/* * drivers/cpufreq/cpufreq_interactive.c * * Copyright (C) 2010 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Author: Mike Chan (mike@android.com) * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include #include #include #include #include static atomic_t active_count = ATOMIC_INIT(0); struct cpufreq_interactive_cpuinfo { struct timer_list cpu_timer; int timer_idlecancel; u64 time_in_idle; u64 idle_exit_time; u64 timer_run_time; int idling; u64 target_set_time; u64 target_set_time_in_idle; struct cpufreq_policy *policy; struct cpufreq_frequency_table *freq_table; unsigned int target_freq; unsigned int floor_freq; u64 floor_validate_time; u64 hispeed_validate_time; int governor_enabled; unsigned int *load_history; unsigned int history_load_index; unsigned int total_avg_load; unsigned int total_load_history; unsigned int low_power_rate_history; unsigned int cpu_tune_value; }; static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo); /* Workqueues handle frequency scaling */ static struct task_struct *up_task; static struct workqueue_struct *down_wq; static struct work_struct freq_scale_down_work; static cpumask_t up_cpumask; static spinlock_t up_cpumask_lock; static cpumask_t down_cpumask; static spinlock_t down_cpumask_lock; static struct mutex set_speed_lock; static struct workqueue_struct *tune_wq; static struct work_struct tune_work; static cpumask_t tune_cpumask; static spinlock_t tune_cpumask_lock; static unsigned int sampling_periods; static unsigned int low_power_threshold; static unsigned int hi_perf_threshold; static unsigned int low_power_rate; static enum tune_values { LOW_POWER_TUNE = 0, DEFAULT_TUNE, HIGH_PERF_TUNE } cur_tune_value; #define MIN_GO_HISPEED_LOAD 70 #define DEFAULT_LOW_POWER_RATE 10 /* default number of sampling periods to average before hotplug-in decision */ #define DEFAULT_SAMPLING_PERIODS 10 #define DEFAULT_HI_PERF_THRESHOLD 80 #define DEFAULT_LOW_POWER_THRESHOLD 35 #define MAX_MIN_SAMPLE_TIME (80 * USEC_PER_MSEC) /* Hi speed to bump to from lo speed when load burst (default max) */ static u64 hispeed_freq; /* Go to hi speed when CPU load at or above this value. */ #define DEFAULT_GO_HISPEED_LOAD 95 static unsigned long go_hispeed_load; /* * The minimum amount of time to spend at a frequency before we can ramp down. */ #define DEFAULT_MIN_SAMPLE_TIME (20 * USEC_PER_MSEC) static unsigned long min_sample_time; /* * The sample rate of the timer used to increase frequency */ #define DEFAULT_TIMER_RATE (20 * USEC_PER_MSEC) static unsigned long timer_rate; #ifdef CONFIG_OMAP4_DPLL_CASCADING static unsigned long default_timer_rate; #endif /* * Wait this long before raising speed above hispeed, by default a single * timer interval. */ #define DEFAULT_ABOVE_HISPEED_DELAY DEFAULT_TIMER_RATE static unsigned long above_hispeed_delay_val; /* * Boost pulse to hispeed on touchscreen input. */ static int input_boost_val; struct cpufreq_interactive_inputopen { struct input_handle *handle; struct work_struct inputopen_work; }; static struct cpufreq_interactive_inputopen inputopen; /* * Non-zero means longer-term speed boost active. */ static int boost_val; static int cpufreq_governor_interactive(struct cpufreq_policy *policy, unsigned int event); #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE static #endif struct cpufreq_governor cpufreq_gov_interactive = { .name = "interactive", .governor = cpufreq_governor_interactive, .max_transition_latency = 10000000, .owner = THIS_MODULE, }; #ifdef CONFIG_OMAP4_DPLL_CASCADING void cpufreq_interactive_set_timer_rate(unsigned long val, unsigned int reset) { if (!reset) { default_timer_rate = timer_rate; timer_rate = val; } else { if (timer_rate == val) timer_rate = default_timer_rate; } } #endif static void cpufreq_interactive_timer(unsigned long data) { unsigned int delta_idle; unsigned int delta_time; int cpu_load; int load_since_change; u64 time_in_idle; u64 idle_exit_time; struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, data); u64 now_idle; unsigned int new_freq, new_tune_value; unsigned int index, i, j; unsigned long flags; smp_rmb(); if (!pcpu->governor_enabled) goto exit; /* * Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time, * this lets idle exit know the current idle time sample has * been processed, and idle exit can generate a new sample and * re-arm the timer. This prevents a concurrent idle * exit on that CPU from writing a new set of info at the same time * the timer function runs (the timer function can't use that info * until more time passes). */ time_in_idle = pcpu->time_in_idle; idle_exit_time = pcpu->idle_exit_time; now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time); smp_wmb(); /* If we raced with cancelling a timer, skip. */ if (!idle_exit_time) goto exit; delta_idle = (unsigned int) cputime64_sub(now_idle, time_in_idle); delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time, idle_exit_time); /* * If timer ran less than 1ms after short-term sample started, retry. */ if (delta_time < 1000) goto rearm; if (delta_idle > delta_time) cpu_load = 0; else cpu_load = 100 * (delta_time - delta_idle) / delta_time; delta_idle = (unsigned int) cputime64_sub(now_idle, pcpu->target_set_time_in_idle); delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time, pcpu->target_set_time); if ((delta_time == 0) || (delta_idle > delta_time)) load_since_change = 0; else load_since_change = 100 * (delta_time - delta_idle) / delta_time; /* * Choose greater of short-term load (since last idle timer * started or timer function re-armed itself) or long-term load * (since last frequency change). */ if (load_since_change > cpu_load) cpu_load = load_since_change; pcpu->load_history[pcpu->history_load_index] = cpu_load; pcpu->total_load_history = 0; pcpu->low_power_rate_history = 0; /* compute average load across in & out sampling periods */ for (i = 0, j = pcpu->history_load_index; i < sampling_periods; i++, j--) { pcpu->total_load_history += pcpu->load_history[j]; if (low_power_rate < sampling_periods) if (i < low_power_rate) pcpu->low_power_rate_history += pcpu->load_history[j]; if (j == 0) j = sampling_periods; } /* return to first element if we're at the circular buffer's end */ if (++pcpu->history_load_index == sampling_periods) pcpu->history_load_index = 0; else if (unlikely(pcpu->history_load_index > sampling_periods)) { /* * This not supposed to happen. * If we got here - means something is wrong. */ pr_err("%s: have gone beyond allocated buffer of history!\n", __func__); pcpu->history_load_index = 0; } pcpu->total_avg_load = pcpu->total_load_history / sampling_periods; if (pcpu->total_avg_load > hi_perf_threshold) new_tune_value = HIGH_PERF_TUNE; else if (pcpu->total_avg_load < low_power_threshold) new_tune_value = LOW_POWER_TUNE; else new_tune_value = DEFAULT_TUNE; if (new_tune_value != cur_tune_value) if ((pcpu->cpu_tune_value != new_tune_value) && ((new_tune_value == HIGH_PERF_TUNE) || (new_tune_value == LOW_POWER_TUNE))) { spin_lock_irqsave(&tune_cpumask_lock, flags); cpumask_set_cpu(data, &tune_cpumask); spin_unlock_irqrestore(&tune_cpumask_lock, flags); queue_work(tune_wq, &tune_work); } pcpu->cpu_tune_value = new_tune_value; if (cur_tune_value == LOW_POWER_TUNE) { if (low_power_rate < sampling_periods) cpu_load = pcpu->low_power_rate_history / low_power_rate; else cpu_load = pcpu->total_avg_load; } if (cpu_load >= go_hispeed_load || boost_val) { if (pcpu->target_freq <= pcpu->policy->min) { new_freq = hispeed_freq; } else { new_freq = pcpu->policy->max * cpu_load / 100; if (new_freq < hispeed_freq) new_freq = hispeed_freq; if (pcpu->target_freq == hispeed_freq && new_freq > hispeed_freq && cputime64_sub(pcpu->timer_run_time, pcpu->hispeed_validate_time) < above_hispeed_delay_val) { trace_cpufreq_interactive_notyet(data, cpu_load, pcpu->target_freq, new_freq); goto rearm; } } } else { new_freq = pcpu->policy->max * cpu_load / 100; } if (new_freq <= hispeed_freq) pcpu->hispeed_validate_time = pcpu->timer_run_time; if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table, new_freq, CPUFREQ_RELATION_H, &index)) { pr_warn_once("timer %d: cpufreq_frequency_table_target error\n", (int) data); goto rearm; } new_freq = pcpu->freq_table[index].frequency; /* * Do not scale below floor_freq unless we have been at or above the * floor frequency for the minimum sample time since last validated. */ if (new_freq < pcpu->floor_freq) { if (cputime64_sub(pcpu->timer_run_time, pcpu->floor_validate_time) < min_sample_time) { trace_cpufreq_interactive_notyet(data, cpu_load, pcpu->target_freq, new_freq); goto rearm; } } pcpu->floor_freq = new_freq; pcpu->floor_validate_time = pcpu->timer_run_time; if (pcpu->target_freq == new_freq) { trace_cpufreq_interactive_already(data, cpu_load, pcpu->target_freq, new_freq); goto rearm_if_notmax; } trace_cpufreq_interactive_target(data, cpu_load, pcpu->target_freq, new_freq); pcpu->target_set_time_in_idle = now_idle; pcpu->target_set_time = pcpu->timer_run_time; if (new_freq < pcpu->target_freq) { pcpu->target_freq = new_freq; spin_lock_irqsave(&down_cpumask_lock, flags); cpumask_set_cpu(data, &down_cpumask); spin_unlock_irqrestore(&down_cpumask_lock, flags); queue_work(down_wq, &freq_scale_down_work); } else { pcpu->target_freq = new_freq; spin_lock_irqsave(&up_cpumask_lock, flags); cpumask_set_cpu(data, &up_cpumask); spin_unlock_irqrestore(&up_cpumask_lock, flags); wake_up_process(up_task); } rearm_if_notmax: /* * Already set max speed and don't see a need to change that, * wait until next idle to re-evaluate, don't need timer. */ if (pcpu->target_freq == pcpu->policy->max) goto exit; rearm: if (!timer_pending(&pcpu->cpu_timer)) { /* * If already at min: if that CPU is idle, don't set timer. * Else cancel the timer if that CPU goes idle. We don't * need to re-evaluate speed until the next idle exit. */ if (pcpu->target_freq == pcpu->policy->min) { smp_rmb(); if (pcpu->idling) goto exit; pcpu->timer_idlecancel = 1; } pcpu->time_in_idle = get_cpu_idle_time_us( data, &pcpu->idle_exit_time); mod_timer(&pcpu->cpu_timer, jiffies + usecs_to_jiffies(timer_rate)); } exit: return; } static void cpufreq_interactive_tune(struct work_struct *work) { unsigned int cpu; cpumask_t tmp_mask; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; unsigned int max_total_avg_load = 0; unsigned int index; spin_lock_irqsave(&tune_cpumask_lock, flags); tmp_mask = tune_cpumask; cpumask_clear(&tune_cpumask); spin_unlock_irqrestore(&tune_cpumask_lock, flags); for_each_cpu(cpu, &tmp_mask) { unsigned int j; pcpu = &per_cpu(cpuinfo, cpu); smp_rmb(); if (!pcpu->governor_enabled) continue; mutex_lock(&set_speed_lock); for_each_cpu(j, pcpu->policy->cpus) { struct cpufreq_interactive_cpuinfo *pjcpu = &per_cpu(cpuinfo, j); if (pjcpu->total_avg_load > max_total_avg_load) max_total_avg_load = pjcpu->total_avg_load; } if ((max_total_avg_load > hi_perf_threshold) && (cur_tune_value != HIGH_PERF_TUNE)) { cur_tune_value = HIGH_PERF_TUNE; go_hispeed_load = MIN_GO_HISPEED_LOAD; min_sample_time = MAX_MIN_SAMPLE_TIME; hispeed_freq = pcpu->policy->max; } else if ((max_total_avg_load < low_power_threshold) && (cur_tune_value != LOW_POWER_TUNE)) { /* Boost down the performance */ go_hispeed_load = DEFAULT_GO_HISPEED_LOAD; min_sample_time = DEFAULT_MIN_SAMPLE_TIME; cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table, pcpu->policy->min, CPUFREQ_RELATION_H, &index); hispeed_freq = pcpu->freq_table[index+1].frequency; cur_tune_value = LOW_POWER_TUNE; } mutex_unlock(&set_speed_lock); } } static void cpufreq_interactive_idle_start(void) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, smp_processor_id()); int pending; if (!pcpu->governor_enabled) return; pcpu->idling = 1; smp_wmb(); pending = timer_pending(&pcpu->cpu_timer); if (pcpu->target_freq != pcpu->policy->min) { #ifdef CONFIG_SMP /* * Entering idle while not at lowest speed. On some * platforms this can hold the other CPU(s) at that speed * even though the CPU is idle. Set a timer to re-evaluate * speed so this idle CPU doesn't hold the other CPUs above * min indefinitely. This should probably be a quirk of * the CPUFreq driver. */ if (!pending) { pcpu->time_in_idle = get_cpu_idle_time_us( smp_processor_id(), &pcpu->idle_exit_time); pcpu->timer_idlecancel = 0; mod_timer(&pcpu->cpu_timer, jiffies + usecs_to_jiffies(timer_rate)); } #endif } else { /* * If at min speed and entering idle after load has * already been evaluated, and a timer has been set just in * case the CPU suddenly goes busy, cancel that timer. The * CPU didn't go busy; we'll recheck things upon idle exit. */ if (pending && pcpu->timer_idlecancel) { del_timer(&pcpu->cpu_timer); /* * Ensure last timer run time is after current idle * sample start time, so next idle exit will always * start a new idle sampling period. */ pcpu->idle_exit_time = 0; pcpu->timer_idlecancel = 0; } } } static void cpufreq_interactive_idle_end(void) { struct cpufreq_interactive_cpuinfo *pcpu = &per_cpu(cpuinfo, smp_processor_id()); pcpu->idling = 0; smp_wmb(); /* * Arm the timer for 1-2 ticks later if not already, and if the timer * function has already processed the previous load sampling * interval. (If the timer is not pending but has not processed * the previous interval, it is probably racing with us on another * CPU. Let it compute load based on the previous sample and then * re-arm the timer for another interval when it's done, rather * than updating the interval start time to be "now", which doesn't * give the timer function enough time to make a decision on this * run.) */ if (timer_pending(&pcpu->cpu_timer) == 0 && pcpu->timer_run_time >= pcpu->idle_exit_time && pcpu->governor_enabled) { pcpu->time_in_idle = get_cpu_idle_time_us(smp_processor_id(), &pcpu->idle_exit_time); pcpu->timer_idlecancel = 0; mod_timer(&pcpu->cpu_timer, jiffies + usecs_to_jiffies(timer_rate)); } } static int cpufreq_interactive_up_task(void *data) { unsigned int cpu; cpumask_t tmp_mask; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; while (1) { set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&up_cpumask_lock, flags); if (cpumask_empty(&up_cpumask)) { spin_unlock_irqrestore(&up_cpumask_lock, flags); schedule(); if (kthread_should_stop()) break; spin_lock_irqsave(&up_cpumask_lock, flags); } set_current_state(TASK_RUNNING); tmp_mask = up_cpumask; cpumask_clear(&up_cpumask); spin_unlock_irqrestore(&up_cpumask_lock, flags); for_each_cpu(cpu, &tmp_mask) { unsigned int j; unsigned int max_freq = 0; pcpu = &per_cpu(cpuinfo, cpu); smp_rmb(); if (!pcpu->governor_enabled) continue; mutex_lock(&set_speed_lock); for_each_cpu(j, pcpu->policy->cpus) { struct cpufreq_interactive_cpuinfo *pjcpu = &per_cpu(cpuinfo, j); if (pjcpu->target_freq > max_freq) max_freq = pjcpu->target_freq; } if (max_freq != pcpu->policy->cur) __cpufreq_driver_target(pcpu->policy, max_freq, CPUFREQ_RELATION_H); mutex_unlock(&set_speed_lock); trace_cpufreq_interactive_up(cpu, pcpu->target_freq, pcpu->policy->cur); } } return 0; } static void cpufreq_interactive_freq_down(struct work_struct *work) { unsigned int cpu; cpumask_t tmp_mask; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; spin_lock_irqsave(&down_cpumask_lock, flags); tmp_mask = down_cpumask; cpumask_clear(&down_cpumask); spin_unlock_irqrestore(&down_cpumask_lock, flags); for_each_cpu(cpu, &tmp_mask) { unsigned int j; unsigned int max_freq = 0; pcpu = &per_cpu(cpuinfo, cpu); smp_rmb(); if (!pcpu->governor_enabled) continue; mutex_lock(&set_speed_lock); for_each_cpu(j, pcpu->policy->cpus) { struct cpufreq_interactive_cpuinfo *pjcpu = &per_cpu(cpuinfo, j); if (pjcpu->target_freq > max_freq) max_freq = pjcpu->target_freq; } if (max_freq != pcpu->policy->cur) __cpufreq_driver_target(pcpu->policy, max_freq, CPUFREQ_RELATION_H); mutex_unlock(&set_speed_lock); trace_cpufreq_interactive_down(cpu, pcpu->target_freq, pcpu->policy->cur); } } static void cpufreq_interactive_boost(void) { int i; int anyboost = 0; unsigned long flags; struct cpufreq_interactive_cpuinfo *pcpu; spin_lock_irqsave(&up_cpumask_lock, flags); for_each_online_cpu(i) { pcpu = &per_cpu(cpuinfo, i); if (pcpu->target_freq < hispeed_freq) { pcpu->target_freq = hispeed_freq; cpumask_set_cpu(i, &up_cpumask); pcpu->target_set_time_in_idle = get_cpu_idle_time_us(i, &pcpu->target_set_time); pcpu->hispeed_validate_time = pcpu->target_set_time; anyboost = 1; } /* * Set floor freq and (re)start timer for when last * validated. */ pcpu->floor_freq = hispeed_freq; pcpu->floor_validate_time = ktime_to_us(ktime_get()); } spin_unlock_irqrestore(&up_cpumask_lock, flags); if (anyboost) wake_up_process(up_task); } /* * Pulsed boost on input event raises CPUs to hispeed_freq and lets * usual algorithm of min_sample_time decide when to allow speed * to drop. */ static void cpufreq_interactive_input_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { if (input_boost_val && type == EV_SYN && code == SYN_REPORT) { trace_cpufreq_interactive_boost("input"); cpufreq_interactive_boost(); } } static void cpufreq_interactive_input_open(struct work_struct *w) { struct cpufreq_interactive_inputopen *io = container_of(w, struct cpufreq_interactive_inputopen, inputopen_work); int error; error = input_open_device(io->handle); if (error) input_unregister_handle(io->handle); } static int cpufreq_interactive_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; pr_info("%s: connect to %s\n", __func__, dev->name); handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = "cpufreq_interactive"; error = input_register_handle(handle); if (error) goto err; inputopen.handle = handle; queue_work(down_wq, &inputopen.inputopen_work); return 0; err: kfree(handle); return error; } static void cpufreq_interactive_input_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } static const struct input_device_id cpufreq_interactive_ids[] = { { .flags = INPUT_DEVICE_ID_MATCH_EVBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .evbit = { BIT_MASK(EV_ABS) }, .absbit = { [BIT_WORD(ABS_MT_POSITION_X)] = BIT_MASK(ABS_MT_POSITION_X) | BIT_MASK(ABS_MT_POSITION_Y) }, }, /* multi-touch touchscreen */ { .flags = INPUT_DEVICE_ID_MATCH_KEYBIT | INPUT_DEVICE_ID_MATCH_ABSBIT, .keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) }, .absbit = { [BIT_WORD(ABS_X)] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) }, }, /* touchpad */ { }, }; static struct input_handler cpufreq_interactive_input_handler = { .event = cpufreq_interactive_input_event, .connect = cpufreq_interactive_input_connect, .disconnect = cpufreq_interactive_input_disconnect, .name = "cpufreq_interactive", .id_table = cpufreq_interactive_ids, }; static ssize_t show_hispeed_freq(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%llu\n", hispeed_freq); } static ssize_t store_hispeed_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; u64 val; ret = strict_strtoull(buf, 0, &val); if (ret < 0) return ret; hispeed_freq = val; return count; } static struct global_attr hispeed_freq_attr = __ATTR(hispeed_freq, 0644, show_hispeed_freq, store_hispeed_freq); static ssize_t show_go_hispeed_load(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", go_hispeed_load); } static ssize_t store_go_hispeed_load(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; go_hispeed_load = val; return count; } static struct global_attr go_hispeed_load_attr = __ATTR(go_hispeed_load, 0644, show_go_hispeed_load, store_go_hispeed_load); static ssize_t show_min_sample_time(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", min_sample_time); } static ssize_t store_min_sample_time(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; min_sample_time = val; return count; } static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644, show_min_sample_time, store_min_sample_time); static ssize_t show_above_hispeed_delay(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", above_hispeed_delay_val); } static ssize_t store_above_hispeed_delay(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; above_hispeed_delay_val = val; return count; } define_one_global_rw(above_hispeed_delay); static ssize_t show_timer_rate(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%lu\n", timer_rate); } static ssize_t store_timer_rate(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; timer_rate = val; return count; } static struct global_attr timer_rate_attr = __ATTR(timer_rate, 0644, show_timer_rate, store_timer_rate); static ssize_t show_input_boost(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", input_boost_val); } static ssize_t store_input_boost(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; input_boost_val = val; return count; } define_one_global_rw(input_boost); static ssize_t show_boost(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%d\n", boost_val); } static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; boost_val = val; if (boost_val) { trace_cpufreq_interactive_boost("on"); cpufreq_interactive_boost(); } else { trace_cpufreq_interactive_unboost("off"); } return count; } define_one_global_rw(boost); static ssize_t store_boostpulse(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = kstrtoul(buf, 0, &val); if (ret < 0) return ret; trace_cpufreq_interactive_boost("pulse"); cpufreq_interactive_boost(); return count; } static struct global_attr boostpulse = __ATTR(boostpulse, 0200, NULL, store_boostpulse); static ssize_t show_sampling_periods(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", sampling_periods); } static ssize_t store_sampling_periods(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned int val, t_mask = 0; unsigned int *temp; unsigned int j, i; struct cpufreq_interactive_cpuinfo *pcpu; ret = sscanf(buf, "%u", &val); if (ret != 1) return ret; if (val == sampling_periods) return count; mutex_lock(&set_speed_lock); for_each_present_cpu(j) { pcpu = &per_cpu(cpuinfo, j); ret = del_timer_sync(&pcpu->cpu_timer); if (ret) t_mask |= BIT(j); pcpu->history_load_index = 0; temp = kmalloc((sizeof(unsigned int) * val), GFP_KERNEL); if (!temp) { pr_err("%s:can't allocate memory for history\n", __func__); count = -ENOMEM; goto out; } memcpy(temp, pcpu->load_history, (min(sampling_periods, val) * sizeof(unsigned int))); if (val > sampling_periods) for (i = sampling_periods; i < val; i++) temp[i] = 50; kfree(pcpu->load_history); pcpu->load_history = temp; } out: if (!