| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| | |
* 'for-linus' of git://git.infradead.org/ubi-2.6:
UBI: remove unused variable
UBI: add me to MAINTAINERS
JFFS2: add UBI support
UBI: Unsorted Block Images
|
| |
| |
| |
| | |
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
| |
| |
| |
| | |
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
|
| |
| |
| |
| |
| |
| |
| | |
This patch make JFFS2 able to work with UBI volumes via the emulated MTD
devices which are directly mapped to these volumes.
Signed-off-by: Artem Bityutskiy <dedekind@infradead.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/ocfs2
* 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfasheh/ocfs2: (27 commits)
ocfs2: Cache extent records
ocfs2: Remember rw lock level during direct io
ocfs2: Fix up i_blocks calculation to know about holes
ocfs2: Fix extent lookup to return true size of holes
ocfs2: Read from an unwritten extent returns zeros
ocfs2: make room for unwritten extents flag
ocfs2: Use own splice write actor
ocfs2: Use do_sync_mapping_range() in ocfs2_zero_tail_for_truncate()
[PATCH] Turn do_sync_file_range() into do_sync_mapping_range()
ocfs2: zero tail of sparse files on truncate
ocfs2: Teach ocfs2_get_block() about holes
ocfs2: remove ocfs2_prepare_write() and ocfs2_commit_write()
ocfs2: teach ocfs2_file_aio_write() about sparse files
ocfs2: Turn off shared writeable mmap for local files systems with holes.
ocfs2: abstract out allocation locking
ocfs2: teach extend/truncate about sparse files
ocfs2: temporarily remove extent map caching
ocfs2: sparse b-tree support
ocfs2: small cleanup of ocfs2_request_delete()
ocfs2: remove unused code
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The extent map code was ripped out earlier because of an inability to deal
with holes. This patch adds back a simpler caching scheme requiring far less
code.
Our old extent map caching was designed back when meta data block caching in
Ocfs2 didn't work very well, resulting in many disk reads. These days our
metadata caching is much better, resulting in no un-necessary disk reads. As
a result, extent caching doesn't have to be as fancy, nor does it have to
cache as many extents. Keeping the last 3 extents seen should be sufficient
to give us a small performance boost on some streaming workloads.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Cluster locking might have been redone because a direct write won't
complete, so this needs to be reflected in the iocb.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Older file systems which didn't support holes did a dumb calculation of
i_blocks based on i_size. This is no longer accurate, so fix things up to
take actual allocation into account.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Initially, we had wired things to return a size '1' of holes. Cook up a
small amount of code to find the next extent and calculate the number of
clusters between the virtual offset and the next allocated extent.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Return an optional extent flags field from our lookup functions and wire up
callers to treat unwritten regions as holes for the purpose of returning
zeros to the user.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Due to the size of our group bitmaps, we'll never have a leaf node extent
record with more than 16 bits worth of clusters. Split e_clusters up so that
leaf nodes can get a flags field where we can mark unwritten extents.
Interior nodes whose length references all the child nodes beneath it can't
split their e_clusters field, so we use a union to preserve sizing there.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We need to fill holes during a splice write. Provide our own splice write
actor which can call ocfs2_file_buffered_write() with a splice-specific
callback.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Do this instead of filemap_fdatawrite() - this way we sync only the
range between i_size and the cluster boundary.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
do_sync_file_range() accepts a file * from which it takes an address_space to
sync. Abstract out the bulk of the function into do_sync_mapping_range()
which takes the address_space directly. This way callers who want to sync an
address_space directly can take advantage of the functionality provided.
do_sync_file_range() is preserved as a small wrapper around
do_sync_mapping_range().
Ocfs2 in particular would like to use this to initiate a sync of a specific
inode range during truncate, where a file * may not be available.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Since we don't zero on extend anymore, truncate needs to be fixed up to zero
the part of a file between i_size and and end of it's cluster. Otherwise a
subsequent extend could expose bad data.
This introduced a new helper, which can be used in ocfs2_write().
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
ocfs2_get_block() didn't understand sparse files, fix that. Also remove some
code that isn't really useful anymore. We can fix up
ocfs2_direct_IO_get_blocks() at the same time.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
These are no longer used, and can't handle file systems with sparse file
allocation.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Unfortunately, ocfs2 can no longer make use of generic_file_aio_write_nlock()
because allocating writes will require zeroing of pages adjacent to the I/O
for cluster sizes greater than page size.
Implement a custom file write here, which can order page locks for zeroing.
This also has the advantage that cluster locks can easily be ordered outside
of the page locks.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | | |
This will be turned back on once we can do allocation in ->page_mkwrite().
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Right now, file allocation for ocfs2 is done within ocfs2_extend_file(),
which is either called from ->setattr() (for an i_size change), or at the
top of ocfs2_file_aio_write().
Inodes on file systems with sparse file support will want to do their
allocation during the actual write call.
