/* mac8390.c: New driver for 8390-based Nubus (or Nubus-alike) Ethernet cards on Linux */ /* Based on the former daynaport.c driver, by Alan Cox. Some code taken from or inspired by skeleton.c by Donald Becker, acenic.c by Jes Sorensen, and ne2k-pci.c by Donald Becker and Paul Gortmaker. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. */ /* 2000-02-28: support added for Dayna and Kinetics cards by A.G.deWijn@phys.uu.nl */ /* 2000-04-04: support added for Dayna2 by bart@etpmod.phys.tue.nl */ /* 2001-04-18: support for DaynaPort E/LC-M by rayk@knightsmanor.org */ /* 2001-05-15: support for Cabletron ported from old daynaport driver * and fixed access to Sonic Sys card which masquerades as a Farallon * by rayk@knightsmanor.org */ /* 2002-12-30: Try to support more cards, some clues from NetBSD driver */ /* 2003-12-26: Make sure Asante cards always work. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/nubus.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/bitops.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/hwtest.h> #include <asm/macints.h> static char version[] = "mac8390.c: v0.4 2001-05-15 David Huggins-Daines <dhd@debian.org> and others\n"; #define EI_SHIFT(x) (ei_local->reg_offset[x]) #define ei_inb(port) in_8(port) #define ei_outb(val,port) out_8(port,val) #define ei_inb_p(port) in_8(port) #define ei_outb_p(val,port) out_8(port,val) #include "lib8390.c" #define WD_START_PG 0x00 /* First page of TX buffer */ #define CABLETRON_RX_START_PG 0x00 /* First page of RX buffer */ #define CABLETRON_RX_STOP_PG 0x30 /* Last page +1 of RX ring */ #define CABLETRON_TX_START_PG CABLETRON_RX_STOP_PG /* First page of TX buffer */ /* Unfortunately it seems we have to hardcode these for the moment */ /* Shouldn't the card know about this? Does anyone know where to read it off the card? Do we trust the data provided by the card? */ #define DAYNA_8390_BASE 0x80000 #define DAYNA_8390_MEM 0x00000 #define CABLETRON_8390_BASE 0x90000 #define CABLETRON_8390_MEM 0x00000 #define INTERLAN_8390_BASE 0xE0000 #define INTERLAN_8390_MEM 0xD0000 enum mac8390_type { MAC8390_NONE = -1, MAC8390_APPLE, MAC8390_ASANTE, MAC8390_FARALLON, MAC8390_CABLETRON, MAC8390_DAYNA, MAC8390_INTERLAN, MAC8390_KINETICS, }; static const char * cardname[] = { "apple", "asante", "farallon", "cabletron", "dayna", "interlan", "kinetics", }; static int word16[] = { 1, /* apple */ 1, /* asante */ 1, /* farallon */ 1, /* cabletron */ 0, /* dayna */ 1, /* interlan */ 0, /* kinetics */ }; /* on which cards do we use NuBus resources? */ static int useresources[] = { 1, /* apple */ 1, /* asante */ 1, /* farallon */ 0, /* cabletron */ 0, /* dayna */ 0, /* interlan */ 0, /* kinetics */ }; enum mac8390_access { ACCESS_UNKNOWN = 0, ACCESS_32, ACCESS_16, }; extern int mac8390_memtest(struct net_device * dev); static int mac8390_initdev(struct net_device * dev, struct nubus_dev * ndev, enum mac8390_type type); static int mac8390_open(struct net_device * dev); static int mac8390_close(struct net_device * dev); static void mac8390_no_reset(struct net_device *dev); static void interlan_reset(struct net_device *dev); /* Sane (32-bit chunk memory read/write) - Some Farallon and Apple do this*/ static void sane_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page); static void sane_block_input(struct net_device * dev, int count, struct sk_buff * skb, int ring_offset); static void sane_block_output(struct net_device * dev, int count, const unsigned char * buf, const int start_page); /* dayna_memcpy to