* Zero out the rest of the pages just to make sure */ while (index <= last_index) { void *addr; page = find_get_page(inode->i_mapping, index); addr = kmap(page); memset(addr, 0, PAGE_CACHE_SIZE); kunmap(page); ClearPageChecked(page); set_page_extent_mapped(page); SetPageUptodate(page); set_page_dirty(page); unlock_page(page); page_cache_release(page); page_cache_release(page); bytes += PAGE_CACHE_SIZE; index++; } btrfs_set_extent_delalloc(inode, 0, bytes - 1, &cached_state); /* Write the checksums and trans id to the first page */ { void *addr; u64 *gen; page = find_get_page(inode->i_mapping, 0); addr = kmap(page); memcpy(addr, checksums, sizeof(u32) * num_checksums); gen = addr + (sizeof(u32) * num_checksums); *gen = trans->transid; kunmap(page); ClearPageChecked(page); set_page_extent_mapped(page); SetPageUptodate(page); set_page_dirty(page); unlock_page(page); page_cache_release(page); page_cache_release(page); } BTRFS_I(inode)->generation = trans->transid; unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1, &cached_state, GFP_NOFS); filemap_write_and_wait(inode->i_mapping); key.objectid = BTRFS_FREE_SPACE_OBJECTID; key.offset = block_group->key.objectid; key.type = 0; ret = btrfs_search_slot(trans, root, &key, path, 1, 1); if (ret < 0) { ret = 0; clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1, EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS); goto out_free; } leaf = path->nodes[0]; if (ret > 0) { struct btrfs_key found_key; BUG_ON(!path->slots[0]); path->slots[0]--; btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID || found_key.offset != block_group->key.objectid) { ret = 0; clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1, EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS); btrfs_release_path(root, path); goto out_free; } } header = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_free_space_header); btrfs_set_free_space_entries(leaf, header, entries); btrfs_set_free_space_bitmaps(leaf, header, bitmaps); btrfs_set_free_space_generation(leaf, header, trans->transid); btrfs_mark_buffer_dirty(leaf); btrfs_release_path(root, path); ret = 1; out_free: if (ret == 0) { invalidate_inode_pages2_range(inode->i_mapping, 0, index); spin_lock(&block_group->lock); block_group->disk_cache_state = BTRFS_DC_ERROR; spin_unlock(&block_group->lock); BTRFS_I(inode)->generation = 0; } kfree(checksums); btrfs_update_inode(trans, root, inode); iput(inode); return ret; } static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize, u64 offset) { BUG_ON(offset < bitmap_start); offset -= bitmap_start; return (unsigned long)(div64_u64(offset, sectorsize)); } static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize) { return (unsigned long)(div64_u64(bytes, sectorsize)); } static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group, u64 offset) { u64 bitmap_start; u64 bytes_per_bitmap; bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize; bitmap_start = offset - block_group->key.objectid; bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap); bitmap_start *= bytes_per_bitmap; bitmap_start += block_group->key.objectid; return bitmap_start; } static int tree_insert_offset(struct rb_root *root, u64 offset, struct rb_node *node, int bitmap) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, offset_index); if (offset < info->offset) { p = &(*p)->rb_left; } else if (offset > info->offset) { p = &(*p)->rb_right; } else { /* * we could have a bitmap entry and an extent entry * share the same offset. If this is the case, we want * the extent entry to always be found first if we do a * linear search through the tree, since we want to have * the quickest allocation time, and allocating from an * extent is faster than allocating from a bitmap. So * if we're inserting a bitmap and we find an entry at * this offset, we want to go right, or after this entry * logically. If we are inserting an extent and we've * found a bitmap, we want to go left, or before * logically. */ if (bitmap) { WARN_ON(info->bitmap); p = &(*p)->rb_right; } else { WARN_ON(!info->bitmap); p = &(*p)->rb_left; } } } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } /* * searches the tree for the given offset. * * fuzzy - If this is set, then we are trying to make an allocation, and we just * want a section that has at least bytes size and comes at or after the given * offset. */ static struct btrfs_free_space * tree_search_offset(struct btrfs_block_group_cache *block_group, u64 offset, int bitmap_only, int fuzzy) { struct rb_node *n = block_group->free_space_offset.rb_node; struct btrfs_free_space *entry, *prev = NULL; /* find entry that is closest to the 'offset' */ while (1) { if (!n) { entry = NULL; break; } entry = rb_entry(n, struct btrfs_free_space, offset_index); prev = entry; if (offset < entry->offset) n = n->rb_left; else if (offset > entry->offset) n = n->rb_right; else break; } if (bitmap_only) { if (!entry) return NULL; if (entry->bitmap) return entry; /* * bitmap entry and extent entry may share same offset, * in that case, bitmap entry comes after extent entry. */ n = rb_next(n); if (!n) return NULL; entry = rb_entry(n, struct btrfs_free_space, offset_index); if (entry->offset != offset) return NULL; WARN_ON(!entry->bitmap); return entry; } else if (entry) { if (entry->bitmap) { /* * if previous extent entry covers the offset, * we should return it instead of the bitmap entry */ n = &entry->offset_index; while (1) { n = rb_prev(n); if (!n) break; prev = rb_entry(n, struct btrfs_free_space, offset_index); if (!prev->bitmap) { if (prev->offset + prev->bytes > offset) entry = prev; break; } } } return entry; } if (!prev) return NULL; /* find last entry before the 'offset' */ entry = prev; if (entry->offset > offset) { n = rb_prev(&entry->offset_index); if (n) { entry = rb_entry(n, struct btrfs_free_space, offset_index); BUG_ON(entry->offset > offset); } else { if (fuzzy) return entry; else return NULL; } } if (entry->bitmap) { n = &entry->offset_index; while (1) { n = rb_prev(n); if (!n) break; prev = rb_entry(n, struct btrfs_free_space, offset_index); if (!prev->bitmap) { if (prev->offset + prev->bytes > offset) return prev; break; } } if (entry->offset + BITS_PER_BITMAP * block_group->sectorsize > offset) return entry; } else if (entry->offset + entry->bytes > offset) return entry; if (!fuzzy) return NULL; while (1) { if (entry->bitmap) { if (entry->offset + BITS_PER_BITMAP * block_group->sectorsize > offset) break; } else { if (entry->offset + entry->bytes > offset) break; } n = rb_next(&entry->offset_index); if (!n) return NULL; entry = rb_entry(n, struct btrfs_free_space, offset_index); } return entry; } static void unlink_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { rb_erase(&info->offset_index, &block_group->free_space_offset); block_group->free_extents--; block_group->free_space -= info->bytes; } static int link_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { int ret = 0; BUG_ON(!info->bitmap && !info->bytes); ret = tree_insert_offset(&block_group->free_space_offset, info->offset, &info->offset_index, (info->bitmap != NULL)); if (ret) return ret; block_group->free_space += info->bytes; block_group->free_extents++; return ret; } static void recalculate_thresholds(struct btrfs_block_group_cache *block_group) { u64 max_bytes; u64 bitmap_bytes; u64 extent_bytes; /* * The goal is to keep the total amount of memory used per 1gb of space * at or below 32k, so we need to adjust how much memory we allow to be * used by extent based free space tracking */ max_bytes = MAX_CACHE_BYTES_PER_GIG * (div64_u64(block_group->key.offset, 1024 * 1024 * 1024)); /* * we want to account for 1 more bitmap than what we have so we can make * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as * we add more bitmaps. */ bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE; if (bitmap_bytes >= max_bytes) { block_group->extents_thresh = 0; return; } /* * we want the extent entry threshold to always be at most 1/2 the maxw * bytes we can have, or whatever is less than that. */ extent_bytes = max_bytes - bitmap_bytes; extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2)); block_group->extents_thresh = div64_u64(extent_bytes, (sizeof(struct btrfs_free_space))); } static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info, u64 offset, u64 bytes) { unsigned long start, end; unsigned long i; start = offset_to_bit(info->offset, block_group->sectorsize, offset); end = start + bytes_to_bits(bytes, block_group->sectorsize); BUG_ON(end > BITS_PER_BITMAP); for (i = start; i < end; i++) clear_bit(i, info->bitmap); info->bytes -= bytes; block_group->free_space -= bytes; } static void bitmap_set_bits(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info, u64 offset, u64 bytes) { unsigned long start, end; unsigned long i; start = offset_to_bit(info->offset, block_group->sectorsize, offset); end = start + bytes_to_bits(bytes, block_group->sectorsize); BUG_ON(end > BITS_PER_BITMAP); for (i = start; i < end; i++) set_bit(i, info->bitmap); info->bytes += bytes; block_group->free_space += bytes; } static int search_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *bitmap_info, u64 *offset, u64 *bytes) { unsigned long found_bits = 0; unsigned long bits, i; unsigned long next_zero; i = offset_to_bit(bitmap_info->offset, block_group->sectorsize, max_t(u64, *offset, bitmap_info->offset)); bits = bytes_to_bits(*bytes, block_group->sectorsize); for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); i < BITS_PER_BITMAP; i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) { next_zero = find_next_zero_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i); if ((next_zero - i) >= bits) { found_bits = next_zero - i; break; } i = next_zero; } if (found_bits) { *offset = (u64)(i * block_group->sectorsize) + bitmap_info->offset; *bytes = (u64)(found_bits) * block_group->sectorsize; return 0; } return -1; } static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache *block_group, u64 *offset, u64 *bytes, int debug) { struct btrfs_free_space *entry; struct rb_node *node; int ret; if (!block_group->free_space_offset.rb_node) return NULL; entry = tree_search_offset(block_group, offset_to_bitmap(block_group, *offset), 0, 1); if (!entry) return NULL; for (node = &entry->offset_index; node; node = rb_next(node)) { entry = rb_entry(node, struct btrfs_free_space, offset_index); if (entry->bytes < *bytes) continue; if (entry->bitmap) { ret = search_bitmap(block_group, entry, offset, bytes); if (!ret) return entry; continue; } *offset = entry->offset; *bytes = entry->bytes; return entry; } return NULL; } static void add_new_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info, u64 offset) { u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize; int max_bitmaps = (int)div64_u64(block_group->key.offset + bytes_per_bg - 1, bytes_per_bg); BUG_ON(block_group->total_bitmaps >= max_bitmaps); info->offset = offset_to_bitmap(block_group, offset); info->bytes = 0; link_free_space(block_group, info); block_group->total_bitmaps++; recalculate_thresholds(block_group); } static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *bitmap_info, u64 *offset, u64 *bytes) { u64 end; u64 search_start, search_bytes; int ret; again: end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1; /* * XXX - this can go away after a few releases. * * since the only user of btrfs_remove_free_space is the tree logging * stuff, and the only way to test that is under crash conditions, we * want to have this debug stuff here just in case somethings not * working. Search the bitmap for the space we are trying to use to * make sure its actually there. If its not there then we need to stop * because something has gone wrong. */ search_start = *offset; search_bytes = *bytes; ret = search_bitmap(block_group, bitmap_info, &search_start, &search_bytes); BUG_ON(ret < 0 || search_start != *offset); if (*offset > bitmap_info->offset && *offset + *bytes > end) { bitmap_clear_bits(block_group, bitmap_info, *offset, end - *offset + 1); *bytes -= end - *offset + 1; *offset = end + 1; } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) { bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes); *bytes = 0; } if (*bytes) { struct rb_node *next = rb_next(&bitmap_info->offset_index); if (!bitmap_info->bytes) { unlink_free_space(block_group, bitmap_info); kfree(bitmap_info->bitmap); kfree(bitmap_info); block_group->total_bitmaps--; recalculate_thresholds(block_group); } /* * no entry after this bitmap, but we still have bytes to * remove, so something has gone wrong. */ if (!next) return -EINVAL; bitmap_info = rb_entry(next, struct btrfs_free_space, offset_index); /* * if the next entry isn't a bitmap we need to return to let the * extent stuff do its work. */ if (!bitmap_info->bitmap) return -EAGAIN; /* * Ok the next item is a bitmap, but it may not actually hold * the information for the rest of this free space stuff, so * look for it, and if we don't find it return so we can try * everything over again. */ search_start = *offset; search_bytes = *bytes; ret = search_bitmap(block_group, bitmap_info, &search_start, &search_bytes); if (ret < 0 || search_start != *offset) return -EAGAIN; goto again; } else if (!bitmap_info->bytes) { unlink_free_space(block_group, bitmap_info); kfree(bitmap_info->bitmap); kfree(bitmap_info); block_group->total_bitmaps--; recalculate_thresholds(block_group); } return 0; } static int insert_into_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { struct btrfs_free_space *bitmap_info; int added = 0; u64 bytes, offset, end; int ret; /* * If we are below the extents threshold then we can add this as an * extent, and don't have to deal with the bitmap */ if (block_group->free_extents < block_group->extents_thresh && info->bytes > block_group->sectorsize * 4) return 0; /* * some block groups are so tiny they can't be enveloped by a bitmap, so * don't even bother to create a bitmap for this */ if (BITS_PER_BITMAP * block_group->sectorsize > block_group->key.offset) return 0; bytes = info->bytes; offset = info->offset; again: bitmap_info = tree_search_offset(block_group, offset_to_bitmap(block_group, offset), 1, 0); if (!bitmap_info) { BUG_ON(added); goto new_bitmap; } end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * block_group->sectorsize); if (offset >= bitmap_info->offset && offset + bytes > end) { bitmap_set_bits(block_group, bitmap_info, offset, end - offset); bytes -= end - offset; offset = end; added = 0; } else if (offset >= bitmap_info->offset && offset + bytes <= end) { bitmap_set_bits(block_group, bitmap_info, offset, bytes); bytes = 0; } else { BUG(); } if (!bytes) { ret = 1; goto out; } else goto again; new_bitmap: if (info && info->bitmap) { add_new_bitmap(block_group, info, offset); added = 1; info = NULL; goto again; } else { spin_unlock(&block_group->tree_lock); /* no pre-allocated info, allocate a new one */ if (!info) { info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); if (!info) { spin_lock(&block_group->tree_lock); ret = -ENOMEM; goto out; } } /* allocate the bitmap */ info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS); spin_lock(&block_group->tree_lock); if (!info->bitmap) { ret = -ENOMEM; goto out; } goto again; } out: if (info) { if (info->bitmap) kfree(info->bitmap); kfree(info); } return ret; } int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *right_info = NULL; struct btrfs_free_space *left_info = NULL; struct btrfs_free_space *info = NULL; int ret = 0; info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); if (!info) return -ENOMEM; info->offset = offset; info->bytes = bytes; spin_lock(&block_group->tree_lock); /* * first we want to see if there is free space adjacent to the range we * are adding, if there is remove that struct and add a new one to * cover the entire range */ right_info = tree_search_offset(block_group, offset + bytes, 0, 0); if (right_info && rb_prev(&right_info->offset_index)) left_info = rb_entry(rb_prev(&right_info->offset_index), struct btrfs_free_space, offset_index); else left_info = tree_search_offset(block_group, offset - 1, 0, 0); /* * If there was no extent directly to the left or right of