/* File veth.c created by Kyle A. Lucke on Mon Aug 7 2000. */ /* * IBM eServer iSeries Virtual Ethernet Device Driver * Copyright (C) 2001 Kyle A. Lucke (klucke@us.ibm.com), IBM Corp. * Substantially cleaned up by: * Copyright (C) 2003 David Gibson <dwg@au1.ibm.com>, IBM Corporation. * Copyright (C) 2004-2005 Michael Ellerman, IBM Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * * * This module implements the virtual ethernet device for iSeries LPAR * Linux. It uses hypervisor message passing to implement an * ethernet-like network device communicating between partitions on * the iSeries. * * The iSeries LPAR hypervisor currently allows for up to 16 different * virtual ethernets. These are all dynamically configurable on * OS/400 partitions, but dynamic configuration is not supported under * Linux yet. An ethXX network device will be created for each * virtual ethernet this partition is connected to. * * - This driver is responsible for routing packets to and from other * partitions. The MAC addresses used by the virtual ethernets * contains meaning and must not be modified. * * - Having 2 virtual ethernets to the same remote partition DOES NOT * double the available bandwidth. The 2 devices will share the * available hypervisor bandwidth. * * - If you send a packet to your own mac address, it will just be * dropped, you won't get it on the receive side. * * - Multicast is implemented by sending the frame frame to every * other partition. It is the responsibility of the receiving * partition to filter the addresses desired. * * Tunable parameters: * * VETH_NUMBUFFERS: This compile time option defaults to 120. It * controls how much memory Linux will allocate per remote partition * it is communicating with. It can be thought of as the maximum * number of packets outstanding to a remote partition at a time. */ #include <linux/module.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/ethtool.h> #include <linux/if_ether.h> #include <linux/slab.h> #include <asm/abs_addr.h> #include <asm/iseries/mf.h> #include <asm/uaccess.h> #include <asm/firmware.h> #include <asm/iseries/hv_lp_config.h> #include <asm/iseries/hv_types.h> #include <asm/iseries/hv_lp_event.h> #include <asm/iommu.h> #include <asm/vio.h> #undef DEBUG MODULE_AUTHOR("Kyle Lucke <klucke@us.ibm.com>"); MODULE_DESCRIPTION("iSeries Virtual ethernet driver"); MODULE_LICENSE("GPL"); #define VETH_EVENT_CAP (0) #define VETH_EVENT_FRAMES (1) #define VETH_EVENT_MONITOR (2) #define VETH_EVENT_FRAMES_ACK (3) #define VETH_MAX_ACKS_PER_MSG (20) #define VETH_MAX_FRAMES_PER_MSG (6) struct veth_frames_data { u32 addr[VETH_MAX_FRAMES_PER_MSG]; u16 len[VETH_MAX_FRAMES_PER_MSG]; u32 eofmask; }; #define VETH_EOF_SHIFT (32-VETH_MAX_FRAMES_PER_MSG) struct veth_frames_ack_data { u16 token[VETH_MAX_ACKS_PER_MSG]; }; struct veth_cap_data { u8 caps_version; u8 rsvd1; u16 num_buffers; u16 ack_threshold; u16 rsvd2; u32 ack_timeout; u32 rsvd3; u64 rsvd4[3]; }; struct veth_lpevent { struct HvLpEvent base_event; union { struct veth_cap_data caps_data; struct veth_frames_data frames_data; struct veth_frames_ack_data frames_ack_data; } u; }; #define DRV_NAME "iseries_veth" #define DRV_VERSION "2.0" #define VETH_NUMBUFFERS (120) #define VETH_ACKTIMEOUT (1000000) /* microseconds */ #define VETH_MAX_MCAST (12) #define VETH_MAX_MTU (9000) #if VETH_NUMBUFFERS < 10 #define ACK_THRESHOLD (1) #elif VETH_NUMBUFFERS < 20 #define ACK_THRESHOLD (4) #elif VETH_NUMBUFFERS < 40 #define ACK_THRESHOLD (10) #else #define ACK_THRESHOLD (20) #endif #define VETH_STATE_SHUTDOWN (0x0001) #define VETH_STATE_OPEN (0x0002) #define VETH_STATE_RESET (0x0004) #define VETH_STATE_SENTMON (0x0008) #define VETH_STATE_SENTCAPS (0x0010) #define VETH_STATE_GOTCAPACK (0x0020) #define VETH_STATE_GOTCAPS (0x0040) #define VETH_STATE_SENTCAPACK (0x0080) #define VETH_STATE_READY (0x0100) struct veth_msg { struct veth_msg *next; struct veth_frames_data data; int token; int in_use; struct sk_buff *skb; struct device *dev; }; struct veth_lpar_connection { HvLpIndex remote_lp; struct delayed_work statemachine_wq; struct veth_msg *msgs; int num_events; struct veth_cap_data local_caps; struct kobject kobject; struct timer_list ack_timer; struct timer_list reset_timer; unsigned int reset_timeout; unsigned long last_contact; int outstanding_tx; spinlock_t lock; unsigned long state; HvLpInstanceId src_inst; HvLpInstanceId dst_inst; struct veth_lpevent cap_event, cap_ack_event; u16 pending_acks[VETH_MAX_ACKS_PER_MSG]; u32 num_pending_acks; int num_ack_events; struct veth_cap_data remote_caps; u32 ack_timeout; struct veth_msg *msg_stack_head; }; struct veth_port { struct device *dev; u64 mac_addr; HvLpIndexMap lpar_map; /* queue_lock protects the stopped_map and dev's queue. */ spinlock_t queue_lock; HvLpIndexMap stopped_map; /* mcast_gate protects promiscuous, num_mcast & mcast_addr. */ rwlock_t mcast_gate; int promiscuous; int num_mcast; u64 mcast_addr[VETH_MAX_MCAST]; struct kobject kobject; }; static HvLpIndex this_lp; static struct veth_lpar_connection *veth_cnx[HVMAXARCHITECTEDLPS]; /* = 0 */ static struct net_device *veth_dev[HVMAXARCHITECTEDVIRTUALLANS]; /* = 0 */ static int veth_start_xmit(struct sk_buff *skb, struct net_device *dev); static void veth_recycle_msg(struct veth_lpar_connection *, struct veth_msg *); static void veth_wake_queues(struct veth_lpar_connection *cnx); static void veth_stop_queues(struct veth_lpar_connection *cnx); static void veth_receive(struct veth_lpar_connection *, struct veth_lpevent *); static void veth_release_connection(struct kobject *kobject); static void veth_timed_ack(unsigned long ptr); static void veth_timed_reset(unsigned long ptr); /* * Utility functions */ #define veth_info(fmt, args...) \ printk(KERN_INFO DRV_NAME ": " fmt, ## args) #define veth_error(fmt, args...) \ printk(KERN_ERR DRV_NAME ": Error: " fmt, ## args) #ifdef DEBUG #define veth_debug(fmt, args...) \ printk(KERN_DEBUG DRV_NAME ": " fmt, ## args) #else #define veth_debug(fmt, args...) do {} while (0) #endif /* You must hold the connection's lock when you call this function. */ static inline void veth_stack_push(struct veth_lpar_connection *cnx, struct veth_msg *msg) { msg->next = cnx->msg_stack_head; cnx->msg_stack_head = msg; } /* You must hold the connection's lock when you call this function. */ static inline struct veth_msg *veth_stack_pop(struct veth_lpar_connection *cnx) { struct veth_msg *msg; msg = cnx->msg_stack_head; if (msg) cnx->msg_stack_head = cnx->msg_stack_head->next; return msg; } /* You must hold the connection's lock when you call this function. */ static inline int veth_stack_is_empty(struct veth_lpar_connection *cnx) { return cnx->msg_stack_head == NULL; } static inline HvLpEvent_Rc veth_signalevent(struct veth_lpar_connection *cnx, u16 subtype, HvLpEvent_AckInd ackind, HvLpEvent_AckType acktype, u64 token, u64 data1, u64 data2, u64 data3, u64 data4, u64 data5) { return HvCallEvent_signalLpEventFast(cnx->remote_lp, HvLpEvent_Type_VirtualLan, subtype, ackind, acktype, cnx->src_inst, cnx->dst_inst, token, data1, data2, data3, data4, data5); } static inline HvLpEvent_Rc veth_signaldata(struct veth_lpar_connection *cnx, u16 subtype, u64 token, void *data) { u64 *p = (u64 *) data; return veth_signalevent(cnx, subtype, HvLpEvent_AckInd_NoAck, HvLpEvent_AckType_ImmediateAck, token, p[0], p[1], p[2], p[3], p[4]); } struct veth_allocation { struct completion c; int num; }; static void veth_complete_allocation(void *parm, int number) { struct veth_allocation *vc = (struct veth_allocation *)parm; vc->num = number; complete(&vc->c); } static int veth_allocate_events(HvLpIndex rlp, int number) { struct veth_allocation vc = { COMPLETION_INITIALIZER_ONSTACK(vc.c), 0 }; mf_allocate_lp_events(rlp, HvLpEvent_Type_VirtualLan, sizeof(struct veth_lpevent), number, &veth_complete_allocation, &vc); wait_for_completion(&vc.c); return vc.num; } /* * sysfs support */ struct veth_cnx_attribute { struct attribute attr; ssize_t (*show)(struct veth_lpar_connection *, char *buf); ssize_t (*store)(struct veth_lpar_connection *, const char *buf); }; static ssize_t veth_cnx_attribute_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct veth_cnx_attribute *cnx_attr; struct veth_lpar_connection *cnx; cnx_attr = container_of(attr, struct veth_cnx_attribute, attr); cnx = container_of(kobj, struct veth_lpar_connection, kobject); if (!cnx_attr->show) return -EIO; return cnx_attr->show(cnx, buf); } #define CUSTOM_CNX_ATTR(_name, _format, _expression) \ static ssize_t _name##_show(struct veth_lpar_connection *cnx, char *buf)\ { \ return sprintf(buf, _format, _expression); \ } \ struct veth_cnx_attribute veth_cnx_attr_##_name = __ATTR_RO(_name) #define SIMPLE_CNX_ATTR(_name) \ CUSTOM_CNX_ATTR(_name, "%lu\n", (unsigned long)cnx->_name) SIMPLE_CNX_ATTR(outstanding_tx); SIMPLE_CNX_ATTR(remote_lp); SIMPLE_CNX_ATTR(num_events); SIMPLE_CNX_ATTR(src_inst); SIMPLE_CNX_ATTR(dst_inst); SIMPLE_CNX_ATTR(num_pending_acks); SIMPLE_CNX_ATTR(num_ack_events); CUSTOM_CNX_ATTR(ack_timeout, "%d\n", jiffies_to_msecs(cnx->ack_timeout)); CUSTOM_CNX_ATTR(reset_timeout, "%d\n", jiffies_to_msecs(cnx->reset_timeout)); CUSTOM_CNX_ATTR(state, "0x%.4lX\n", cnx->state); CUSTOM_CNX_ATTR(last_contact, "%d\n", cnx->last_contact ? jiffies_to_msecs(jiffies - cnx->last_contact) : 0); #define GET_CNX_ATTR(_name) (&veth_cnx_attr_##_name.attr) static struct attribute *veth_cnx_default_attrs[] = { GET_CNX_ATTR(outstanding_tx), GET_CNX_ATTR(remote_lp), GET_CNX_ATTR(num_events), GET_CNX_ATTR(reset_timeout), GET_CNX_ATTR(last_contact), GET_CNX_ATTR(state), GET_CNX_ATTR(src_inst), GET_CNX_ATTR(dst_inst), GET_CNX_ATTR(num_pending_acks), GET_CNX_ATTR(num_ack_events), GET_CNX_ATTR(ack_timeout), NULL }; static const struct sysfs_ops veth_cnx_sysfs_ops = { .show = veth_cnx_attribute_show }; static struct kobj_type veth_lpar_connection_ktype = { .release = veth_release_connection, .sysfs_ops = &veth_cnx_sysfs_ops, .default_attrs = veth_cnx_default_attrs }; struct veth_port_attribute { struct attribute attr; ssize_t (*show)(struct veth_port *, char *buf); ssize_t (*store)(struct veth_port *, const char *buf); }; static ssize_t