and from card */ static void dayna_memcpy_fromcard(struct net_device *dev, void *to, int from, int count); static void dayna_memcpy_tocard(struct net_device *dev, int to, const void *from, int count); /* Dayna - Dayna/Kinetics use this */ static void dayna_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page); static void dayna_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset); static void dayna_block_output(struct net_device *dev, int count, const unsigned char *buf, int start_page); #define memcpy_fromio(a,b,c) memcpy((a),(void *)(b),(c)) #define memcpy_toio(a,b,c) memcpy((void *)(a),(b),(c)) /* Slow Sane (16-bit chunk memory read/write) Cabletron uses this */ static void slow_sane_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page); static void slow_sane_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset); static void slow_sane_block_output(struct net_device *dev, int count, const unsigned char *buf, int start_page); static void word_memcpy_tocard(void *tp, const void *fp, int count); static void word_memcpy_fromcard(void *tp, const void *fp, int count); static enum mac8390_type __init mac8390_ident(struct nubus_dev *dev) { switch (dev->dr_sw) { case NUBUS_DRSW_3COM: switch (dev->dr_hw) { case NUBUS_DRHW_APPLE_SONIC_NB: case NUBUS_DRHW_APPLE_SONIC_LC: case NUBUS_DRHW_SONNET: return MAC8390_NONE; break; default: return MAC8390_APPLE; break; } break; case NUBUS_DRSW_APPLE: switch (dev->dr_hw) { case NUBUS_DRHW_ASANTE_LC: return MAC8390_NONE; break; case NUBUS_DRHW_CABLETRON: return MAC8390_CABLETRON; break; default: return MAC8390_APPLE; break; } break; case NUBUS_DRSW_ASANTE: return MAC8390_ASANTE; break; case NUBUS_DRSW_TECHWORKS: case NUBUS_DRSW_DAYNA2: case NUBUS_DRSW_DAYNA_LC: if (dev->dr_hw == NUBUS_DRHW_CABLETRON) return MAC8390_CABLETRON; else return MAC8390_APPLE; break; case NUBUS_DRSW_FARALLON: return MAC8390_FARALLON; break; case NUBUS_DRSW_KINETICS: switch (dev->dr_hw) { case NUBUS_DRHW_INTERLAN: return MAC8390_INTERLAN; break; default: return MAC8390_KINETICS; break; } break; case NUBUS_DRSW_DAYNA: // These correspond to Dayna Sonic cards // which use the macsonic driver if (dev->dr_hw == NUBUS_DRHW_SMC9194 || dev->dr_hw == NUBUS_DRHW_INTERLAN ) return MAC8390_NONE; else return MAC8390_DAYNA; break; } return MAC8390_NONE; } static enum mac8390_access __init mac8390_testio(volatile unsigned long membase) { unsigned long outdata = 0xA5A0B5B0; unsigned long indata = 0x00000000; /* Try writing 32 bits */ memcpy((char *)membase, (char *)&outdata, 4); /* Now compare them */ if (memcmp((char *)&outdata, (char *)membase, 4) == 0) return ACCESS_32; /* Write 16 bit output */ word_memcpy_tocard((char *)membase, (char *)&outdata, 4); /* Now read it back */ word_memcpy_fromcard((char *)&indata, (char *)membase, 4); if (outdata == indata) return ACCESS_16; return ACCESS_UNKNOWN; } static int __init mac8390_memsize(unsigned long membase) { unsigned long flags; int i, j; local_irq_save(flags); /* Check up to 32K in 4K increments */ for (i = 0; i < 8; i++) { volatile unsigned short *m = (unsigned short *) (membase + (i * 0x1000)); /* Unwriteable - we have a fully decoded card and the RAM end located */ if (hwreg_present(m) == 0) break; /* write a distinctive byte */ *m = 0xA5A0 | i; /* check that we read back what we wrote */ if (*m != (0xA5A0 | i)) break; /* check for partial decode and wrap */ for (j = 0; j < i; j++) { volatile unsigned short *p = (unsigned short *) (membase + (j * 0x1000)); if (*p != (0xA5A0 | j)) break; } } local_irq_restore(flags); /* in any case, we stopped once we tried one block too many, or once we reached 32K */ return i * 0x1000; } struct net_device * __init mac8390_probe(int unit) { struct net_device *dev; volatile unsigned short *i; int version_disp = 0; struct nubus_dev * ndev = NULL; int err = -ENODEV; struct nubus_dir dir; struct nubus_dirent ent; int offset; static unsigned int slots; enum mac8390_type cardtype; /* probably should check for Nubus instead */ if (!MACH_IS_MAC) return ERR_PTR(-ENODEV); dev = ____alloc_ei_netdev(0); if (!dev) return ERR_PTR(-ENOMEM); if (unit >= 0) sprintf(dev->name, "eth%d", unit); while ((ndev = nubus_find_type(NUBUS_CAT_NETWORK, NUBUS_TYPE_ETHERNET, ndev))) { /* Have we seen it already? */ if (slots & (1<<ndev->board->slot)) continue; slots |= 1<<ndev->board->slot; if ((cardtype = mac8390_ident(ndev)) == MAC8390_NONE) continue; if (version_disp == 0) { version_disp = 1; printk(version); } dev->irq = SLOT2IRQ(ndev->board->slot); /* This is getting to be a habit */ dev->base_addr = ndev->board->slot_addr | ((ndev->board->slot&0xf) << 20); /* Get some Nubus info - we will trust the card's idea of where its memory and registers are. */ if (nubus_get_func_dir(ndev, &dir) == -1) { printk(KERN_ERR "%s: Unable to get Nubus functional" " directory for slot %X!\n", dev->name, ndev->board->slot); continue; } /* Get the MAC address */ if ((nubus_find_rsrc(&dir, NUBUS_RESID_MAC_ADDRESS, &ent)) == -1) { printk(KERN_INFO "%s: Couldn't get MAC address!\n", dev->name); continue; } else { nubus_get_rsrc_mem(dev->dev_addr, &ent, 6); } if (useresources[cardtype] == 1) { nubus_rewinddir(&dir); if (nubus_find_rsrc(&dir, NUBUS_RESID_MINOR_BASEOS, &ent) == -1) { printk(KERN_ERR "%s: Memory offset resource" " for slot %X not found!\n", dev->name, ndev->board->slot); continue; } nubus_get_rsrc_mem(&offset, &ent, 4); dev->mem_start = dev->base_addr + offset; /* yes, this is how the Apple driver does it */ dev->base_addr = dev->mem_start + 0x10000; nubus_rewinddir(&dir); if (nubus_find_rsrc(&dir, NUBUS_RESID_MINOR_LENGTH, &ent) == -1) { printk(KERN_INFO "%s: Memory length resource" " for slot %X not found" ", probing\n", dev->name, ndev->board->slot); offset = mac8390_memsize(dev->mem_start); } else { nubus_get_rsrc_mem(&offset, &ent, 4); } dev->mem_end = dev->mem_start + offset; } else { switch (cardtype) { case MAC8390_KINETICS: case MAC8390_DAYNA: /* it's the same */ dev->base_addr = (int)(ndev->board->slot_addr + DAYNA_8390_BASE); dev->mem_start = (int)(ndev->board->slot_addr + DAYNA_8390_MEM); dev->mem_end = dev->mem_start + mac8390_memsize(dev->mem_start); break; case MAC8390_INTERLAN: dev->base_addr = (int)(ndev->board->slot_addr + INTERLAN_8390_BASE); dev->mem_start = (int)(ndev->board->slot_addr + INTERLAN_8390_MEM); dev->mem_end = dev->mem_start + mac8390_memsize(dev->mem_start); break; case MAC8390_CABLETRON: dev->base_addr = (int)(ndev->board->slot_addr + CABLETRON_8390_BASE); dev->mem_start = (int)(ndev->board->slot_addr + CABLETRON_8390_MEM); /* The base address is unreadable if 0x00 * has been written to the command register * Reset the chip by writing E8390_NODMA + * E8390_PAGE0 + E8390_STOP just to be * sure */ i = (void *)dev->base_addr; *i = 0x21; dev->mem_end = dev->mem_start + mac8390_memsize(dev->mem_start); break; default: printk(KERN_ERR "Card type %s is" " unsupported, sorry\n", ndev->board->name); continue; } } /* Do the nasty 8390 stuff */ if (!mac8390_initdev(dev, ndev, cardtype)) break; } if (!ndev) goto out; err = register_netdev(dev); if (err) goto out; return dev; out: free_netdev(dev); return ERR_PTR(err); } #ifdef MODULE MODULE_AUTHOR("David Huggins-Daines <dhd@debian.org> and others"); MODULE_DESCRIPTION("Macintosh NS8390-based Nubus Ethernet driver"); MODULE_LICENSE("GPL"); /* overkill, of course */ static struct net_device *dev_mac8390[15]; int init_module(void) { int i; for (i = 0; i < 15; i++) { struct net_device *dev = mac8390_probe(-1); if (IS_ERR(dev)) break; dev_mac890[i] = dev; } if (!i) { printk(KERN_NOTICE "mac8390.c: No useable cards found, driver NOT installed.\n"); return -ENODEV; } return 0; } void cleanup_module(void) { int i; for (i = 0; i < 15; i++) { struct net_device *dev = dev_mac890[i]; if (dev) { unregister_netdev(dev); free_netdev(dev); } } } #endif /* MODULE */ static int __init mac8390_initdev(struct net_device * dev, struct nubus_dev * ndev, enum mac8390_type type) { static u32 fwrd4_offsets[16]={ 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60 }; static u32 back4_offsets[16]={ 60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0 }; static u32 fwrd2_offsets[16]={ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 }; int access_bitmode = 0; /* Now fill in our stuff */ dev->open = &mac8390_open; dev->stop = &mac8390_close; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = __ei_poll; #endif /* GAR, ei_status is actually a macro even though it looks global */ ei_status.name = cardname[type]; ei_status.word16 = word16[type]; /* Cabletron's TX/RX buffers are backwards */ if (type == MAC8390_CABLETRON) { ei_status.tx_start_page = CABLETRON_TX_START_PG; ei_status.rx_start_page = CABLETRON_RX_START_PG; ei_status.stop_page = CABLETRON_RX_STOP_PG; ei_status.rmem_start = dev->mem_start; ei_status.rmem_end = dev->mem_start + CABLETRON_RX_STOP_PG*256; } else { ei_status.tx_start_page = WD_START_PG; ei_status.rx_start_page = WD_START_PG + TX_PAGES; ei_status.stop_page = (dev->mem_end - dev->mem_start)/256; ei_status.rmem_start = dev->mem_start + TX_PAGES*256; ei_status.rmem_end = dev->mem_end; } /* Fill in model-specific information and functions */ switch(type) { case MAC8390_FARALLON: case MAC8390_APPLE: switch(mac8390_testio(dev->mem_start)) { case ACCESS_UNKNOWN: printk("Don't know how to access card memory!\n"); return -ENODEV; break; case ACCESS_16: /* 16 bit card, register map is reversed */ ei_status.reset_8390 = &mac8390_no_reset; ei_status.block_input = &slow_sane_block_input; ei_status.block_output = &slow_sane_block_output; ei_status.get_8390_hdr = &slow_sane_get_8390_hdr; ei_status.reg_offset = back4_offsets; break; case ACCESS_32: /* 32 bit card, register map is reversed */ ei_status.reset_8390 = &mac8390_no_reset; ei_status.block_input = &sane_block_input; ei_status.block_output = &sane_block_output; ei_status.get_8390_hdr = &sane_get_8390_hdr; ei_status.reg_offset = back4_offsets; access_bitmode = 1; break; } break; case MAC8390_ASANTE: /* Some Asante cards pass the 32 bit test * but overwrite system memory when run at 32 bit. * so we run them all at 16 bit. */ ei_status.reset_8390 = &mac8390_no_reset; ei_status.block_input = &slow_sane_block_input; ei_status.block_output = &slow_sane_block_output; ei_status.get_8390_hdr = &slow_sane_get_8390_hdr; ei_status.reg_offset = back4_offsets; break; case MAC8390_CABLETRON: /* 16 bit card, register map is short forward */ ei_status.reset_8390 = &mac8390_no_reset; ei_status.block_input = &slow_sane_block_input; ei_status.block_output = &slow_sane_block_output; ei_status.get_8390_hdr = &slow_sane_get_8390_hdr; ei_status.reg_offset = fwrd2_offsets; break; case MAC8390_DAYNA: case MAC8390_KINETICS: /* 16 bit memory, register map is forward */ /* dayna and similar */ ei_status.reset_8390 = &mac8390_no_reset; ei_status.block_input = &dayna_block_input; ei_status.block_output = &dayna_block_output; ei_status.get_8390_hdr = &dayna_get_8390_hdr; ei_status.reg_offset = fwrd4_offsets; break; case MAC8390_INTERLAN: /* 16 bit memory, register map is forward */ ei_status.reset_8390 = &interlan_reset; ei_status.block_input = &slow_sane_block_input; ei_status.block_output = &slow_sane_block_output; ei_status.get_8390_hdr = &slow_sane_get_8390_hdr; ei_status.reg_offset = fwrd4_offsets; break; default: printk(KERN_ERR "Card type %s is unsupported, sorry\n", ndev->board->name); return -ENODEV; } __NS8390_init(dev, 0); /* Good, done, now spit out some messages */ printk(KERN_INFO "%s: %s in slot %X (type %s)\n", dev->name, ndev->board->name, ndev->board->slot, cardname[type]); printk(KERN_INFO "MAC "); { int i; for (i = 0; i < 6; i++) { printk("%2.2x", dev->dev_addr[i]); if (i < 5) printk(":"); } } printk(" IRQ %d, %d KB shared memory at %#lx, %d-bit access.\n", dev->irq, (int)((dev->mem_end - dev->mem_start)/0x1000) * 4, dev->mem_start, access_bitmode?32:16); return 0; } static int mac8390_open(struct net_device *dev) { __ei_open(dev); if (request_irq(dev->irq, __ei_interrupt, 0, "8390 Ethernet", dev)) { printk ("%s: unable to get IRQ %d.\n", dev->name, dev->irq); return -EAGAIN; } return 0; } static int mac8390_close(struct net_device *dev) { free_irq(dev->irq, dev); __ei_close(dev); return 0; } static void mac8390_no_reset(struct net_device *dev) { ei_status.txing = 0; if (ei_debug > 1) printk("reset not supported\n"); return; } static void interlan_reset(struct net_device *dev) { unsigned char *target=nubus_slot_addr(IRQ2SLOT(dev->irq)); if (ei_debug > 1) printk("Need to reset the NS8390 t=%lu...", jiffies); ei_status.txing = 0; target[0xC0000] = 0; if (ei_debug > 1) printk("reset complete\n"); return; } /* dayna_memcpy_fromio/dayna_memcpy_toio */ /* directly from daynaport.c by Alan Cox */ static void dayna_memcpy_fromcard(struct net_device *dev, void *to, int from, int count) { volatile unsigned char *ptr; unsigned char *target=to; from<<=1; /* word, skip overhead */ ptr=(unsigned char *)(dev->mem_start+from); /* Leading byte? */ if (from&2) { *target++ = ptr[-1]; ptr += 2; count--; } while(count>=2) { *(unsigned short *)target = *(unsigned short volatile *)ptr; ptr += 4; /* skip cruft */ target += 2; count-=2; } /* Trailing byte? */ if(count) *target = *ptr; } static void dayna_memcpy_tocard(struct net_device *dev, int to, const void *from, int count) { volatile unsigned short *ptr; const unsigned char *src=from; to<<=1; /* word, skip overhead */ ptr=(unsigned short *)(dev->mem_start+to); /* Leading byte? */ if (to&2) { /* avoid a byte write (stomps on other data) */ ptr[-1] = (ptr[-1]&0xFF00)|*src++; ptr++; count--; } while(count>=2) { *ptr++=*(unsigned short *)src; /* Copy and */ ptr++; /* skip cruft */ src += 2; count-=2; } /* Trailing byte? */ if(count) { /* card doesn't like byte writes */ *ptr=(*ptr&0x00FF)|(*src << 8); } } /* sane block input/output */ static void sane_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page) { unsigned long hdr_start = (ring_page - WD_START_PG)<<8; memcpy_fromio((void *)hdr, (char *)dev->mem_start + hdr_start, 4); /* Fix endianness */ hdr->count = swab16(hdr->count); } static void