/* * Copyright (c) 2008 Oracle. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #ifndef _LINUX_RDS_H #define _LINUX_RDS_H #include <linux/types.h> /* These sparse annotated types shouldn't be in any user * visible header file. We should clean this up rather * than kludging around them. */ #ifndef __KERNEL__ #define __be16 u_int16_t #define __be32 u_int32_t #define __be64 u_int64_t #endif #define RDS_IB_ABI_VERSION 0x301 /* * setsockopt/getsockopt for SOL_RDS */ #define RDS_CANCEL_SENT_TO 1 #define RDS_GET_MR 2 #define RDS_FREE_MR 3 /* deprecated: RDS_BARRIER 4 */ #define RDS_RECVERR 5 #define RDS_CONG_MONITOR 6 #define RDS_GET_MR_FOR_DEST 7 /* * Control message types for SOL_RDS. * * CMSG_RDMA_ARGS (sendmsg) * Request a RDMA transfer to/from the specified * memory ranges. * The cmsg_data is a struct rds_rdma_args. * RDS_CMSG_RDMA_DEST (recvmsg, sendmsg) * Kernel informs application about intended * source/destination of a RDMA transfer * RDS_CMSG_RDMA_MAP (sendmsg) * Application asks kernel to map the given * memory range into a IB MR, and send the * R_Key along in an RDS extension header. * The cmsg_data is a struct rds_get_mr_args, * the same as for the GET_MR setsockopt. * RDS_CMSG_RDMA_STATUS (recvmsg) * Returns the status of a completed RDMA operation. */ #define RDS_CMSG_RDMA_ARGS 1 #define RDS_CMSG_RDMA_DEST 2 #define RDS_CMSG_RDMA_MAP 3 #define RDS_CMSG_RDMA_STATUS 4 #define RDS_CMSG_CONG_UPDATE 5 #define RDS_INFO_FIRST 10000 #define RDS_INFO_COUNTERS 10000 #define RDS_INFO_CONNECTIONS 10001 /* 10002 aka RDS_INFO_FLOWS is deprecated */ #define RDS_INFO_SEND_MESSAGES 10003 #define RDS_INFO_RETRANS_MESSAGES 10004 #define RDS_INFO_RECV_MESSAGES 10005 #define RDS_INFO_SOCKETS 10006 #define RDS_INFO_TCP_SOCKETS 10007 #define RDS_INFO_IB_CONNECTIONS 10008 #define RDS_INFO_CONNECTION_STATS 10009 #define RDS_INFO_IWARP_CONNECTIONS 10010 #define RDS_INFO_LAST 10010 struct rds_info_counter { u_int8_t name[32]; u_int64_t value; } __packed; #define RDS_INFO_CONNECTION_FLAG_SENDING 0x01 #define RDS_INFO_CONNECTION_FLAG_CONNECTING 0x02 #define RDS_INFO_CONNECTION_FLAG_CONNECTED 0x04 #define TRANSNAMSIZ 16 struct rds_info_connection { u_int64_t next_tx_seq; u_int64_t next_rx_seq; __be32 laddr; __be32 faddr; u_int8_t transport[TRANSNAMSIZ]; /* null term ascii */ u_int8_t flags; } __packed; struct rds_info_flow { __be32 laddr; __be32 faddr; u_int32_t bytes; __be16 lport; __be16 fport; } __packed; #define RDS_INFO_MESSAGE_FLAG_ACK 0x01 #define RDS_INFO_MESSAGE_FLAG_FAST_ACK 0x02 struct rds_info_message { u_int64_t seq; u_int32_t len; __be32 laddr; __be32 faddr; __be16 lport; __be16 fport; u_int8_t flags; } __packed; struct rds_info_socket { u_int32_t sndbuf; __be32 bound_addr; __be32 connected_addr; __be16 bound_port; __be16 connected_port; u_int32_t rcvbuf; u_int64_t inum; } __packed; struct rds_info_tcp_socket { __be32 local_addr; __be16 local_port; __be32 peer_addr; __be16 peer_port; u_int64_t hdr_rem; u_int64_t data_rem; u_int32_t last_sent_nxt; u_int32_t last_expected_una; u_int32_t last_seen_una; } __packed; #define RDS_IB_GID_LEN 16 struct rds_info_rdma_connection { __be32 src_addr; __be32 dst_addr; uint8_t src_gid[RDS_IB_GID_LEN]; uint8_t dst_gid[RDS_IB_GID_LEN]; uint32_t max_send_wr; uint32_t max_recv_wr; uint32_t max_send_sge; uint32_t rdma_mr_max; uint32_t rdma_mr_size; }; /* * Congestion monitoring. * Congestion control in RDS happens at the host connection * level by exchanging a bitmap marking congested ports. * By default, a process sleeping in poll() is always woken * up when the congestion map is updated. * With explicit monitoring, an application can have more * fine-grained control. * The application installs a 64bit mask value in the socket, * where each bit corresponds to a group of ports. * When a congestion update arrives, RDS checks the set of * ports that are now uncongested against the list bit mask * installed in the socket, and if they overlap, we queue a * cong_notification on the socket. * * To install the congestion monitor bitmask, use RDS_CONG_MONITOR * with the 64bit mask. * Congestion updates are received via RDS_CMSG_CONG_UPDATE * control messages. * * The correspondence between bits and ports is * 1 << (portnum % 64) */ #define RDS_CONG_MONITOR_SIZE 64 #define RDS_CONG_MONITOR_BIT(port) (((unsigned int) port) % RDS_CONG_MONITOR_SIZE) #define RDS_CONG_MONITOR_MASK(port) (1ULL << RDS_CONG_MONITOR_BIT(port)) /* * RDMA related types */ /* * This encapsulates a remote memory location. * In the current implementation, it contains the R_Key * of the remote memory region, and the offset into it * (so that the application does not have to worry about * alignment). */ typedef u_int64_t rds_rdma_cookie_t; struct rds_iovec { u_int64_t addr; u_int64_t bytes; }; struct rds_get_mr_args { struct rds_iovec vec; u_int64_t cookie_addr; uint64_t flags; }; struct rds_get_mr_for_dest_args { struct sockaddr_storage dest_addr; struct rds_iovec vec; u_int64_t cookie_addr; uint64_t flags; }; struct rds_free_mr_args { rds_rdma_cookie_t cookie; u_int64_t flags; }; struct rds_rdma_args { rds_rdma_cookie_t cookie; struct rds_iovec remote_vec; u_int64_t local_vec_addr; u_int64_t nr_local; u_int64_t flags; u_int64_t user_token; }; struct rds_rdma_notify { u_int64_t user_token; int32_t status; }; #define RDS_RDMA_SUCCESS 0 #define RDS_RDMA_REMOTE_ERROR 1 #define RDS_RDMA_CANCELED 2 #define RDS_RDMA_DROPPED 3 #define RDS_RDMA_OTHER_ERROR 4 /* * Common set of flags for all RDMA related structs */ #define RDS_RDMA_READWRITE 0x0001 #define RDS_RDMA_FENCE 0x0002 /* use FENCE for immediate send */ #define RDS_RDMA_INVALIDATE 0x0004 /* invalidate R_Key after freeing MR */ #define RDS_RDMA_USE_ONCE 0x0008 /* free MR after use */ #define RDS_RDMA_DONTWAIT 0x0010 /* Don't wait in SET_BARRIER */ #define RDS_RDMA_NOTIFY_ME 0x0020 /* Notify when operation completes */ #endif /* IB_RDS_H */