veth_port_attribute_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct veth_port_attribute *port_attr; struct veth_port *port; port_attr = container_of(attr, struct veth_port_attribute, attr); port = container_of(kobj, struct veth_port, kobject); if (!port_attr->show) return -EIO; return port_attr->show(port, buf); } #define CUSTOM_PORT_ATTR(_name, _format, _expression) \ static ssize_t _name##_show(struct veth_port *port, char *buf) \ { \ return sprintf(buf, _format, _expression); \ } \ struct veth_port_attribute veth_port_attr_##_name = __ATTR_RO(_name) #define SIMPLE_PORT_ATTR(_name) \ CUSTOM_PORT_ATTR(_name, "%lu\n", (unsigned long)port->_name) SIMPLE_PORT_ATTR(promiscuous); SIMPLE_PORT_ATTR(num_mcast); CUSTOM_PORT_ATTR(lpar_map, "0x%X\n", port->lpar_map); CUSTOM_PORT_ATTR(stopped_map, "0x%X\n", port->stopped_map); CUSTOM_PORT_ATTR(mac_addr, "0x%llX\n", port->mac_addr); #define GET_PORT_ATTR(_name) (&veth_port_attr_##_name.attr) static struct attribute *veth_port_default_attrs[] = { GET_PORT_ATTR(mac_addr), GET_PORT_ATTR(lpar_map), GET_PORT_ATTR(stopped_map), GET_PORT_ATTR(promiscuous), GET_PORT_ATTR(num_mcast), NULL }; static const struct sysfs_ops veth_port_sysfs_ops = { .show = veth_port_attribute_show }; static struct kobj_type veth_port_ktype = { .sysfs_ops = &veth_port_sysfs_ops, .default_attrs = veth_port_default_attrs }; /* * LPAR connection code */ static inline void veth_kick_statemachine(struct veth_lpar_connection *cnx) { schedule_delayed_work(&cnx->statemachine_wq, 0); } static void veth_take_cap(struct veth_lpar_connection *cnx, struct veth_lpevent *event) { unsigned long flags; spin_lock_irqsave(&cnx->lock, flags); /* Receiving caps may mean the other end has just come up, so * we need to reload the instance ID of the far end */ cnx->dst_inst = HvCallEvent_getTargetLpInstanceId(cnx->remote_lp, HvLpEvent_Type_VirtualLan); if (cnx->state & VETH_STATE_GOTCAPS) { veth_error("Received a second capabilities from LPAR %d.\n", cnx->remote_lp); event->base_event.xRc = HvLpEvent_Rc_BufferNotAvailable; HvCallEvent_ackLpEvent((struct HvLpEvent *) event); } else { memcpy(&cnx->cap_event, event, sizeof(cnx->cap_event)); cnx->state |= VETH_STATE_GOTCAPS; veth_kick_statemachine(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_take_cap_ack(struct veth_lpar_connection *cnx, struct veth_lpevent *event) { unsigned long flags; spin_lock_irqsave(&cnx->lock, flags); if (cnx->state & VETH_STATE_GOTCAPACK) { veth_error("Received a second capabilities ack from LPAR %d.\n", cnx->remote_lp); } else { memcpy(&cnx->cap_ack_event, event, sizeof(cnx->cap_ack_event)); cnx->state |= VETH_STATE_GOTCAPACK; veth_kick_statemachine(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_take_monitor_ack(struct veth_lpar_connection *cnx, struct veth_lpevent *event) { unsigned long flags; spin_lock_irqsave(&cnx->lock, flags); veth_debug("cnx %d: lost connection.\n", cnx->remote_lp); /* Avoid kicking the statemachine once we're shutdown. * It's unnecessary and it could break veth_stop_connection(). */ if (! (cnx->state & VETH_STATE_SHUTDOWN)) { cnx->state |= VETH_STATE_RESET; veth_kick_statemachine(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_handle_ack(struct veth_lpevent *event) { HvLpIndex rlp = event->base_event.xTargetLp; struct veth_lpar_connection *cnx = veth_cnx[rlp]; BUG_ON(! cnx); switch (event->base_event.xSubtype) { case VETH_EVENT_CAP: veth_take_cap_ack(cnx, event); break; case VETH_EVENT_MONITOR: veth_take_monitor_ack(cnx, event); break; default: veth_error("Unknown ack type %d from LPAR %d.\n", event->base_event.xSubtype, rlp); }; } static void veth_handle_int(struct veth_lpevent *event) { HvLpIndex rlp = event->base_event.xSourceLp; struct veth_lpar_connection *cnx = veth_cnx[rlp]; unsigned long flags; int i, acked = 0; BUG_ON(! cnx); switch (event->base_event.xSubtype) { case VETH_EVENT_CAP: veth_take_cap(cnx, event); break; case VETH_EVENT_MONITOR: /* do nothing... this'll hang out here til we're dead, * and the hypervisor will return it for us. */ break; case VETH_EVENT_FRAMES_ACK: spin_lock_irqsave(&cnx->lock, flags); for (i = 0; i < VETH_MAX_ACKS_PER_MSG; ++i) { u16 msgnum = event->u.frames_ack_data.token[i]; if (msgnum < VETH_NUMBUFFERS) { veth_recycle_msg(cnx, cnx->msgs + msgnum); cnx->outstanding_tx--; acked++; } } if (acked > 0) { cnx->last_contact = jiffies; veth_wake_queues(cnx); } spin_unlock_irqrestore(&cnx->lock, flags); break; case VETH_EVENT_FRAMES: veth_receive(cnx, event); break; default: veth_error("Unknown interrupt type %d from LPAR %d.\n", event->base_event.xSubtype, rlp); }; } static void veth_handle_event(struct HvLpEvent *event) { struct veth_lpevent *veth_event = (struct veth_lpevent *)event; if (hvlpevent_is_ack(event)) veth_handle_ack(veth_event); else veth_handle_int(veth_event); } static int veth_process_caps(struct veth_lpar_connection *cnx) { struct veth_cap_data *remote_caps = &cnx->remote_caps; int num_acks_needed; /* Convert timer to jiffies */ cnx->ack_timeout = remote_caps->ack_timeout * HZ / 1000000; if ( (remote_caps->num_buffers == 0) || (remote_caps->ack_threshold > VETH_MAX_ACKS_PER_MSG) || (remote_caps->ack_threshold == 0) || (cnx->ack_timeout == 0) ) { veth_error("Received incompatible capabilities from LPAR %d.