/* * arch/arm/mach-orion5x/addr-map.c * * Address map functions for Marvell Orion 5x SoCs * * Maintainer: Tzachi Perelstein <tzachi@marvell.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/mbus.h> #include <linux/io.h> #include <linux/errno.h> #include <mach/hardware.h> #include "common.h" /* * The Orion has fully programable address map. There's a separate address * map for each of the device _master_ interfaces, e.g. CPU, PCI, PCIe, USB, * Gigabit Ethernet, DMA/XOR engines, etc. Each interface has its own * address decode windows that allow it to access any of the Orion resources. * * CPU address decoding -- * Linux assumes that it is the boot loader that already setup the access to * DDR and internal registers. * Setup access to PCI and PCIe IO/MEM space is issued by this file. * Setup access to various devices located on the device bus interface (e.g. * flashes, RTC, etc) should be issued by machine-setup.c according to * specific board population (by using orion5x_setup_*_win()). * * Non-CPU Masters address decoding -- * Unlike the CPU, we setup the access from Orion's master interfaces to DDR * banks only (the typical use case). * Setup access for each master to DDR is issued by platform device setup. */ /* * Generic Address Decode Windows bit settings */ #define TARGET_DDR 0 #define TARGET_DEV_BUS 1 #define TARGET_PCI 3 #define TARGET_PCIE 4 #define TARGET_SRAM 9 #define ATTR_PCIE_MEM 0x59 #define ATTR_PCIE_IO 0x51 #define ATTR_PCIE_WA 0x79 #define ATTR_PCI_MEM 0x59 #define ATTR_PCI_IO 0x51 #define ATTR_DEV_CS0 0x1e #define ATTR_DEV_CS1 0x1d #define ATTR_DEV_CS2 0x1b #define ATTR_DEV_BOOT 0xf #define ATTR_SRAM 0x0 /* * Helpers to get DDR bank info */ #define ORION5X_DDR_REG(x) (ORION5X_DDR_VIRT_BASE | (x)) #define DDR_BASE_CS(n) ORION5X_DDR_REG(0x1500 + ((n) << 3)) #define DDR_SIZE_CS(n) ORION5X_DDR_REG(0x1504 + ((n) << 3)) /* * CPU Address Decode Windows registers */ #define ORION5X_BRIDGE_REG(x) (ORION5X_BRIDGE_VIRT_BASE | (x)) #define CPU_WIN_CTRL(n) ORION5X_BRIDGE_REG(0x000 | ((n) << 4)) #define CPU_WIN_BASE(n) ORION5X_BRIDGE_REG(0x004 | ((n) << 4)) #define CPU_WIN_REMAP_LO(n) ORION5X_BRIDGE_REG(0x008 | ((n) << 4)) #define CPU_WIN_REMAP_HI(n) ORION5X_BRIDGE_REG(0x00c | ((n) << 4)) struct mbus_dram_target_info orion5x_mbus_dram_info; static int __initdata win_alloc_count; static int __init orion5x_cpu_win_can_remap(int win) { u32 dev, rev; orion5x_pcie_id(&dev, &rev); if ((dev == MV88F5281_DEV_ID && win < 4) || (dev == MV88F5182_DEV_ID && win < 2) || (dev == MV88F5181_DEV_ID && win < 2) || (dev == MV88F6183_DEV_ID && win < 4)) return 1; return 0; } static int __init setup_cpu_win(int win, u32 base, u32 size, u8 target, u8 attr, int remap) { if (win >= 8) { printk(KERN_ERR "setup_cpu_win: trying to allocate " "window %d\n", win); return -ENOSPC; } writel(base & 0xffff0000, CPU_WIN_BASE(win)); writel(((size - 1) & 0xffff0000) | (attr << 8) | (target << 4) | 1, CPU_WIN_CTRL(win)); if (orion5x_cpu_win_can_remap(win)) { if (remap < 0) remap = base; writel(remap & 0xffff0000, CPU_WIN_REMAP_LO(win)); writel(0, CPU_WIN_REMAP_HI(win)); } return 0; } void __init orion5x_setup_cpu_mbus_bridge(void) { int i; int cs; /* * First, disable and clear windows. */ for (i = 0; i < 8; i++) { writel(0, CPU_WIN_BASE(i)); writel(0, CPU_WIN_CTRL(i)); if (orion5x_cpu_win_can_remap(i)) { writel(0, CPU_WIN_REMAP_LO(i)); writel(0, CPU_WIN_REMAP_HI(i)); } } /* * Setup windows for PCI+PCIe IO+MEM space. */ setup_cpu_win(0, ORION5X_PCIE_IO_PHYS_BASE, ORION5X_PCIE_IO_SIZE, TARGET_PCIE, ATTR_PCIE_IO, ORION5X_PCIE_IO_BUS_BASE); setup_cpu_win(1, ORION5X_PCI_IO_PHYS_BASE, ORION5X_PCI_IO_SIZE, TARGET_PCI, ATTR_PCI_IO, ORION5X_PCI_IO_BUS_BASE); setup_cpu_win(2, ORION5X_PCIE_MEM_PHYS_BASE, ORION5X_PCIE_MEM_SIZE, TARGET_PCIE, ATTR_PCIE_MEM, -1); setup_cpu_win(3, ORION5X_PCI_MEM_PHYS_BASE, ORION5X_PCI_MEM_SIZE, TARGET_PCI, ATTR_PCI_MEM, -1); win_alloc_count = 4; /* * Setup MBUS dram target info. */ orion5x_mbus_dram_info.mbus_dram_target_id = TARGET_DDR; for (i = 0, cs = 0; i < 4; i++) { u32 base = readl(DDR_BASE_CS(i)); u32 size = readl(DDR_SIZE_CS(i)); /* * Chip select enabled? */ if (size & 1) { struct mbus_dram_window *w; w = &orion5x_mbus_dram_info.cs[cs++]; w->cs_index = i; w->mbus_attr = 0xf & ~(1 << i); w->base = base & 0xffff0000; w->size = (size | 0x0000ffff) + 1; } } orion5x_mbus_dram_info.num_cs = cs; } void __init orion5x_setup_dev_boot_win(u32 base, u32 size) { setup_cpu_win(win_alloc_count++, base, size, TARGET_DEV_BUS, ATTR_DEV_BOOT, -1); } void __init orion5x_setup_dev0_win(u32 base, u32 size) { setup_cpu_win(win_alloc_count++, base, size, TARGET_DEV_BUS, ATTR_DEV_CS0, -1); } void __init orion5x_setup_dev1_win(u32 base, u32 size) { setup_cpu_win(win_alloc_count++, base, size, TARGET_DEV_BUS, ATTR_DEV_CS1, -1); } void __init orion5x_setup_dev2_win(u32 base, u32 size) { setup_cpu_win(win_alloc_count++, base, size, TARGET_DEV_BUS, ATTR_DEV_CS2, -1); } void __init orion5x_setup_pcie_wa_win(u32 base, u32 size) { setup_cpu_win(win_alloc_count++, base, size, TARGET_PCIE, ATTR_PCIE_WA, -1); } int __init orion5x_setup_sram_win(void) { return setup_cpu_win(win_alloc_count++, ORION5X_SRAM_PHYS_BASE, ORION5X_SRAM_SIZE, TARGET_SRAM, ATTR_SRAM, -1); }