In either case the cluster locking decisions are the same. We abstract out
that code into a new function, ocfs2_lock_allocators() which will be used by
a later patch to enable writing to sparse files.
This also provides a nice cleanup of ocfs2_extend_allocation().
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For ocfs2_truncate_file(), we eliminate the "simple" truncate case which no
longer exists since i_size is not tied to i_clusters. In
ocfs2_extend_file(), we skip the allocation / page zeroing code for file
systems which understand sparse files.
The core truncate code is changed to do a bottom up tree traversal. This
gets abstracted out into it's own function. To make things more readable,
most of the special case handling for in-inode extents from
ocfs2_do_truncate() is also removed.
Though write support for sparse files comes in a later patch, we at least
update ocfs2_prepare_inode_for_write() to skip allocation for sparse files.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The code in extent_map.c is not prepared to deal with a subtree being
rotated between lookups. This can happen when filling holes in sparse files.
Instead of a lengthy patch to update the code (which would likely lose the
benefit of caching subtree roots), we remove most of the algorithms and
implement a simple path based lookup. A less ambitious extent caching scheme
will be added in a later patch.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Introduce tree rotations into the b-tree code. This will allow ocfs2 to
support sparse files. Much of the added code is designed to be generic (in
the ocfs2 sense) so that it can later be re-used to implement large
extended attributes.
This patch only adds the rotation code and does minimal updates to callers
of the extent api.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
There are two checks in there (one for inode newness, one for other mounted
nodes) which are unnecessary, so remove them. The DLM will allow the trylock
in either case without any messaging overhead.
Removing these makes ocfs2_request_delete() a one liner function, so just
move the trylock out one level into ocfs2_query_inode_wipe().
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Remove node messaging code that becomes unused with the delete inode vote
removal.
[Removed even more cruft which I spotted during review --Mark]
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Ocfs2 currently does cluster-wide node messaging to check the open state of
an inode during delete. This patch removes that mechanism in favor of an
inode cluster lock which is taken at shared read when an inode is first read
and dropped in clear_inode(). This allows a deleting node to test the
liveness of an inode by attempting to take an exclusive lock.
Signed-off-by: Tiger Yang <tiger.yang@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We don't want to print anything at all in ocfs2_lookup() when getting an
error from ocfs2_iget() - it could be something as innocuous as a signal
being detected in the dlm.
ocfs2_permission() should filter on -ENOENT which ocfs2_meta_lock() can
return if the inode was deleted on another node.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We have noticed panic() hanging leading us to a situation in which
the node, while otherwise dead, is still disk heartbeating. This
leads to a hung cluster as the other nodes are waiting for this
node to stop disk heartbeating. This situation is only resolved
by power resetting the box.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | | |
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We don't want the extent map and uptodate cache destruction in
ocfs2_meta_lock_update() on a local mount, so skip that.
This fixes several bugs with uptodate being cleared on buffers and extent
maps being corrupted.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In dlm_migrate_all_locks(), we currently call cond_resched_lock() after
processing each lockres in a hash bucket. Move it outside the loop so as to
call it only after the entire hash bucket has been processed.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There is a possibility that dlm_remaster_locks could overwride node->state
with DLM_RECO_NODE_DATA_REQUESTED after dlm_reco_data_done_handler sets the
node->state to DLM_RECO_NODE_DATA_DONE. This could lead to recovery getting
stuck and requires a cluster reboot. Synchronize with dlm_reco_state_lock
spinlock.
Signed-off-by: Srinivas Eeda <srinivas.eeda@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6
* 'e1000-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6:
e1000: FIX: Stop raw interrupts disabled nag from RT
e1000: FIX: firmware handover bits
e1000: FIX: be ready for incoming irq at pci_request_irq
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Current e1000_xmit_frame spews raw interrupt disabled nag messages when
used with RT kernel patches. This patch uses spin_trylock_irqsave,
which allows RT patches to properly manage the irq semantics.
Signed-off-by: Mark Huth <mhuth@mvista.com>
Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Upon code inspection it was spotted that the firmware handover bit get/set
mismatched, which may have resulted in management issues on PCI-E
adapters. Setting them correctly may fix some management issues such
as arp routing etc.
Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
Signed-off-by: Bruce Allan <bruce.w.allan@intel.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| | |
DEBUG_SHIRQ code exposed that e1000 was not ready for incoming interrupts
after having called pci_request_irq. This obviously requires us to finish
our software setup which assigns the irq handler before we request the
irq.