this new * extent then we know we're going to have to allocate a new extent, so * before we do that see if we need to drop this into a bitmap */ if ((!left_info || left_info->bitmap) && (!right_info || right_info->bitmap)) { ret = insert_into_bitmap(block_group, info); if (ret < 0) { goto out; } else if (ret) { ret = 0; goto out; } } if (right_info && !right_info->bitmap) { unlink_free_space(block_group, right_info); info->bytes += right_info->bytes; kfree(right_info); } if (left_info && !left_info->bitmap && left_info->offset + left_info->bytes == offset) { unlink_free_space(block_group, left_info); info->offset = left_info->offset; info->bytes += left_info->bytes; kfree(left_info); } ret = link_free_space(block_group, info); if (ret) kfree(info); out: spin_unlock(&block_group->tree_lock); if (ret) { printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret); BUG_ON(ret == -EEXIST); } return ret; } int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *info; struct btrfs_free_space *next_info = NULL; int ret = 0; spin_lock(&block_group->tree_lock); again: info = tree_search_offset(block_group, offset, 0, 0); if (!info) { /* * oops didn't find an extent that matched the space we wanted * to remove, look for a bitmap instead */ info = tree_search_offset(block_group, offset_to_bitmap(block_group, offset), 1, 0); if (!info) { WARN_ON(1); goto out_lock; } } if (info->bytes < bytes && rb_next(&info->offset_index)) { u64 end; next_info = rb_entry(rb_next(&info->offset_index), struct btrfs_free_space, offset_index); if (next_info->bitmap) end = next_info->offset + BITS_PER_BITMAP * block_group->sectorsize - 1; else end = next_info->offset + next_info->bytes; if (next_info->bytes < bytes || next_info->offset > offset || offset > end) { printk(KERN_CRIT "Found free space at %llu, size %llu," " trying to use %llu\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (unsigned long long)bytes); WARN_ON(1); ret = -EINVAL; goto out_lock; } info = next_info; } if (info->bytes == bytes) { unlink_free_space(block_group, info); if (info->bitmap) { kfree(info->bitmap); block_group->total_bitmaps--; } kfree(info); goto out_lock; } if (!info->bitmap && info->offset == offset) { unlink_free_space(block_group, info); info->offset += bytes; info->bytes -= bytes; link_free_space(block_group, info); goto out_lock; } if (!info->bitmap && info->offset <= offset && info->offset + info->bytes >= offset + bytes) { u64 old_start = info->offset; /* * we're freeing space in the middle of the info, * this can happen during tree log replay * * first unlink the old info and then * insert it again after the hole we're creating */ unlink_free_space(block_group, info); if (offset + bytes < info->offset + info->bytes) { u64 old_end = info->offset + info->bytes; info->offset = offset + bytes; info->bytes = old_end - info->offset; ret = link_free_space(block_group, info); WARN_ON(ret); if (ret) goto out_lock; } else { /* the hole we're creating ends at the end * of the info struct, just free the info */ kfree(info); } spin_unlock(&block_group->tree_lock); /* step two, insert a new info struct to cover * anything before the hole */ ret = btrfs_add_free_space(block_group, old_start, offset - old_start); WARN_ON(ret); goto out; } ret = remove_from_bitmap(block_group, info, &offset, &bytes); if (ret == -EAGAIN) goto again; BUG_ON(ret); out_lock: spin_unlock(&block_group->tree_lock); out: return ret; } void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, u64 bytes) { struct btrfs_free_space *info; struct rb_node *n; int count = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); if (info->bytes >= bytes) count++; printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (info->bitmap) ? "yes" : "no"); } printk(KERN_INFO "block group has cluster?: %s\n", list_empty(&block_group->cluster_list) ? "no" : "yes"); printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" "\n", count); } u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *n; u64 ret = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); ret += info->bytes; } return ret; } /* * for a given cluster, put all of its extents back into the free * space cache. If the block group passed doesn't match the block group * pointed to by the cluster, someone else raced in and freed the * cluster already. In that case, we just return without changing anything */ static int __btrfs_return_cluster_to_free_space( struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster) { struct btrfs_free_space *entry; struct rb_node *node; bool bitmap; spin_lock(&cluster->lock); if (cluster->block_group != block_group) goto out; bitmap = cluster->points_to_bitmap; cluster->block_group = NULL; cluster->window_start = 0; list_del_init(&cluster->block_group_list); cluster->points_to_bitmap = false; if (bitmap) goto out; node = rb_first(&cluster->root); while (node) { entry = rb_entry(node, struct btrfs_free_space, offset_index); node = rb_next(&entry->offset_index); rb_erase(&entry->offset_index, &cluster->root); BUG_ON(entry->bitmap); tree_insert_offset(&block_group->free_space_offset, entry->offset, &entry->offset_index, 0); } cluster->root = RB_ROOT; out: spin_unlock(&cluster->lock); btrfs_put_block_group(block_group); return 0; } void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *node; struct btrfs_free_cluster *cluster; struct list_head *head; spin_lock(&block_group->tree_lock); while ((head = block_group->cluster_list.next) != &block_group->cluster_list) { cluster = list_entry(head, struct btrfs_free_cluster, block_group_list); WARN_ON(cluster->block_group != block_group); __btrfs_return_cluster_to_free_space(block_group, cluster); if (need_resched()) { spin_unlock(&block_group->tree_lock); cond_resched(); spin_lock(&block_group->tree_lock); } } while ((node = rb_last(&block_group->free_space_offset)) != NULL) { info = rb_entry(node, struct btrfs_free_space, offset_index); unlink_free_space(block_group, info); if (info->bitmap) kfree(info->bitmap); kfree(info); if (need_resched()) { spin_unlock(&block_group->tree_lock); cond_resched(); spin_lock(&block_group->tree_lock); } } spin_unlock(&block_group->tree_lock); } u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space *entry = NULL; u64 bytes_search = bytes + empty_size; u64 ret = 0; spin_lock(&block_group->tree_lock); entry = find_free_space(block_group, &offset, &bytes_search, 0); if (!entry) goto out; ret = offset; if (entry->bitmap) { bitmap_clear_bits(block_group, entry, offset, bytes); if (!entry->bytes) { unlink_free_space(block_group, entry); kfree(entry->bitmap); kfree(entry); block_group->total_bitmaps--; recalculate_thresholds(block_group); } } else { unlink_free_space(block_group, entry); entry->offset += bytes; entry->bytes -= bytes; if (!entry->bytes) kfree(entry); else link_free_space(block_group, entry); } out: spin_unlock(&block_group->tree_lock); return ret; } /* * given a cluster, put all of its extents back into the free space * cache. If a block group is passed, this function will only free * a cluster that belongs to the passed block group. * * Otherwise, it'll get a reference on the block group pointed to by the * cluster and remove the cluster from it. */ int btrfs_return_cluster_to_free_space( struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster) { int ret; /* first, get a safe pointer to the block group */ spin_lock(&cluster->lock); if (!block_group) { block_group = cluster->block_group; if (!block_group) { spin_unlock(&cluster->lock); return 0; } } else if (cluster->block_group != block_group) { /* someone else has already freed it don't redo their work */ spin_unlock(&cluster->lock); return 0; } atomic_inc(&block_group->count); spin_unlock(&cluster->lock); /* now return any extents the cluster had on it */ spin_lock(&block_group->tree_lock); ret = __btrfs_return_cluster_to_free_space(block_group, cluster); spin_unlock(&block_group->tree_lock); /* finally drop our ref */ btrfs_put_block_group(block_group); return ret; } static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 bytes, u64 min_start) { struct btrfs_free_space *entry; int