\n", cnx->remote_lp); return HvLpEvent_Rc_InvalidSubtypeData; } num_acks_needed = (remote_caps->num_buffers / remote_caps->ack_threshold) + 1; /* FIXME: locking on num_ack_events? */ if (cnx->num_ack_events < num_acks_needed) { int num; num = veth_allocate_events(cnx->remote_lp, num_acks_needed-cnx->num_ack_events); if (num > 0) cnx->num_ack_events += num; if (cnx->num_ack_events < num_acks_needed) { veth_error("Couldn't allocate enough ack events " "for LPAR %d.\n", cnx->remote_lp); return HvLpEvent_Rc_BufferNotAvailable; } } return HvLpEvent_Rc_Good; } /* FIXME: The gotos here are a bit dubious */ static void veth_statemachine(struct work_struct *work) { struct veth_lpar_connection *cnx = container_of(work, struct veth_lpar_connection, statemachine_wq.work); int rlp = cnx->remote_lp; int rc; spin_lock_irq(&cnx->lock); restart: if (cnx->state & VETH_STATE_RESET) { if (cnx->state & VETH_STATE_OPEN) HvCallEvent_closeLpEventPath(cnx->remote_lp, HvLpEvent_Type_VirtualLan); /* * Reset ack data. This prevents the ack_timer actually * doing anything, even if it runs one more time when * we drop the lock below. */ memset(&cnx->pending_acks, 0xff, sizeof (cnx->pending_acks)); cnx->num_pending_acks = 0; cnx->state &= ~(VETH_STATE_RESET | VETH_STATE_SENTMON | VETH_STATE_OPEN | VETH_STATE_SENTCAPS | VETH_STATE_GOTCAPACK | VETH_STATE_GOTCAPS | VETH_STATE_SENTCAPACK | VETH_STATE_READY); /* Clean up any leftover messages */ if (cnx->msgs) { int i; for (i = 0; i < VETH_NUMBUFFERS; ++i) veth_recycle_msg(cnx, cnx->msgs + i); } cnx->outstanding_tx = 0; veth_wake_queues(cnx); /* Drop the lock so we can do stuff that might sleep or * take other locks. */ spin_unlock_irq(&cnx->lock); del_timer_sync(&cnx->ack_timer); del_timer_sync(&cnx->reset_timer); spin_lock_irq(&cnx->lock); if (cnx->state & VETH_STATE_RESET) goto restart; /* Hack, wait for the other end to reset itself. */ if (! (cnx->state & VETH_STATE_SHUTDOWN)) { schedule_delayed_work(&cnx->statemachine_wq, 5 * HZ); goto out; } } if (cnx->state & VETH_STATE_SHUTDOWN) /* It's all over, do nothing */ goto out; if ( !(cnx->state & VETH_STATE_OPEN) ) { if (! cnx->msgs || (cnx->num_events < (2 + VETH_NUMBUFFERS)) ) goto cant_cope; HvCallEvent_openLpEventPath(rlp, HvLpEvent_Type_VirtualLan); cnx->src_inst = HvCallEvent_getSourceLpInstanceId(rlp, HvLpEvent_Type_VirtualLan); cnx->dst_inst = HvCallEvent_getTargetLpInstanceId(rlp, HvLpEvent_Type_VirtualLan); cnx->state |= VETH_STATE_OPEN; } if ( (cnx->state & VETH_STATE_OPEN) && !(cnx->state & VETH_STATE_SENTMON) ) { rc = veth_signalevent(cnx, VETH_EVENT_MONITOR, HvLpEvent_AckInd_DoAck, HvLpEvent_AckType_DeferredAck, 0, 0, 0, 0, 0, 0); if (rc == HvLpEvent_Rc_Good) { cnx->state |= VETH_STATE_SENTMON; } else { if ( (rc != HvLpEvent_Rc_PartitionDead) && (rc != HvLpEvent_Rc_PathClosed) ) veth_error("Error sending monitor to LPAR %d, " "rc = %d\n", rlp, rc); /* Oh well, hope we get a cap from the other * end and do better when that kicks us */ goto out; } } if ( (cnx->state & VETH_STATE_OPEN) && !(cnx->state & VETH_STATE_SENTCAPS)) { u64 *rawcap = (u64 *)&cnx->local_caps; rc = veth_signalevent(cnx, VETH_EVENT_CAP, HvLpEvent_AckInd_DoAck, HvLpEvent_AckType_ImmediateAck, 0, rawcap[0], rawcap[1], rawcap[2], rawcap[3], rawcap[4]); if (rc == HvLpEvent_Rc_Good) { cnx->state |= VETH_STATE_SENTCAPS; } else { if ( (rc != HvLpEvent_Rc_PartitionDead) && (rc != HvLpEvent_Rc_PathClosed) ) veth_error("Error sending caps to LPAR %d, " "rc = %d\n", rlp, rc); /* Oh well, hope we get a cap from the other * end and do better when that kicks us */ goto out; } } if ((cnx->state & VETH_STATE_GOTCAPS) && !(cnx->state & VETH_STATE_SENTCAPACK)) { struct veth_cap_data *remote_caps = &cnx->remote_caps; memcpy(remote_caps, &cnx->cap_event.u.caps_data, sizeof(*remote_caps)); spin_unlock_irq(&cnx->lock); rc = veth_process_caps(cnx); spin_lock_irq(&cnx->lock); /* We dropped the lock, so recheck for anything which * might mess us up */ if (cnx->state & (VETH_STATE_RESET|VETH_STATE_SHUTDOWN)) goto restart; cnx->cap_event.base_event.xRc = rc; HvCallEvent_ackLpEvent((struct HvLpEvent *)&cnx->cap_event); if (rc == HvLpEvent_Rc_Good) cnx->state |= VETH_STATE_SENTCAPACK; else goto cant_cope; } if ((cnx->state & VETH_STATE_GOTCAPACK) && (cnx->state & VETH_STATE_GOTCAPS) && !