Signed-off-by: Auke Kok <auke-jan.h.kok@intel.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
* 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband: (49 commits)
IB: Set class_dev->dev in core for nice device symlink
IB/ehca: Implement modify_port
IB/umad: Clarify documentation of transaction ID
IPoIB/cm: spin_lock_irqsave() -> spin_lock_irq() replacements
IB/mad: Change SMI to use enums rather than magic return codes
IB/umad: Implement GRH handling for sent/received MADs
IB/ipoib: Use ib_init_ah_from_path to initialize ah_attr
IB/sa: Set src_path_bits correctly in ib_init_ah_from_path()
IB/ucm: Simplify ib_ucm_event()
RDMA/ucma: Simplify ucma_get_event()
IB/mthca: Simplify CQ cleaning in mthca_free_qp()
IB/mthca: Fix mthca_write_mtt() on HCAs with hidden memory
IB/mthca: Update HCA firmware revisions
IB/ipath: Fix WC format drift between user and kernel space
IB/ipath: Check that a UD work request's address handle is valid
IB/ipath: Remove duplicate stuff from ipath_verbs.h
IB/ipath: Check reserved memory keys
IB/ipath: Fix unit selection when all CPU affinity bits set
IB/ipath: Don't allow QPs 0 and 1 to be opened multiple times
IB/ipath: Disable IB link earlier in shutdown sequence
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
All RDMA drivers except ehca set class_dev->dev to their dma_device
value (ehca leaves this unset). dma_device is the only value that
makes any sense, so move this assignment to core/sysfs.c. This reduce
the duplicated code in the rest of the drivers and gives ehca a nice
/sys/class/infiniband/ehcaX/device symlink.
Signed-off-by: Joachim Fenkes <fenkes@de.ibm.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add "Modify Port" verb support to eHCA driver. The IB communication
manager needs this to set the IsCM port capability bit when
initializing.
Signed-off-by: Joachim Fenkes <fenkes@de.ibm.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
| | |
| | |
| | |
| | |
| | | |
Signed-off-by: Hal Rosenstock <halr@voltaire.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
There are quite a few places in ipoib_cm.c where we know IRQs are
enabled because we do something that sleeps in the same function, so
we can convert several occurrences of spin_lock_irqsave() to a plain
spin_lock_irq(). This cleans up the source a little and makes the
code smaller too:
add/remove: 0/0 grow/shrink: 1/5 up/down: 3/-51 (-48)
function old new delta
ipoib_cm_tx_reap 403 406 +3
ipoib_cm_stale_task 146 145 -1
ipoib_cm_dev_stop 173 172 -1
ipoib_cm_tx_handler 964 956 -8
ipoib_cm_rx_handler 956 937 -19
ipoib_cm_skb_reap 212 190 -22
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Clarify code by changing return values from SMI functions to named
enum values instead of magic 0/1 values.
Signed-off-by: Hal Rosenstock <halr@voltaire.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We need to set the SGID index for routed MADs and pass received
GRH information to userspace when a MAD is received.
Signed-off-by: Sean Hefty <sean.hefty@intel.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
To support destinations that are not on the local IB subnet, IPoIB
should include the GRH information when constructing an address
handle. Using the existing ib_init_ah_from_path() call will do this
for us.
Signed-off-by: Sean Hefty <sean.hefty@intel.com>
|
| | |
| | |
| | |
| | |
| | |
| | | |
src_path_bits needs to mask off the base LID value.
Signed-off-by: Sean Hefty <sean.hefty@intel.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Use wait_event_interruptible() instead of a more complicated
open-coded equivalent.
Signed-off-by: Sean Hefty <sean.hefty@intel.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Use wait_event_interruptible() instead of a more complicated
open-coded equivalent.
Signed-off-by: Sean Hefty <sean.hefty@intel.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
mthca_free_qp() already has local variables to hold the QP's send_cq
and recv_cq, so we can slightly clean up the calls to mthca_cq_clean()
by using those local variables instead of expressions like
to_mcq(qp->ibqp.send_cq).
Also, by cleaning the recv_cq first, we can avoid worrying about
whether the QP is attached to an SRQ for the second call, because we
would only clean send_cq if send_cq is not equal to recv_cq, and that
means send_cq cannot have any receive completions from the QP being
destroyed.
All this work even improves the generated code a bit:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-5 (-5)
function old new delta
mthca_free_qp 510 505 -5
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit b2875d4c ("IB/mthca: Always fill MTTs from CPU") causes a crash
in mthca_write_mtt() with non-memfree HCAs that have their memory
hidden (that is, have only two PCI BARs instead of having a third BAR
that allows access to the RAM attached to the HCA) on 64-bit
architectures. This is because the commit just before, c20e20ab
("IB/mthca: Merge MR and FMR space on 64-bit systems") makes
dev->mr_table.fmr_mtt_buddy equal to &dev->mr_table.mtt_buddy and
hence mthca_write_mtt() tries to write directly into the HCA's MTT
table. However, since that table is in the HCA's memory, this is
impossible without the PCI BAR that gives access to that memory.
This causes a crash because mthca_tavor_write_mtt_seg() basically
tries to dereference some offset of a NULL pointer. Fix this by
adding a test of MTHCA_FLAG_FMR in mthca_write_mtt() so that we always
use the WRITE_MTT firmware command rather than writing directly if
FMRs are not enabled.
Signed-off-by: Roland Dreier <rolandd@cisco.com>
|