(count < 0 && val > sampling_periods)) sampling_periods = val; for_each_online_cpu(j) { pcpu = &per_cpu(cpuinfo, j); if (t_mask & BIT(j)) mod_timer(&pcpu->cpu_timer, jiffies + usecs_to_jiffies(timer_rate)); } mutex_unlock(&set_speed_lock); return count; } static struct global_attr sampling_periods_attr = __ATTR(sampling_periods, 0644, show_sampling_periods, store_sampling_periods); static ssize_t show_hi_perf_threshold(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", hi_perf_threshold); } static ssize_t store_hi_perf_threshold(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; hi_perf_threshold = val; return count; } static struct global_attr hi_perf_threshold_attr = __ATTR(hi_perf_threshold, 0644, show_hi_perf_threshold, store_hi_perf_threshold); static ssize_t show_low_power_threshold(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", low_power_threshold); } static ssize_t store_low_power_threshold(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; low_power_threshold = val; return count; } static struct global_attr low_power_threshold_attr = __ATTR(low_power_threshold, 0644, show_low_power_threshold, store_low_power_threshold); static ssize_t show_low_power_rate(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", low_power_rate); } static ssize_t store_low_power_rate(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { int ret; unsigned long val; ret = strict_strtoul(buf, 0, &val); if (ret < 0) return ret; low_power_rate = val; return count; } static struct global_attr low_power_rate_attr = __ATTR(low_power_rate, 0644, show_low_power_rate, store_low_power_rate); static struct attribute *interactive_attributes[] = { &hispeed_freq_attr.attr, &go_hispeed_load_attr.attr, &above_hispeed_delay.attr, &min_sample_time_attr.attr, &timer_rate_attr.attr, &input_boost.attr, &boost.attr, &boostpulse.attr, &low_power_threshold_attr.attr, &hi_perf_threshold_attr.attr, &sampling_periods_attr.attr, &low_power_rate_attr.attr, NULL, }; static struct attribute_group interactive_attr_group = { .attrs = interactive_attributes, .name = "interactive", }; static int cpufreq_governor_interactive(struct cpufreq_policy *policy, unsigned int event) { int rc; unsigned int j, i; struct cpufreq_interactive_cpuinfo *pcpu; struct cpufreq_frequency_table *freq_table; switch (event) { case CPUFREQ_GOV_START: if (!cpu_online(policy->cpu)) return -EINVAL; freq_table = cpufreq_frequency_get_table(policy->cpu); for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); pcpu->policy = policy; pcpu->target_freq = policy->cur; pcpu->freq_table = freq_table; pcpu->target_set_time_in_idle = get_cpu_idle_time_us(j, &pcpu->target_set_time); pcpu->floor_freq = pcpu->target_freq; pcpu->floor_validate_time = pcpu->target_set_time; pcpu->hispeed_validate_time = pcpu->target_set_time; pcpu->governor_enabled = 1; pcpu->load_history = kmalloc( (sizeof(unsigned int) * sampling_periods), GFP_KERNEL); if (!pcpu->load_history) return -ENOMEM; for (i = 0; i < sampling_periods; i++) pcpu->load_history[i] = 0; pcpu->history_load_index = 0; smp_wmb(); } if (!hispeed_freq) hispeed_freq = policy->max; /* * Do not register the idle hook and create sysfs * entries if we have already done so. */ if (atomic_inc_return(&active_count) > 1) return 0; rc = sysfs_create_group(cpufreq_global_kobject, &interactive_attr_group); if (rc) return rc; rc = input_register_handler(&cpufreq_interactive_input_handler); if (rc) pr_warn("%s: failed to register input handler\n", __func__); break; case CPUFREQ_GOV_STOP: for_each_cpu(j, policy->cpus) { pcpu = &per_cpu(cpuinfo, j); pcpu->governor_enabled = 0; smp_wmb(); del_timer_sync(&pcpu->cpu_timer); /* * Reset idle exit time since we may cancel the timer * before it can run after the last idle exit time, * to avoid tripping the check in idle exit for a timer * that is trying to run. */ pcpu->idle_exit_time = 0; kfree(pcpu->load_history); } flush_work(&freq_scale_down_work); flush_work(&tune_work); if (atomic_dec_return(&active_count) > 0) return 0; input_unregister_handler(&cpufreq_interactive_input_handler); sysfs_remove_group(cpufreq_global_kobject, &interactive_attr_group); break; case CPUFREQ_GOV_LIMITS: if (policy->max < policy->cur) __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > policy->cur) __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); break; } return 0; } static int cpufreq_interactive_idle_notifier(struct notifier_block *nb, unsigned long val, void *data) { switch (val) { case IDLE_START: cpufreq_interactive_idle_start(); break; case IDLE_END: cpufreq_interactive_idle_end(); break; } return 0; } static struct notifier_block cpufreq_interactive_idle_nb = { .notifier_call = cpufreq_interactive_idle_notifier, }; static int __init cpufreq_interactive_init(void) { unsigned int i; struct cpufreq_interactive_cpuinfo *pcpu; struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; go_hispeed_load = DEFAULT_GO_HISPEED_LOAD; min_sample_time = DEFAULT_MIN_SAMPLE_TIME; above_hispeed_delay_val = DEFAULT_ABOVE_HISPEED_DELAY; timer_rate = DEFAULT_TIMER_RATE; #ifdef CONFIG_OMAP4_DPLL_CASCADING default_timer_rate = DEFAULT_TIMER_RATE; #endif sampling_periods = DEFAULT_SAMPLING_PERIODS; hi_perf_threshold = DEFAULT_HI_PERF_THRESHOLD; low_power_threshold = DEFAULT_LOW_POWER_THRESHOLD; low_power_rate = DEFAULT_LOW_POWER_RATE; cur_tune_value = DEFAULT_TUNE; /* Initalize per-cpu timers */ for_each_possible_cpu(i) { pcpu = &per_cpu(cpuinfo, i); init_timer(&pcpu->cpu_timer); pcpu->cpu_timer.function = cpufreq_interactive_timer; pcpu->cpu_timer.data = i; pcpu->cpu_tune_value = DEFAULT_TUNE; } up_task = kthread_create(cpufreq_interactive_up_task, NULL, "kinteractiveup"); if (IS_ERR(up_task)) return PTR_ERR(up_task); sched_setscheduler_nocheck(up_task, SCHED_FIFO, ¶m); get_task_struct(up_task); /* No rescuer thread, bind to CPU queuing the work for possibly warm cache (probably doesn't matter much). */ down_wq = alloc_workqueue("knteractive_down", 0, 1); tune_wq = alloc_workqueue("knteractive_tune", 0, 1); if (!down_wq) goto err_freeuptask; INIT_WORK(&freq_scale_down_work, cpufreq_interactive_freq_down); INIT_WORK(&tune_work, cpufreq_interactive_tune); spin_lock_init(&up_cpumask_lock); spin_lock_init(&down_cpumask_lock); spin_lock_init(&tune_cpumask_lock); mutex_init(&set_speed_lock); idle_notifier_register(&cpufreq_interactive_idle_nb); INIT_WORK(&inputopen.inputopen_work, cpufreq_interactive_input_open); return cpufreq_register_governor(&cpufreq_gov_interactive); err_freeuptask: put_task_struct(up_task); return -ENOMEM; } #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE fs_initcall(cpufreq_interactive_init); #else module_init(cpufreq_interactive_init); #endif static void __exit cpufreq_interactive_exit(void) { cpufreq_unregister_governor(&cpufreq_gov_interactive); kthread_stop(up_task); put_task_struct(up_task); destroy_workqueue(down_wq); destroy_workqueue(tune_wq); } module_exit(cpufreq_interactive_exit); MODULE_AUTHOR("Mike Chan "); MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for " "Latency sensitive workloads"); MODULE_LICENSE("GPL");