(cnx->state & VETH_STATE_READY)) { if (cnx->cap_ack_event.base_event.xRc == HvLpEvent_Rc_Good) { /* Start the ACK timer */ cnx->ack_timer.expires = jiffies + cnx->ack_timeout; add_timer(&cnx->ack_timer); cnx->state |= VETH_STATE_READY; } else { veth_error("Caps rejected by LPAR %d, rc = %d\n", rlp, cnx->cap_ack_event.base_event.xRc); goto cant_cope; } } out: spin_unlock_irq(&cnx->lock); return; cant_cope: /* FIXME: we get here if something happens we really can't * cope with. The link will never work once we get here, and * all we can do is not lock the rest of the system up */ veth_error("Unrecoverable error on connection to LPAR %d, shutting down" " (state = 0x%04lx)\n", rlp, cnx->state); cnx->state |= VETH_STATE_SHUTDOWN; spin_unlock_irq(&cnx->lock); } static int veth_init_connection(u8 rlp) { struct veth_lpar_connection *cnx; struct veth_msg *msgs; int i; if ( (rlp == this_lp) || ! HvLpConfig_doLpsCommunicateOnVirtualLan(this_lp, rlp) ) return 0; cnx = kzalloc(sizeof(*cnx), GFP_KERNEL); if (! cnx) return -ENOMEM; cnx->remote_lp = rlp; spin_lock_init(&cnx->lock); INIT_DELAYED_WORK(&cnx->statemachine_wq, veth_statemachine); init_timer(&cnx->ack_timer); cnx->ack_timer.function = veth_timed_ack; cnx->ack_timer.data = (unsigned long) cnx; init_timer(&cnx->reset_timer); cnx->reset_timer.function = veth_timed_reset; cnx->reset_timer.data = (unsigned long) cnx; cnx->reset_timeout = 5 * HZ * (VETH_ACKTIMEOUT / 1000000); memset(&cnx->pending_acks, 0xff, sizeof (cnx->pending_acks)); veth_cnx[rlp] = cnx; /* This gets us 1 reference, which is held on behalf of the driver * infrastructure. It's released at module unload. */ kobject_init(&cnx->kobject, &veth_lpar_connection_ktype); msgs = kcalloc(VETH_NUMBUFFERS, sizeof(struct veth_msg), GFP_KERNEL); if (! msgs) { veth_error("Can't allocate buffers for LPAR %d.\n", rlp); return -ENOMEM; } cnx->msgs = msgs; for (i = 0; i < VETH_NUMBUFFERS; i++) { msgs[i].token = i; veth_stack_push(cnx, msgs + i); } cnx->num_events = veth_allocate_events(rlp, 2 + VETH_NUMBUFFERS); if (cnx->num_events < (2 + VETH_NUMBUFFERS)) { veth_error("Can't allocate enough events for LPAR %d.\n", rlp); return -ENOMEM; } cnx->local_caps.num_buffers = VETH_NUMBUFFERS; cnx->local_caps.ack_threshold = ACK_THRESHOLD; cnx->local_caps.ack_timeout = VETH_ACKTIMEOUT; return 0; } static void veth_stop_connection(struct veth_lpar_connection *cnx) { if (!cnx) return; spin_lock_irq(&cnx->lock); cnx->state |= VETH_STATE_RESET | VETH_STATE_SHUTDOWN; veth_kick_statemachine(cnx); spin_unlock_irq(&cnx->lock); /* There's a slim chance the reset code has just queued the * statemachine to run in five seconds. If so we need to cancel * that and requeue the work to run now. */ if (cancel_delayed_work(&cnx->statemachine_wq)) { spin_lock_irq(&cnx->lock); veth_kick_statemachine(cnx); spin_unlock_irq(&cnx->lock); } /* Wait for the state machine to run. */ flush_scheduled_work(); } static void veth_destroy_connection(struct veth_lpar_connection *cnx) { if (!cnx) return; if (cnx->num_events > 0) mf_deallocate_lp_events(cnx->remote_lp, HvLpEvent_Type_VirtualLan, cnx->num_events, NULL, NULL); if (cnx->num_ack_events > 0) mf_deallocate_lp_events(cnx->remote_lp, HvLpEvent_Type_VirtualLan, cnx->num_ack_events, NULL, NULL); kfree(cnx->msgs); veth_cnx[cnx->remote_lp] = NULL; kfree(cnx); } static void veth_release_connection(struct kobject *kobj) { struct veth_lpar_connection *cnx; cnx = container_of(kobj, struct veth_lpar_connection, kobject); veth_stop_connection(cnx); veth_destroy_connection(cnx); } /* * net_device code */ static int veth_open(struct net_device *dev) { netif_start_queue(dev); return 0; } static int veth_close(struct net_device *dev) { netif_stop_queue(dev); return 0; } static int veth_change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 68) || (new_mtu > VETH_MAX_MTU)) return -EINVAL; dev->mtu = new_mtu; return 0; } static void veth_set_multicast_list(struct net_device *dev) { struct veth_port *port = netdev_priv(dev); unsigned long flags; write_lock_irqsave(&port->mcast_gate, flags); if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > VETH_MAX_MCAST)) { port->promiscuous = 1; } else { struct netdev_hw_addr *ha; port->promiscuous = 0; /* Update table */ port->num_mcast = 0; netdev_for_each_mc_addr(ha, dev) { u8 *addr = ha->addr; u64 xaddr = 0; if (addr[0] & 0x01) {/* multicast address? */ memcpy(&xaddr, addr, ETH_ALEN); port->mcast_addr[port->num_mcast] = xaddr; port->num_mcast++; } } } write_unlock_irqrestore(&port->mcast_gate, flags); } static void veth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strncpy(info->driver, DRV_NAME, sizeof(info->driver) - 1); info->driver[sizeof(info->driver) - 1] = '\0'; strncpy(info->version, DRV_VERSION, sizeof(info->version) - 1); info->version[sizeof(info->version) - 1] = '\0'; } static int veth_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { ecmd->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); ecmd->advertising = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); ecmd->port = PORT_FIBRE; ecmd->transceiver = XCVR_INTERNAL; ecmd->phy_address = 0; ecmd->speed = SPEED_1000; ecmd->duplex = DUPLEX_FULL; ecmd->autoneg = AUTONEG_ENABLE; ecmd->maxtxpkt = 120; ecmd->maxrxpkt = 120; return 0; } static u32 veth_get_link(struct net_device *dev) { return 1; } static const struct ethtool_ops ops = { .get_drvinfo = veth_get_drvinfo, .get_settings = veth_get_settings, .get_link = veth_get_link, }; static const struct net_device_ops veth_netdev_ops = { .ndo_open = veth_open, .ndo_stop = veth_close, .ndo_start_xmit = veth_start_xmit, .ndo_change_mtu = veth_change_mtu, .ndo_set_multicast_list = veth_set_multicast_list, .ndo_set_mac_address = NULL, .ndo_validate_addr = eth_validate_addr, }; static struct net_device *veth_probe_one(int vlan, struct vio_dev *vio_dev) { struct net_device *dev; struct veth_port *port; struct device *vdev = &vio_dev->dev; int i, rc; const unsigned char *mac_addr; mac_addr = vio_get_attribute(vio_dev, "local-mac-address", NULL); if (mac_addr == NULL) mac_addr = vio_get_attribute(vio_dev, "mac-address", NULL); if (mac_addr == NULL) { veth_error("Unable to fetch MAC address from device tree.