/* * ATI Mach64 CT/VT/GT/LT Support */ #include <linux/fb.h> #include <linux/delay.h> #include <asm/io.h> #include <video/mach64.h> #include "atyfb.h" #ifdef CONFIG_PPC #include <asm/machdep.h> #endif #undef DEBUG static int aty_valid_pll_ct (const struct fb_info *info, u32 vclk_per, struct pll_ct *pll); static int aty_dsp_gt (const struct fb_info *info, u32 bpp, struct pll_ct *pll); static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll); static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll); u8 aty_ld_pll_ct(int offset, const struct atyfb_par *par) { u8 res; /* write addr byte */ aty_st_8(CLOCK_CNTL_ADDR, (offset << 2) & PLL_ADDR, par); /* read the register value */ res = aty_ld_8(CLOCK_CNTL_DATA, par); return res; } static void aty_st_pll_ct(int offset, u8 val, const struct atyfb_par *par) { /* write addr byte */ aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) | PLL_WR_EN, par); /* write the register value */ aty_st_8(CLOCK_CNTL_DATA, val & PLL_DATA, par); aty_st_8(CLOCK_CNTL_ADDR, ((offset << 2) & PLL_ADDR) & ~PLL_WR_EN, par); } /* * by Daniel Mantione * <daniel.mantione@freepascal.org> * * * ATI Mach64 CT clock synthesis description. * * All clocks on the Mach64 can be calculated using the same principle: * * XTALIN * x * FB_DIV * CLK = ---------------------- * PLL_REF_DIV * POST_DIV * * XTALIN is a fixed speed clock. Common speeds are 14.31 MHz and 29.50 MHz. * PLL_REF_DIV can be set by the user, but is the same for all clocks. * FB_DIV can be set by the user for each clock individually, it should be set * between 128 and 255, the chip will generate a bad clock signal for too low * values. * x depends on the type of clock; usually it is 2, but for the MCLK it can also * be set to 4. * POST_DIV can be set by the user for each clock individually, Possible values * are 1,2,4,8 and for some clocks other values are available too. * CLK is of course the clock speed that is generated. * * The Mach64 has these clocks: * * MCLK The clock rate of the chip * XCLK The clock rate of the on-chip memory * VCLK0 First pixel clock of first CRT controller * VCLK1 Second pixel clock of first CRT controller * VCLK2 Third pixel clock of first CRT controller * VCLK3 Fourth pixel clock of first CRT controller * VCLK Selected pixel clock, one of VCLK0, VCLK1, VCLK2, VCLK3 * V2CLK Pixel clock of the second CRT controller. * SCLK Multi-purpose clock * * - MCLK and XCLK use the same FB_DIV * - VCLK0 .. VCLK3 use the same FB_DIV * - V2CLK is needed when the second CRTC is used (can be used for dualhead); * i.e. CRT monitor connected to laptop has different resolution than built * in LCD monitor. * - SCLK is not available on all cards; it is know to exist on the Rage LT-PRO, * Rage XL and Rage Mobility. It is know not to exist on the Mach64 VT. * - V2CLK is not available on all cards, most likely only the Rage LT-PRO, * the Rage XL and the Rage Mobility * * SCLK can be used to: * - Clock the chip instead of MCLK * - Replace XTALIN with a user defined frequency * - Generate the pixel clock for the LCD monitor (instead of VCLK) */ /* * It can be quite hard to calculate XCLK