err; u64 search_start = cluster->window_start; u64 search_bytes = bytes; u64 ret = 0; spin_lock(&block_group->tree_lock); spin_lock(&cluster->lock); if (!cluster->points_to_bitmap) goto out; if (cluster->block_group != block_group) goto out; /* * search_start is the beginning of the bitmap, but at some point it may * be a good idea to point to the actual start of the free area in the * bitmap, so do the offset_to_bitmap trick anyway, and set bitmap_only * to 1 to make sure we get the bitmap entry */ entry = tree_search_offset(block_group, offset_to_bitmap(block_group, search_start), 1, 0); if (!entry || !entry->bitmap) goto out; search_start = min_start; search_bytes = bytes; err = search_bitmap(block_group, entry, &search_start, &search_bytes); if (err) goto out; ret = search_start; bitmap_clear_bits(block_group, entry, ret, bytes); out: spin_unlock(&cluster->lock); spin_unlock(&block_group->tree_lock); return ret; } /* * given a cluster, try to allocate 'bytes' from it, returns 0 * if it couldn't find anything suitably large, or a logical disk offset * if things worked out */ u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 bytes, u64 min_start) { struct btrfs_free_space *entry = NULL; struct rb_node *node; u64 ret = 0; if (cluster->points_to_bitmap) return btrfs_alloc_from_bitmap(block_group, cluster, bytes, min_start); spin_lock(&cluster->lock); if (bytes > cluster->max_size) goto out; if (cluster->block_group != block_group) goto out; node = rb_first(&cluster->root); if (!node) goto out; entry = rb_entry(node, struct btrfs_free_space, offset_index); while(1) { if (entry->bytes < bytes || entry->offset < min_start) { struct rb_node *node; node = rb_next(&entry->offset_index); if (!node) break; entry = rb_entry(node, struct btrfs_free_space, offset_index); continue; } ret = entry->offset; entry->offset += bytes; entry->bytes -= bytes; if (entry->bytes == 0) { rb_erase(&entry->offset_index, &cluster->root); kfree(entry); } break; } out: spin_unlock(&cluster->lock); return ret; } static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *entry, struct btrfs_free_cluster *cluster, u64 offset, u64 bytes, u64 min_bytes) { unsigned long next_zero; unsigned long i; unsigned long search_bits; unsigned long total_bits; unsigned long found_bits; unsigned long start = 0; unsigned long total_found = 0; bool found = false; i = offset_to_bit(entry->offset, block_group->sectorsize, max_t(u64, offset, entry->offset)); search_bits = bytes_to_bits(min_bytes, block_group->sectorsize); total_bits = bytes_to_bits(bytes, block_group->sectorsize); again: found_bits = 0; for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i); i < BITS_PER_BITMAP; i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) { next_zero = find_next_zero_bit(entry->bitmap, BITS_PER_BITMAP, i); if (next_zero - i >= search_bits) { found_bits = next_zero - i; break; } i = next_zero; } if (!found_bits) return -1; if (!found) { start = i; found = true; } total_found += found_bits; if (cluster->max_size < found_bits * block_group->sectorsize) cluster->max_size = found_bits * block_group->sectorsize; if (total_found < total_bits) { i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero); if (i - start > total_bits * 2) { total_found = 0; cluster->max_size = 0; found = false; } goto again; } cluster->window_start = start * block_group->sectorsize + entry->offset; cluster->points_to_bitmap = true; return 0; } /* * here we try to find a cluster of blocks in a block group. The goal * is to find at least bytes free and up to empty_size + bytes free. * We might not find them all in one contiguous area. * * returns zero and sets up cluster if things worked out, otherwise * it returns -enospc */ int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space *entry = NULL; struct rb_node *node; struct btrfs_free_space *next; struct btrfs_free_space *last = NULL; u64 min_bytes; u64 window_start; u64 window_free; u64 max_extent = 0; bool found_bitmap = false; int ret; /* for metadata, allow allocates with more holes */ if (btrfs_test_opt(root, SSD_SPREAD)) { min_bytes = bytes + empty_size; } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { /* * we want to do larger allocations when we are * flushing out the delayed refs, it helps prevent * making more work as we go along. */ if (trans->transaction->delayed_refs.flushing) min_bytes = max(bytes, (bytes + empty_size) >> 1); else min_bytes = max(bytes, (bytes + empty_size) >> 4); } else min_bytes = max(bytes, (bytes + empty_size) >> 2); spin_lock(&block_group->tree_lock); spin_lock(&cluster->lock); /* someone already found a cluster, hooray */ if (cluster->block_group) { ret = 0; goto out; } again: entry = tree_search_offset(block_group, offset, found_bitmap, 1); if (!entry) { ret = -ENOSPC; goto out; } /* * If found_bitmap is true, we exhausted our search for extent entries, * and we just want to search all of the bitmaps that we can find, and * ignore any extent entries we find. */ while (entry->bitmap || found_bitmap || (!entry->bitmap && entry->bytes < min_bytes)) { struct rb_node *node = rb_next(&entry->offset_index); if (entry->bitmap && entry->bytes > bytes + empty_size) { ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset, bytes + empty_size, min_bytes); if (!ret) goto got_it; } if (!node) { ret = -ENOSPC; goto out; } entry = rb_entry(node, struct btrfs_free_space, offset_index); } /* * We already searched all the extent entries from the passed in offset * to the end and didn't find enough space for the cluster, and we also * didn't find any bitmaps that met our criteria, just go ahead and exit */ if (found_bitmap) { ret = -ENOSPC; goto out; } cluster->points_to_bitmap = false; window_start = entry->offset; window_free = entry->bytes; last = entry; max_extent = entry->bytes; while (1) { /* out window is just right, lets fill it */ if (window_free >= bytes + empty_size) break; node = rb_next(&last->offset_index); if (!node) { if (found_bitmap) goto again; ret = -ENOSPC; goto out; } next = rb_entry(node, struct btrfs_free_space, offset_index); /* * we found a bitmap, so if this search doesn't result in a * cluster, we know to go and search again for the bitmaps and * start looking for space there */ if (next->bitmap) { if (!found_bitmap) offset = next->offset; found_bitmap = true; last = next; continue; } /* * we haven't filled the empty size and the window is * very large. reset and try again */ if (next->offset - (last->offset + last->bytes) > 128 * 1024 || next->offset - window_start > (bytes + empty_size) * 2) { entry = next; window_start = entry->offset; window_free = entry->bytes; last = entry; max_extent = entry->bytes; } else { last = next; window_free += next->bytes; if (entry->bytes > max_extent) max_extent = entry->bytes; } } cluster->window_start = entry->offset; /* * now we've found our entries, pull them out of the free space * cache and put them into the cluster rbtree * * The cluster includes an rbtree, but only uses the offset index * of each free space cache entry. */ while (1) { node = rb_next(&entry->offset_index); if (entry->bitmap && node) { entry = rb_entry(node, struct btrfs_free_space, offset_index); continue; } else if (entry->bitmap && !node) { break; } rb_erase(&entry->offset_index, &block_group->free_space_offset); ret = tree_insert_offset(&cluster->root, entry->offset, &entry->offset_index, 0); BUG_ON(ret); if (!node || entry == last) break; entry = rb_entry(node, struct btrfs_free_space, offset_index); } cluster->max_size = max_extent; got_it: ret = 0; atomic_inc(&block_group->count); list_add_tail(&cluster->block_group_list, &block_group->cluster_list); cluster->block_group = block_group; out: spin_unlock(&cluster->lock); spin_unlock(&block_group->tree_lock); return ret; } /* * simple code to zero out a cluster */ void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) { spin_lock_init(&cluster->lock); spin_lock_init(&cluster->refill_lock); cluster->root = RB_ROOT; cluster->max_size = 0; cluster->points_to_bitmap = false; INIT_LIST_HEAD(&cluster->block_group_list); cluster->block_group = NULL; }