\n"); return NULL; } dev = alloc_etherdev(sizeof (struct veth_port)); if (! dev) { veth_error("Unable to allocate net_device structure!\n"); return NULL; } port = netdev_priv(dev); spin_lock_init(&port->queue_lock); rwlock_init(&port->mcast_gate); port->stopped_map = 0; for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { HvLpVirtualLanIndexMap map; if (i == this_lp) continue; map = HvLpConfig_getVirtualLanIndexMapForLp(i); if (map & (0x8000 >> vlan)) port->lpar_map |= (1 << i); } port->dev = vdev; memcpy(dev->dev_addr, mac_addr, ETH_ALEN); dev->mtu = VETH_MAX_MTU; memcpy(&port->mac_addr, mac_addr, ETH_ALEN); dev->netdev_ops = &veth_netdev_ops; SET_ETHTOOL_OPS(dev, &ops); SET_NETDEV_DEV(dev, vdev); rc = register_netdev(dev); if (rc != 0) { veth_error("Failed registering net device for vlan%d.\n", vlan); free_netdev(dev); return NULL; } kobject_init(&port->kobject, &veth_port_ktype); if (0 != kobject_add(&port->kobject, &dev->dev.kobj, "veth_port")) veth_error("Failed adding port for %s to sysfs.\n", dev->name); veth_info("%s attached to iSeries vlan %d (LPAR map = 0x%.4X)\n", dev->name, vlan, port->lpar_map); return dev; } /* * Tx path */ static int veth_transmit_to_one(struct sk_buff *skb, HvLpIndex rlp, struct net_device *dev) { struct veth_lpar_connection *cnx = veth_cnx[rlp]; struct veth_port *port = netdev_priv(dev); HvLpEvent_Rc rc; struct veth_msg *msg = NULL; unsigned long flags; if (! cnx) return 0; spin_lock_irqsave(&cnx->lock, flags); if (! (cnx->state & VETH_STATE_READY)) goto no_error; if ((skb->len - ETH_HLEN) > VETH_MAX_MTU) goto drop; msg = veth_stack_pop(cnx); if (! msg) goto drop; msg->in_use = 1; msg->skb = skb_get(skb); msg->data.addr[0] = dma_map_single(port->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(port->dev, msg->data.addr[0])) goto recycle_and_drop; msg->dev = port->dev; msg->data.len[0] = skb->len; msg->data.eofmask = 1 << VETH_EOF_SHIFT; rc = veth_signaldata(cnx, VETH_EVENT_FRAMES, msg->token, &msg->data); if (rc != HvLpEvent_Rc_Good) goto recycle_and_drop; /* If the timer's not already running, start it now. */ if (0 == cnx->outstanding_tx) mod_timer(&cnx->reset_timer, jiffies + cnx->reset_timeout); cnx->last_contact = jiffies; cnx->outstanding_tx++; if (veth_stack_is_empty(cnx)) veth_stop_queues(cnx); no_error: spin_unlock_irqrestore(&cnx->lock, flags); return 0; recycle_and_drop: veth_recycle_msg(cnx, msg); drop: spin_unlock_irqrestore(&cnx->lock, flags); return 1; } static void veth_transmit_to_many(struct sk_buff *skb, HvLpIndexMap lpmask, struct net_device *dev) { int i, success, error; success = error = 0; for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { if ((lpmask & (1 << i)) == 0) continue; if (veth_transmit_to_one(skb, i, dev)) error = 1; else success = 1; } if (error) dev->stats.tx_errors++; if (success) { dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; } } static int veth_start_xmit(struct sk_buff *skb, struct net_device *dev) { unsigned char *frame = skb->data; struct veth_port *port = netdev_priv(dev); HvLpIndexMap lpmask; if (! (frame[0] & 0x01)) { /* unicast packet */ HvLpIndex rlp = frame[5]; if ( ! ((1 << rlp) & port->lpar_map) ) { dev_kfree_skb(skb); return NETDEV_TX_OK; } lpmask = 1 << rlp; } else { lpmask = port->lpar_map; } veth_transmit_to_many(skb, lpmask, dev); dev_kfree_skb(skb); return NETDEV_TX_OK; } /* You must hold the connection's lock when you call this function. */ static void veth_recycle_msg(struct veth_lpar_connection *cnx, struct veth_msg *msg) { u32 dma_address, dma_length; if (msg->in_use) { msg->in_use = 0; dma_address = msg->data.addr[0]; dma_length = msg->data.len[0]; if (!dma_mapping_error(msg->dev, dma_address)) dma_unmap_single(msg->dev, dma_address, dma_length, DMA_TO_DEVICE); if (msg->skb) { dev_kfree_skb_any(msg->skb); msg->skb = NULL; } memset(&msg->data, 0, sizeof(msg->data)); veth_stack_push(cnx, msg); } else if (cnx->state & VETH_STATE_OPEN) { veth_error("Non-pending frame (# %d) acked by LPAR %d.\n", cnx->remote_lp, msg->token); } } static void veth_wake_queues(struct veth_lpar_connection *cnx) { int i; for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) { struct net_device *dev = veth_dev[i]; struct veth_port *port; unsigned long flags; if (! dev) continue; port = netdev_priv(dev); if (! (port->lpar_map & (1<<cnx->remote_lp))) continue; spin_lock_irqsave(&port->queue_lock, flags); port->stopped_map &= ~(1 << cnx->remote_lp); if (0 == port->stopped_map && netif_queue_stopped(dev)) { veth_debug("cnx %d: woke queue for %s.