and MCLK if they don't run at the * same frequency. Luckily, until now all cards that need asynchrone clock * speeds seem to have SCLK. * So this driver uses SCLK to clock the chip and XCLK to clock the memory. */ /* ------------------------------------------------------------------------- */ /* * PLL programming (Mach64 CT family) * * * This procedure sets the display fifo. The display fifo is a buffer that * contains data read from the video memory that waits to be processed by * the CRT controller. * * On the more modern Mach64 variants, the chip doesn't calculate the * interval after which the display fifo has to be reloaded from memory * automatically, the driver has to do it instead. */ #define Maximum_DSP_PRECISION 7 static u8 postdividers[] = {1,2,4,8,3}; static int aty_dsp_gt(const struct fb_info *info, u32 bpp, struct pll_ct *pll) { u32 dsp_off, dsp_on, dsp_xclks; u32 multiplier, divider, ras_multiplier, ras_divider, tmp; u8 vshift, xshift; s8 dsp_precision; multiplier = ((u32)pll->mclk_fb_div) * pll->vclk_post_div_real; divider = ((u32)pll->vclk_fb_div) * pll->xclk_ref_div; ras_multiplier = pll->xclkmaxrasdelay; ras_divider = 1; if (bpp>=8) divider = divider * (bpp >> 2); vshift = (6 - 2) - pll->xclk_post_div; /* FIFO is 64 bits wide in accelerator mode ... */ if (bpp == 0) vshift--; /* ... but only 32 bits in VGA mode. */ #ifdef CONFIG_FB_ATY_GENERIC_LCD if (pll->xres != 0) { struct atyfb_par *par = (struct atyfb_par *) info->par; multiplier = multiplier * par->lcd_width; divider = divider * pll->xres & ~7; ras_multiplier = ras_multiplier * par->lcd_width; ras_divider = ras_divider * pll->xres & ~7; } #endif /* If we don't do this, 32 bits for multiplier & divider won't be enough in certain situations! */ while (((multiplier | divider) & 1) == 0) { multiplier = multiplier >> 1; divider = divider >> 1; } /* Determine DSP precision first */ tmp = ((multiplier * pll->fifo_size) << vshift) / divider; for (dsp_precision = -5; tmp; dsp_precision++) tmp >>= 1; if (dsp_precision < 0) dsp_precision = 0; else if (dsp_precision > Maximum_DSP_PRECISION) dsp_precision = Maximum_DSP_PRECISION; xshift = 6 - dsp_precision; vshift += xshift; /* Move on to dsp_off */ dsp_off = ((multiplier * (pll->fifo_size - 1)) << vshift) / divider - (1 << (vshift - xshift)); /* if (bpp == 0) dsp_on = ((multiplier * 20 << vshift) + divider) / divider; else */ { dsp_on = ((multiplier << vshift) + divider) / divider; tmp = ((ras_multiplier << xshift) + ras_divider) / ras_divider; if (dsp_on < tmp) dsp_on = tmp; dsp_on = dsp_on + (tmp * 2) + (pll->xclkpagefaultdelay << xshift); } /* Calculate rounding factor and apply it to dsp_on */ tmp = ((1 << (Maximum_DSP_PRECISION - dsp_precision)) - 1) >> 1; dsp_on = ((dsp_on + tmp) / (tmp + 1)) * (tmp + 1); if (dsp_on >= ((dsp_off / (tmp + 1)) * (tmp + 1))) { dsp_on = dsp_off - (multiplier << vshift) / divider; dsp_on = (dsp_on / (tmp + 1)) * (tmp + 1); } /* Last but not least: dsp_xclks */ dsp_xclks = ((multiplier << (vshift + 5)) + divider) / divider; /* Get register values. */ pll->dsp_on_off = (dsp_on << 16) + dsp_off; pll->dsp_config = (dsp_precision << 20) | (pll->dsp_loop_latency << 16) | dsp_xclks; #ifdef DEBUG printk("atyfb(%s): dsp_config 0x%08x, dsp_on_off 0x%08x\n", __func__, pll->dsp_config, pll->dsp_on_off); #endif return 0; } static int aty_valid_pll_ct(const struct fb_info *info, u32 vclk_per, struct pll_ct *pll) { u32 q; struct atyfb_par *par = (struct atyfb_par *) info->par; int pllvclk; /* FIXME: use the VTB/GTB /{3,6,12} post dividers if they're better suited */ q = par->ref_clk_per * pll->pll_ref_div * 4 / vclk_per; if (q < 16*8 || q > 255*8) { printk(KERN_CRIT "atyfb: vclk out of range\n"); return -EINVAL; } else { pll->vclk_post_div = (q < 128*8); pll->vclk_post_div += (q < 64*8); pll->vclk_post_div += (q < 32*8); } pll->vclk_post_div_real = postdividers[pll->vclk_post_div]; // pll->vclk_post_div <<= 6; pll->vclk_fb_div = q * pll->vclk_post_div_real / 8; pllvclk = (1000000 * 2 * pll->vclk_fb_div) / (par->ref_clk_per * pll->pll_ref_div); #ifdef DEBUG printk("atyfb(%s): pllvclk=%d MHz, vclk=%d MHz\n", __func__, pllvclk, pllvclk / pll->vclk_post_div_real); #endif pll->pll_vclk_cntl = 0x03; /* VCLK = PLL_VCLK/VCLKx_POST */ /* Set ECP (scaler/overlay clock) divider */ if (par->pll_limits.ecp_max) { int ecp = pllvclk / pll->vclk_post_div_real; int ecp_div = 0; while (ecp > par->pll_limits.ecp_max && ecp_div < 2) { ecp >>= 1; ecp_div++; } pll->pll_vclk_cntl |= ecp_div << 4; } return 0; } static int aty_var_to_pll_ct(const struct fb_info *info, u32 vclk_per, u32 bpp, union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; int err; if ((err = aty_valid_pll_ct(info, vclk_per, &pll->ct))) return err; if (M64_HAS(GTB_DSP) && (err = aty_dsp_gt(info, bpp, &pll->ct))) return err; /*aty_calc_pll_ct(info, &pll->ct);*/ return 0; } static u32 aty_pll_to_var_ct(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 ret; ret = par->ref_clk_per * pll->ct.pll_ref_div * pll->ct.vclk_post_div_real / pll->ct.vclk_fb_div / 2; #ifdef CONFIG_FB_ATY_GENERIC_LCD if(pll->ct.xres > 0) { ret *= par->lcd_width; ret /= pll->ct.xres; } #endif #ifdef DEBUG printk("atyfb(%s): calculated 0x%08X(%i)\n", __func__, ret, ret); #endif return ret; } void aty_set_pll_ct(const struct fb_info *info, const union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u32 crtc_gen_cntl, lcd_gen_cntrl; u8 tmp, tmp2; lcd_gen_cntrl = 0; #ifdef DEBUG printk("atyfb(%s): about to program:\n" "pll_ext_cntl=0x%02x pll_gen_cntl=0x%02x pll_vclk_cntl=0x%02x\n", __func__, pll->ct.pll_ext_cntl, pll->ct.pll_gen_cntl, pll->ct.pll_vclk_cntl); printk("atyfb(%s): setting clock %lu for FeedBackDivider %i, ReferenceDivider %i, PostDivider %i(%i)\n", __func__, par->clk_wr_offset, pll->ct.vclk_fb_div, pll->ct.pll_ref_div, pll->ct.vclk_post_div, pll->ct.vclk_post_div_real); #endif #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { /* turn off LCD */ lcd_gen_cntrl = aty_ld_lcd(LCD_GEN_CNTL, par); aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl & ~LCD_ON, par); } #endif aty_st_8(CLOCK_CNTL, par->clk_wr_offset | CLOCK_STROBE, par); /* Temporarily switch to accelerator mode */ crtc_gen_cntl = aty_ld_le32(CRTC_GEN_CNTL, par); if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl | CRTC_EXT_DISP_EN, par); /* Reset VCLK generator */ aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); /* Set post-divider */ tmp2 = par->clk_wr_offset << 1; tmp = aty_ld_pll_ct(VCLK_POST_DIV, par); tmp &= ~(0x03U << tmp2); tmp |= ((pll->ct.vclk_post_div & 0x03U) << tmp2); aty_st_pll_ct(VCLK_POST_DIV, tmp, par); /* Set extended post-divider */ tmp = aty_ld_pll_ct(PLL_EXT_CNTL, par); tmp &= ~(0x10U << par->clk_wr_offset); tmp &= 0xF0U; tmp |= pll->ct.pll_ext_cntl; aty_st_pll_ct(PLL_EXT_CNTL, tmp, par); /* Set feedback divider */ tmp = VCLK0_FB_DIV + par->clk_wr_offset; aty_st_pll_ct(tmp, (pll->ct.vclk_fb_div & 0xFFU), par); aty_st_pll_ct(PLL_GEN_CNTL, (pll->ct.pll_gen_cntl & (~(PLL_OVERRIDE | PLL_MCLK_RST))) | OSC_EN, par); /* End VCLK generator reset */ aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl & ~(PLL_VCLK_RST), par); mdelay(5); aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); aty_st_pll_ct(PLL_VCLK_CNTL, pll->ct.pll_vclk_cntl, par); mdelay(1); /* Restore mode register */ if (!(crtc_gen_cntl & CRTC_EXT_DISP_EN)) aty_st_le32(CRTC_GEN_CNTL, crtc_gen_cntl, par); if (M64_HAS(GTB_DSP)) { u8 dll_cntl; if (M64_HAS(XL_DLL)) dll_cntl = 0x80; else if (par->ram_type >= SDRAM) dll_cntl = 0xa6; else dll_cntl = 0xa0; aty_st_pll_ct(DLL_CNTL, dll_cntl, par); aty_st_pll_ct(VFC_CNTL, 0x1b, par); aty_st_le32(DSP_CONFIG, pll->ct.dsp_config, par); aty_st_le32(DSP_ON_OFF, pll->ct.dsp_on_off, par); mdelay(10); aty_st_pll_ct(DLL_CNTL, dll_cntl, par); mdelay(10); aty_st_pll_ct(DLL_CNTL, dll_cntl | 0x40, par); mdelay(10); aty_st_pll_ct(DLL_CNTL, dll_cntl & ~0x40, par); } #ifdef CONFIG_FB_ATY_GENERIC_LCD if (par->lcd_table != 0) { /* restore LCD */ aty_st_lcd(LCD_GEN_CNTL, lcd_gen_cntrl, par); } #endif } static void __devinit aty_get_pll_ct(const struct fb_info *info, union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u8 tmp, clock; clock = aty_ld_8(CLOCK_CNTL, par) & 0x03U; tmp = clock << 1; pll->ct.vclk_post_div = (aty_ld_pll_ct(VCLK_POST_DIV, par) >> tmp) & 0x03U; pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par) & 0x0FU; pll->ct.vclk_fb_div = aty_ld_pll_ct(VCLK0_FB_DIV + clock, par) & 0xFFU; pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); pll->ct.mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); pll->ct.pll_gen_cntl = aty_ld_pll_ct(PLL_GEN_CNTL, par); pll->ct.pll_vclk_cntl = aty_ld_pll_ct(PLL_VCLK_CNTL, par); if (M64_HAS(GTB_DSP)) { pll->ct.dsp_config = aty_ld_le32(DSP_CONFIG, par); pll->ct.dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); } } static int __devinit aty_init_pll_ct(const struct fb_info *info, union aty_pll *pll) { struct atyfb_par *par = (struct atyfb_par *) info->par; u8 mpost_div, xpost_div, sclk_post_div_real; u32 q, memcntl, trp; u32 dsp_config, dsp_on_off, vga_dsp_config, vga_dsp_on_off; #ifdef DEBUG int pllmclk, pllsclk; #endif pll->ct.pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); pll->ct.xclk_post_div = pll->ct.pll_ext_cntl & 0x07; pll->ct.xclk_ref_div = 1; switch (pll->ct.xclk_post_div) { case 0: case 1: case 2: case 3: break; case 4: pll->ct.xclk_ref_div = 3; pll->ct.xclk_post_div = 0; break; default: printk(KERN_CRIT "atyfb: Unsupported xclk source: %d.