sane_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset) { unsigned long xfer_base = ring_offset - (WD_START_PG<<8); unsigned long xfer_start = xfer_base + dev->mem_start; if (xfer_start + count > ei_status.rmem_end) { /* We must wrap the input move. */ int semi_count = ei_status.rmem_end - xfer_start; memcpy_fromio(skb->data, (char *)dev->mem_start + xfer_base, semi_count); count -= semi_count; memcpy_toio(skb->data + semi_count, (char *)ei_status.rmem_start, count); } else { memcpy_fromio(skb->data, (char *)dev->mem_start + xfer_base, count); } } static void sane_block_output(struct net_device *dev, int count, const unsigned char *buf, int start_page) { long shmem = (start_page - WD_START_PG)<<8; memcpy_toio((char *)dev->mem_start + shmem, buf, count); } /* dayna block input/output */ static void dayna_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page) { unsigned long hdr_start = (ring_page - WD_START_PG)<<8; dayna_memcpy_fromcard(dev, (void *)hdr, hdr_start, 4); /* Fix endianness */ hdr->count=(hdr->count&0xFF)<<8|(hdr->count>>8); } static void dayna_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset) { unsigned long xfer_base = ring_offset - (WD_START_PG<<8); unsigned long xfer_start = xfer_base+dev->mem_start; /* Note the offset math is done in card memory space which is word per long onto our space. */ if (xfer_start + count > ei_status.rmem_end) { /* We must wrap the input move. */ int semi_count = ei_status.rmem_end - xfer_start; dayna_memcpy_fromcard(dev, skb->data, xfer_base, semi_count); count -= semi_count; dayna_memcpy_fromcard(dev, skb->data + semi_count, ei_status.rmem_start - dev->mem_start, count); } else { dayna_memcpy_fromcard(dev, skb->data, xfer_base, count); } } static void dayna_block_output(struct net_device *dev, int count, const unsigned char *buf, int start_page) { long shmem = (start_page - WD_START_PG)<<8; dayna_memcpy_tocard(dev, shmem, buf, count); } /* Cabletron block I/O */ static void slow_sane_get_8390_hdr(struct net_device *dev, struct e8390_pkt_hdr *hdr, int ring_page) { unsigned long hdr_start = (ring_page - WD_START_PG)<<8; word_memcpy_fromcard((void *)hdr, (char *)dev->mem_start+hdr_start, 4); /* Register endianism - fix here rather than 8390.c */ hdr->count = (hdr->count&0xFF)<<8|(hdr->count>>8); } static void slow_sane_block_input(struct net_device *dev, int count, struct sk_buff *skb, int ring_offset) { unsigned long xfer_base = ring_offset - (WD_START_PG<<8); unsigned long xfer_start = xfer_base+dev->mem_start; if (xfer_start + count > ei_status.rmem_end) { /* We must wrap the input move. */ int semi_count = ei_status.rmem_end - xfer_start; word_memcpy_fromcard(skb->data, (char *)dev->mem_start + xfer_base, semi_count); count -= semi_count; word_memcpy_fromcard(skb->data + semi_count, (char *)ei_status.rmem_start, count); } else { word_memcpy_fromcard(skb->data, (char *)dev->mem_start + xfer_base, count); } } static void slow_sane_block_output(struct net_device *dev, int count, const unsigned char *buf, int start_page) { long shmem = (start_page - WD_START_PG)<<8; word_memcpy_tocard((char *)dev->mem_start + shmem, buf, count); } static void word_memcpy_tocard(void *tp, const void *fp, int count) { volatile unsigned short *to = tp; const unsigned short *from = fp; count++; count/=2; while(count--) *to++=*from++; } static void word_memcpy_fromcard(void *tp, const void *fp, int count) { unsigned short *to = tp; const volatile unsigned short *from = fp; count++; count/=2; while(count--) *to++=*from++; }