\n", cnx->remote_lp, dev->name); netif_wake_queue(dev); } spin_unlock_irqrestore(&port->queue_lock, flags); } } static void veth_stop_queues(struct veth_lpar_connection *cnx) { int i; for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) { struct net_device *dev = veth_dev[i]; struct veth_port *port; if (! dev) continue; port = netdev_priv(dev); /* If this cnx is not on the vlan for this port, continue */ if (! (port->lpar_map & (1 << cnx->remote_lp))) continue; spin_lock(&port->queue_lock); netif_stop_queue(dev); port->stopped_map |= (1 << cnx->remote_lp); veth_debug("cnx %d: stopped queue for %s, map = 0x%x.\n", cnx->remote_lp, dev->name, port->stopped_map); spin_unlock(&port->queue_lock); } } static void veth_timed_reset(unsigned long ptr) { struct veth_lpar_connection *cnx = (struct veth_lpar_connection *)ptr; unsigned long trigger_time, flags; /* FIXME is it possible this fires after veth_stop_connection()? * That would reschedule the statemachine for 5 seconds and probably * execute it after the module's been unloaded. Hmm. */ spin_lock_irqsave(&cnx->lock, flags); if (cnx->outstanding_tx > 0) { trigger_time = cnx->last_contact + cnx->reset_timeout; if (trigger_time < jiffies) { cnx->state |= VETH_STATE_RESET; veth_kick_statemachine(cnx); veth_error("%d packets not acked by LPAR %d within %d " "seconds, resetting.\n", cnx->outstanding_tx, cnx->remote_lp, cnx->reset_timeout / HZ); } else { /* Reschedule the timer */ trigger_time = jiffies + cnx->reset_timeout; mod_timer(&cnx->reset_timer, trigger_time); } } spin_unlock_irqrestore(&cnx->lock, flags); } /* * Rx path */ static inline int veth_frame_wanted(struct veth_port *port, u64 mac_addr) { int wanted = 0; int i; unsigned long flags; if ( (mac_addr == port->mac_addr) || (mac_addr == 0xffffffffffff0000) ) return 1; read_lock_irqsave(&port->mcast_gate, flags); if (port->promiscuous) { wanted = 1; goto out; } for (i = 0; i < port->num_mcast; ++i) { if (port->mcast_addr[i] == mac_addr) { wanted = 1; break; } } out: read_unlock_irqrestore(&port->mcast_gate, flags); return wanted; } struct dma_chunk { u64 addr; u64 size; }; #define VETH_MAX_PAGES_PER_FRAME ( (VETH_MAX_MTU+PAGE_SIZE-2)/PAGE_SIZE + 1 ) static inline void veth_build_dma_list(struct dma_chunk *list, unsigned char *p, unsigned long length) { unsigned long done; int i = 1; /* FIXME: skbs are contiguous in real addresses. Do we * really need to break it into PAGE_SIZE chunks, or can we do * it just at the granularity of iSeries real->absolute * mapping? Indeed, given the way the allocator works, can we * count on them being absolutely contiguous? */ list[0].addr = iseries_hv_addr(p); list[0].size = min(length, PAGE_SIZE - ((unsigned long)p & ~PAGE_MASK)); done = list[0].size; while (done < length) { list[i].addr = iseries_hv_addr(p + done); list[i].size = min(length-done, PAGE_SIZE); done += list[i].size; i++; } } static void veth_flush_acks(struct veth_lpar_connection *cnx) { HvLpEvent_Rc rc; rc = veth_signaldata(cnx, VETH_EVENT_FRAMES_ACK, 0, &cnx->pending_acks); if (rc != HvLpEvent_Rc_Good) veth_error("Failed acking frames from LPAR %d, rc = %d\n", cnx->remote_lp, (int)rc); cnx->num_pending_acks = 0; memset(&cnx->pending_acks, 0xff, sizeof(cnx->pending_acks)); } static void veth_receive(struct veth_lpar_connection *cnx, struct veth_lpevent *event) { struct veth_frames_data *senddata = &event->u.frames_data; int startchunk = 0; int nchunks; unsigned long flags; HvLpDma_Rc rc; do { u16 length = 0; struct sk_buff *skb; struct dma_chunk local_list[VETH_MAX_PAGES_PER_FRAME]; struct dma_chunk remote_list[VETH_MAX_FRAMES_PER_MSG]; u64 dest; HvLpVirtualLanIndex vlan; struct net_device *dev; struct veth_port *port; /* FIXME: do we need this? */ memset(local_list, 0, sizeof(local_list)); memset(remote_list, 0, sizeof(VETH_MAX_FRAMES_PER_MSG)); /* a 0 address marks the end of the valid entries */ if (senddata->addr[startchunk] == 0) break; /* make sure that we have at least 1 EOF entry in the * remaining entries */ if (! (senddata->eofmask >> (startchunk + VETH_EOF_SHIFT))) { veth_error("Missing EOF fragment in event " "eofmask = 0x%x startchunk = %d\n", (unsigned)senddata->eofmask, startchunk); break; } /* build list of chunks in this frame */ nchunks = 0; do { remote_list[nchunks].addr = (u64) senddata->addr[startchunk+nchunks] << 32; remote_list[nchunks].size = senddata->len[startchunk+nchunks]; length += remote_list[nchunks].size; } while (! (senddata->eofmask & (1 << (VETH_EOF_SHIFT + startchunk + nchunks++)))); /* length == total length of all chunks */ /* nchunks == # of chunks in this frame */ if ((length - ETH_HLEN) > VETH_MAX_MTU) { veth_error("Received oversize frame from LPAR %d " "(length = %d)\n", cnx->remote_lp, length); continue; } skb = alloc_skb(length, GFP_ATOMIC); if (!skb) continue; veth_build_dma_list(local_list, skb->data, length); rc = HvCallEvent_dmaBufList(HvLpEvent_Type_VirtualLan, event->base_event.xSourceLp, HvLpDma_Direction_RemoteToLocal, cnx->src_inst, cnx->dst_inst, HvLpDma_AddressType_RealAddress, HvLpDma_AddressType_TceIndex, iseries_hv_addr(&local_list), iseries_hv_addr(&remote_list), length); if (rc != HvLpDma_Rc_Good) { dev_kfree_skb_irq(skb); continue; } vlan = skb->data[9]; dev = veth_dev[vlan]; if (! dev) { /* * Some earlier versions of the driver sent * broadcasts down all connections, even to lpars * that weren't on the relevant vlan. So ignore * packets belonging to a vlan we're not on. * We can also be here if we receive packets while * the driver is going down, because then dev is NULL. */ dev_kfree_skb_irq(skb); continue; } port = netdev_priv(dev); dest = *((u64 *) skb->data) & 0xFFFFFFFFFFFF0000; if ((vlan > HVMAXARCHITECTEDVIRTUALLANS) || !port) { dev_kfree_skb_irq(skb); continue; } if (! veth_frame_wanted(port, dest)) { dev_kfree_skb_irq(skb); continue; } skb_put(skb, length); skb->protocol = eth_type_trans(skb, dev); skb->ip_summed = CHECKSUM_NONE; netif_rx(skb); /* send it up */ dev->stats.rx_packets++; dev->stats.rx_bytes += length; } while (startchunk += nchunks, startchunk < VETH_MAX_FRAMES_PER_MSG); /* Ack it */ spin_lock_irqsave(&cnx->lock, flags); BUG_ON(cnx->num_pending_acks > VETH_MAX_ACKS_PER_MSG); cnx->pending_acks[cnx->num_pending_acks++] = event->base_event.xCorrelationToken; if ( (cnx->num_pending_acks >= cnx->remote_caps.ack_threshold) || (cnx->num_pending_acks >= VETH_MAX_ACKS_PER_MSG) ) veth_flush_acks(cnx); spin_unlock_irqrestore(&cnx->lock, flags); } static void veth_timed_ack(unsigned long ptr) { struct veth_lpar_connection *cnx = (struct veth_lpar_connection *) ptr; unsigned long flags; /* Ack all the events */ spin_lock_irqsave(&cnx->lock, flags); if (cnx->num_pending_acks > 0) veth_flush_acks(cnx); /* Reschedule the timer */ cnx->ack_timer.expires = jiffies + cnx->ack_timeout; add_timer(&cnx->ack_timer); spin_unlock_irqrestore(&cnx->lock, flags); } static int veth_remove(struct vio_dev *vdev) { struct veth_lpar_connection *cnx; struct net_device *dev; struct veth_port *port; int i; dev = veth_dev[vdev->unit_address]; if (! dev) return 0; port = netdev_priv(dev); for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { cnx = veth_cnx[i]; if (cnx && (port->lpar_map & (1 << i))) { /* Drop our reference to connections on our VLAN */ kobject_put(&cnx->kobject); } } veth_dev[vdev->unit_address] = NULL; kobject_del(&port->kobject); kobject_put(&port->kobject); unregister_netdev(dev); free_netdev(dev); return 0; } static int veth_probe(struct vio_dev *vdev, const struct vio_device_id *id) { int i = vdev->unit_address; struct net_device *dev; struct veth_port *port; dev = veth_probe_one(i, vdev); if (dev == NULL) { veth_remove(vdev); return 1; } veth_dev[i] = dev; port = (struct veth_port*)netdev_priv(dev); /* Start the state machine on each connection on this vlan. If we're * the first dev to do so this will commence link negotiation */ for (i = 0; i < HVMAXARCHITECTEDLPS; i++) { struct veth_lpar_connection *cnx; if (! (port->lpar_map & (1 << i))) continue; cnx = veth_cnx[i]; if (!cnx) continue; kobject_get(&cnx->kobject); veth_kick_statemachine(cnx); } return 0; } /** * veth_device_table: Used by vio.c to match devices that we * support. */ static struct vio_device_id veth_device_table[] __devinitdata = { { "network", "IBM,iSeries-l-lan" }, { "", "" } }; MODULE_DEVICE_TABLE(vio, veth_device_table); static struct vio_driver veth_driver = { .id_table = veth_device_table, .probe = veth_probe, .remove = veth_remove, .driver = { .name = DRV_NAME, .owner = THIS_MODULE, } }; /* * Module initialization/cleanup */ static void __exit veth_module_cleanup(void) { int i; struct veth_lpar_connection *cnx; /* Disconnect our "irq" to stop events coming from the Hypervisor. */ HvLpEvent_unregisterHandler(HvLpEvent_Type_VirtualLan); /* Make sure any work queued from Hypervisor callbacks is finished. */ flush_scheduled_work(); for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) { cnx = veth_cnx[i]; if (!cnx) continue; /* Remove the connection from sysfs */ kobject_del(&cnx->kobject); /* Drop the driver's reference to the connection */ kobject_put(&cnx->kobject); } /* Unregister the driver, which will close all the netdevs and stop * the connections when they're no longer referenced. */ vio_unregister_driver(&veth_driver); } module_exit(veth_module_cleanup); static int __init veth_module_init(void) { int i; int rc; if (!firmware_has_feature(FW_FEATURE_ISERIES)) return -ENODEV; this_lp = HvLpConfig_getLpIndex_outline(); for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) { rc = veth_init_connection(i); if (rc != 0) goto error; } HvLpEvent_registerHandler(HvLpEvent_Type_VirtualLan, &veth_handle_event); rc = vio_register_driver(&veth_driver); if (rc != 0) goto error; for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) { struct kobject *kobj; if (!veth_cnx[i]) continue; kobj = &veth_cnx[i]->kobject; /* If the add failes, complain but otherwise continue */ if (0 != driver_add_kobj(&veth_driver.driver, kobj, "cnx%.2d", veth_cnx[i]->remote_lp)) veth_error("cnx %d: Failed adding to sysfs.\n", i); } return 0; error: for (i = 0; i < HVMAXARCHITECTEDLPS; ++i) { veth_destroy_connection(veth_cnx[i]); } return rc; } module_init(veth_module_init);