\n", pll->ct.xclk_post_div); return -EINVAL; } pll->ct.mclk_fb_mult = 2; if(pll->ct.pll_ext_cntl & PLL_MFB_TIMES_4_2B) { pll->ct.mclk_fb_mult = 4; pll->ct.xclk_post_div -= 1; } #ifdef DEBUG printk("atyfb(%s): mclk_fb_mult=%d, xclk_post_div=%d\n", __func__, pll->ct.mclk_fb_mult, pll->ct.xclk_post_div); #endif memcntl = aty_ld_le32(MEM_CNTL, par); trp = (memcntl & 0x300) >> 8; pll->ct.xclkpagefaultdelay = ((memcntl & 0xc00) >> 10) + ((memcntl & 0x1000) >> 12) + trp + 2; pll->ct.xclkmaxrasdelay = ((memcntl & 0x70000) >> 16) + trp + 2; if (M64_HAS(FIFO_32)) { pll->ct.fifo_size = 32; } else { pll->ct.fifo_size = 24; pll->ct.xclkpagefaultdelay += 2; pll->ct.xclkmaxrasdelay += 3; } switch (par->ram_type) { case DRAM: if (info->fix.smem_len<=ONE_MB) { pll->ct.dsp_loop_latency = 10; } else { pll->ct.dsp_loop_latency = 8; pll->ct.xclkpagefaultdelay += 2; } break; case EDO: case PSEUDO_EDO: if (info->fix.smem_len<=ONE_MB) { pll->ct.dsp_loop_latency = 9; } else { pll->ct.dsp_loop_latency = 8; pll->ct.xclkpagefaultdelay += 1; } break; case SDRAM: if (info->fix.smem_len<=ONE_MB) { pll->ct.dsp_loop_latency = 11; } else { pll->ct.dsp_loop_latency = 10; pll->ct.xclkpagefaultdelay += 1; } break; case SGRAM: pll->ct.dsp_loop_latency = 8; pll->ct.xclkpagefaultdelay += 3; break; default: pll->ct.dsp_loop_latency = 11; pll->ct.xclkpagefaultdelay += 3; break; } if (pll->ct.xclkmaxrasdelay <= pll->ct.xclkpagefaultdelay) pll->ct.xclkmaxrasdelay = pll->ct.xclkpagefaultdelay + 1; /* Allow BIOS to override */ dsp_config = aty_ld_le32(DSP_CONFIG, par); dsp_on_off = aty_ld_le32(DSP_ON_OFF, par); vga_dsp_config = aty_ld_le32(VGA_DSP_CONFIG, par); vga_dsp_on_off = aty_ld_le32(VGA_DSP_ON_OFF, par); if (dsp_config) pll->ct.dsp_loop_latency = (dsp_config & DSP_LOOP_LATENCY) >> 16; #if 0 FIXME: is it relevant for us? if ((!dsp_on_off && !M64_HAS(RESET_3D)) || ((dsp_on_off == vga_dsp_on_off) && (!dsp_config || !((dsp_config ^ vga_dsp_config) & DSP_XCLKS_PER_QW)))) { vga_dsp_on_off &= VGA_DSP_OFF; vga_dsp_config &= VGA_DSP_XCLKS_PER_QW; if (ATIDivide(vga_dsp_on_off, vga_dsp_config, 5, 1) > 24) pll->ct.fifo_size = 32; else pll->ct.fifo_size = 24; } #endif /* Exit if the user does not want us to tamper with the clock rates of her chip. */ if (par->mclk_per == 0) { u8 mclk_fb_div, pll_ext_cntl; pll->ct.pll_ref_div = aty_ld_pll_ct(PLL_REF_DIV, par); pll_ext_cntl = aty_ld_pll_ct(PLL_EXT_CNTL, par); pll->ct.xclk_post_div_real = postdividers[pll_ext_cntl & 0x07]; mclk_fb_div = aty_ld_pll_ct(MCLK_FB_DIV, par); if (pll_ext_cntl & PLL_MFB_TIMES_4_2B) mclk_fb_div <<= 1; pll->ct.mclk_fb_div = mclk_fb_div; return 0; } pll->ct.pll_ref_div = par->pll_per * 2 * 255 / par->ref_clk_per; /* FIXME: use the VTB/GTB /3 post divider if it's better suited */ q = par->ref_clk_per * pll->ct.pll_ref_div * 8 / (pll->ct.mclk_fb_mult * par->xclk_per); if (q < 16*8 || q > 255*8) { printk(KERN_CRIT "atxfb: xclk out of range\n"); return -EINVAL; } else { xpost_div = (q < 128*8); xpost_div += (q < 64*8); xpost_div += (q < 32*8); } pll->ct.xclk_post_div_real = postdividers[xpost_div]; pll->ct.mclk_fb_div = q * pll->ct.xclk_post_div_real / 8; #ifdef CONFIG_PPC if (machine_is(powermac)) { /* Override PLL_EXT_CNTL & 0x07. */ pll->ct.xclk_post_div = xpost_div; pll->ct.xclk_ref_div = 1; } #endif #ifdef DEBUG pllmclk = (1000000 * pll->ct.mclk_fb_mult * pll->ct.mclk_fb_div) / (par->ref_clk_per * pll->ct.pll_ref_div); printk("atyfb(%s): pllmclk=%d MHz, xclk=%d MHz\n", __func__, pllmclk, pllmclk / pll->ct.xclk_post_div_real); #endif if (M64_HAS(SDRAM_MAGIC_PLL) && (par->ram_type >= SDRAM)) pll->ct.pll_gen_cntl = OSC_EN; else pll->ct.pll_gen_cntl = OSC_EN | DLL_PWDN /* | FORCE_DCLK_TRI_STATE */; if (M64_HAS(MAGIC_POSTDIV)) pll->ct.pll_ext_cntl = 0; else pll->ct.pll_ext_cntl = xpost_div; if (pll->ct.mclk_fb_mult == 4) pll->ct.pll_ext_cntl |= PLL_MFB_TIMES_4_2B; if (par->mclk_per == par->xclk_per) { pll->ct.pll_gen_cntl |= (xpost_div << 4); /* mclk == xclk */ } else { /* * The chip clock is not equal to the memory clock. * Therefore we will use sclk to clock the chip. */ pll->ct.pll_gen_cntl |= (6 << 4); /* mclk == sclk */ q = par->ref_clk_per * pll->ct.pll_ref_div * 4 / par->mclk_per; if (q < 16*8 || q > 255*8) { printk(KERN_CRIT "atyfb: mclk out of range\n"); return -EINVAL; } else { mpost_div = (q < 128*8); mpost_div += (q < 64*8); mpost_div += (q < 32*8); } sclk_post_div_real = postdividers[mpost_div]; pll->ct.sclk_fb_div = q * sclk_post_div_real / 8; pll->ct.spll_cntl2 = mpost_div << 4; #ifdef DEBUG pllsclk = (1000000 * 2 * pll->ct.sclk_fb_div) / (par->ref_clk_per * pll->ct.pll_ref_div); printk("atyfb(%s): use sclk, pllsclk=%d MHz, sclk=mclk=%d MHz\n", __func__, pllsclk, pllsclk / sclk_post_div_real); #endif } /* Disable the extra precision pixel clock controls since we do not use them. */ pll->ct.ext_vpll_cntl = aty_ld_pll_ct(EXT_VPLL_CNTL, par); pll->ct.ext_vpll_cntl &= ~(EXT_VPLL_EN | EXT_VPLL_VGA_EN | EXT_VPLL_INSYNC); return 0; } static void aty_resume_pll_ct(const struct fb_info *info, union aty_pll *pll) { struct atyfb_par *par = info->par; if (par->mclk_per != par->xclk_per) { /* * This disables the sclk, crashes the computer as reported: * aty_st_pll_ct(SPLL_CNTL2, 3, info); * * So it seems the sclk must be enabled before it is used; * so PLL_GEN_CNTL must be programmed *after* the sclk. */ aty_st_pll_ct(SCLK_FB_DIV, pll->ct.sclk_fb_div, par); aty_st_pll_ct(SPLL_CNTL2, pll->ct.spll_cntl2, par); /* * SCLK has been started. Wait for the PLL to lock. 5 ms * should be enough according to mach64 programmer's guide. */ mdelay(5); } aty_st_pll_ct(PLL_REF_DIV, pll->ct.pll_ref_div, par); aty_st_pll_ct(PLL_GEN_CNTL, pll->ct.pll_gen_cntl, par); aty_st_pll_ct(MCLK_FB_DIV, pll->ct.mclk_fb_div, par); aty_st_pll_ct(PLL_EXT_CNTL, pll->ct.pll_ext_cntl, par); aty_st_pll_ct(EXT_VPLL_CNTL, pll->ct.ext_vpll_cntl, par); } static int dummy(void) { return 0; } const struct aty_dac_ops aty_dac_ct = { .set_dac = (void *) dummy, }; const struct aty_pll_ops aty_pll_ct = { .var_to_pll = aty_var_to_pll_ct, .pll_to_var = aty_pll_to_var_ct, .set_pll = aty_set_pll_ct, .get_pll = aty_get_pll_ct, .init_pll = aty_init_pll_ct, .resume_pll = aty_resume_pll_ct, };