/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #ifndef __BTRFS_CTREE__ #define __BTRFS_CTREE__ #include <linux/version.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/fs.h> #include <linux/completion.h> #include <linux/backing-dev.h> #include <linux/wait.h> #include <asm/kmap_types.h> #include "extent_io.h" #include "extent_map.h" #include "async-thread.h" struct btrfs_trans_handle; struct btrfs_transaction; extern struct kmem_cache *btrfs_trans_handle_cachep; extern struct kmem_cache *btrfs_transaction_cachep; extern struct kmem_cache *btrfs_bit_radix_cachep; extern struct kmem_cache *btrfs_path_cachep; struct btrfs_ordered_sum; #define BTRFS_MAGIC "_BHRfS_M" #define BTRFS_MAX_LEVEL 8 #define BTRFS_COMPAT_EXTENT_TREE_V0 /* * files bigger than this get some pre-flushing when they are added * to the ordered operations list. That way we limit the total * work done by the commit */ #define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024) /* holds pointers to all of the tree roots */ #define BTRFS_ROOT_TREE_OBJECTID 1ULL /* stores information about which extents are in use, and reference counts */ #define BTRFS_EXTENT_TREE_OBJECTID 2ULL /* * chunk tree stores translations from logical -> physical block numbering * the super block points to the chunk tree */ #define BTRFS_CHUNK_TREE_OBJECTID 3ULL /* * stores information about which areas of a given device are in use. * one per device. The tree of tree roots points to the device tree */ #define BTRFS_DEV_TREE_OBJECTID 4ULL /* one per subvolume, storing files and directories */ #define BTRFS_FS_TREE_OBJECTID 5ULL /* directory objectid inside the root tree */ #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL /* holds checksums of all the data extents */ #define BTRFS_CSUM_TREE_OBJECTID 7ULL /* orhpan objectid for tracking unlinked/truncated files */ #define BTRFS_ORPHAN_OBJECTID -5ULL /* does write ahead logging to speed up fsyncs */ #define BTRFS_TREE_LOG_OBJECTID -6ULL #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL /* for space balancing */ #define BTRFS_TREE_RELOC_OBJECTID -8ULL #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL /* * extent checksums all have this objectid * this allows them to share the logging tree * for fsyncs */ #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL /* dummy objectid represents multiple objectids */ #define BTRFS_MULTIPLE_OBJECTIDS -255ULL /* * All files have objectids in this range. */ #define BTRFS_FIRST_FREE_OBJECTID 256ULL #define BTRFS_LAST_FREE_OBJECTID -256ULL #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL /* * the device items go into the chunk tree. The key is in the form * [ 1 BTRFS_DEV_ITEM_KEY device_id ] */ #define BTRFS_DEV_ITEMS_OBJECTID 1ULL #define BTRFS_BTREE_INODE_OBJECTID 1 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 /* * we can actually store much bigger names, but lets not confuse the rest * of linux */ #define BTRFS_NAME_LEN 255 /* 32 bytes in various csum fields */ #define BTRFS_CSUM_SIZE 32 /* csum types */ #define BTRFS_CSUM_TYPE_CRC32 0 static int btrfs_csum_sizes[] = { 4, 0 }; /* four bytes for CRC32 */ #define BTRFS_EMPTY_DIR_SIZE 0 #define BTRFS_FT_UNKNOWN 0 #define BTRFS_FT_REG_FILE 1 #define BTRFS_FT_DIR 2 #define BTRFS_FT_CHRDEV 3 #define BTRFS_FT_BLKDEV 4 #define BTRFS_FT_FIFO 5 #define BTRFS_FT_SOCK 6 #define BTRFS_FT_SYMLINK 7 #define BTRFS_FT_XATTR 8 #define BTRFS_FT_MAX 9 /* * The key defines the order in the tree, and so it also defines (optimal) * block layout. * * objectid corresponds to the inode number. * * type tells us things about the object, and is a kind of stream selector. * so for a given inode, keys with type of 1 might refer to the inode data, * type of 2 may point to file data in the btree and type == 3 may point to * extents. * * offset is the starting byte offset for this key in the stream. * * btrfs_disk_key is in disk byte order. struct btrfs_key is always * in cpu native order. Otherwise they are identical and their sizes * should be the same (ie both packed) */ struct btrfs_disk_key { __le64 objectid; u8 type; __le64 offset; } __attribute__ ((__packed__)); struct btrfs_key { u64 objectid; u8 type; u64 offset; } __attribute__ ((__packed__)); struct btrfs_mapping_tree { struct extent_map_tree map_tree; }; #define BTRFS_UUID_SIZE 16 struct btrfs_dev_item { /* the internal btrfs device id */ __le64 devid; /* size of the device */ __le64 total_bytes; /* bytes used */ __le64 bytes_used; /* optimal io alignment for this device */ __le32 io_align; /* optimal io width for this device */ __le32 io_width; /* minimal io size for this device */ __le32 sector_size; /* type and info about this device */ __le64 type; /* expected generation for this device */ __le64 generation; /* * starting byte of this partition on the device, * to allow for stripe alignment in the future */ __le64 start_offset; /* grouping information for allocation decisions */ __le32 dev_group; /* seek speed 0-100 where 100 is fastest */ u8 seek_speed; /* bandwidth 0-100 where 100 is fastest */ u8 bandwidth; /* btrfs generated uuid for this device */ u8 uuid[BTRFS_UUID_SIZE]; /* uuid of FS who owns this device */ u8 fsid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__)); struct btrfs_stripe { __le64 devid; __le64 offset; u8 dev_uuid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__)); struct btrfs_chunk { /* size of this chunk in bytes */ __le64 length; /* objectid of the root referencing this chunk */ __le64 owner; __le64 stripe_len; __le64 type; /* optimal io alignment for this chunk */ __le32 io_align; /* optimal io width for this chunk */ __le32 io_width; /* minimal io size for this chunk */ __le32 sector_size; /* 2^16 stripes is quite a lot, a second limit is the size of a single * item in the btree */ __le16 num_stripes; /* sub stripes only matter for raid10 */ __le16 sub_stripes; struct btrfs_stripe stripe; /* additional stripes go here */ } __attribute__ ((__packed__)); static inline unsigned long btrfs_chunk_item_size(int num_stripes) { BUG_ON(num_stripes == 0); return sizeof(struct btrfs_chunk) + sizeof(struct btrfs_stripe) * (num_stripes - 1); } #define BTRFS_FSID_SIZE 16 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) #define BTRFS_BACKREF_REV_MAX 256 #define BTRFS_BACKREF_REV_SHIFT 56 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ BTRFS_BACKREF_REV_SHIFT) #define BTRFS_OLD_BACKREF_REV 0 #define BTRFS_MIXED_BACKREF_REV 1 /* * every tree block (leaf or node) starts with this header. */ struct btrfs_header { /* these first four must match the super block */ u8 csum[BTRFS_CSUM_SIZE]; u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ __le64 bytenr; /* which block this node is supposed to live in */ __le64 flags; /* allowed to be different from the super from here on down */ u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; __le64 generation; __le64 owner; __le32 nritems; u8 level; } __attribute__ ((__packed__)); #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ sizeof(struct btrfs_header)) / \ sizeof(struct btrfs_key_ptr)) #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize)) #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ sizeof(struct btrfs_item) - \ sizeof(struct btrfs_file_extent_item)) /* * this is a very generous portion of the super block, giving us * room to translate 14 chunks with 3 stripes each. */ #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 #define BTRFS_LABEL_SIZE 256 /* * the super block basically lists the main trees of the FS * it currently lacks any block count etc etc */ struct btrfs_super_block { u8 csum[BTRFS_CSUM_SIZE]; /* the first 4 fields must match struct btrfs_header */ u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ __le64 bytenr; /* this block number */ __le64 flags; /* allowed to be different from the btrfs_header from here own down */ __le64 magic; __le64 generation; __le64 root; __le64 chunk_root; __le64 log_root; /* this will help find the new super based on the log root */ __le64 log_root_transid; __le64 total_bytes; __le64 bytes_used; __le64 root_dir_objectid; __le64 num_devices; __le32 sectorsize; __le32 nodesize; __le32 leafsize; __le32 stripesize; __le32 sys_chunk_array_size; __le64 chunk_root_generation; __le64 compat_flags; __le64 compat_ro_flags; __le64 incompat_flags; __le16 csum_type; u8 root_level; u8 chunk_root_level; u8 log_root_level; struct btrfs_dev_item dev_item; char label[BTRFS_LABEL_SIZE]; /* future expansion */ __le64 reserved[32]; u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; } __attribute__ ((__packed__)); /* * Compat flags that we support. If any incompat flags are set other than the * ones specified below then we will fail to mount */ #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0) #define BTRFS_FEATURE_COMPAT_SUPP 0ULL #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL #define BTRFS_FEATURE_INCOMPAT_SUPP \ BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF /* * A leaf is full of items. offset and size tell us where to find * the item in the leaf (relative to the start of the data area) */ struct btrfs_item { struct btrfs_disk_key key; __le32 offset; __le32 size; } __attribute__ ((__packed__)); /* * leaves have an item area and a data area: * [item0, item1....itemN] [free space] [dataN...data1, data0] * * The data is separate from the items to get the keys closer together * during searches. */ struct btrfs_leaf { struct btrfs_header header; struct btrfs_item items[]; } __attribute__ ((__packed__)); /* * all non-leaf blocks are nodes, they hold only keys and pointers to * other blocks */ struct btrfs_key_ptr { struct btrfs_disk_key key; __le64 blockptr; __le64 generation; } __attribute__ ((__packed__)); struct btrfs_node { struct btrfs_header header; struct btrfs_key_ptr ptrs[]; } __attribute__ ((__packed__)); /* * btrfs_paths remember the path taken from the root down to the leaf. * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point * to any other levels that are present. * * The slots array records the index of the item or block pointer * used while walking the tree. */ struct btrfs_path { struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; int slots[BTRFS_MAX_LEVEL]; /* if there is real range locking, this locks field will change */ int locks[BTRFS_MAX_LEVEL]; int reada; /* keep some upper locks as we walk down */ int lowest_level; /* * set by btrfs_split_item, tells search_slot to keep all locks * and to force calls to keep space in the nodes */ unsigned int search_for_split:1; unsigned int keep_locks:1; unsigned int skip_locking:1; unsigned int leave_spinning:1; unsigned int search_commit_root:1; }; /* * items in the extent btree are used to record the objectid of the * owner of the block and the number of references */ struct btrfs_extent_item { __le64 refs; __le64 generation; __le64 flags; } __attribute__ ((__packed__)); struct btrfs_extent_item_v0 { __le32 refs; } __attribute__ ((__packed__)); #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \ sizeof(struct btrfs_item)) #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) /* following flags only apply to tree blocks */ /* use full backrefs for extent pointers in the block */ #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) struct btrfs_tree_block_info { struct btrfs_disk_key key; u8 level; } __attribute__ ((__packed__)); struct btrfs_extent_data_ref { __le64 root; __le64 objectid; __le64 offset; __le32 count; } __attribute__ ((__packed__)); struct btrfs_shared_data_ref { __le32 count; } __attribute__ ((__packed__)); struct btrfs_extent_inline_ref { u8 type; __le64 offset; } __attribute__ ((__packed__)); /* old style backrefs item */ struct btrfs_extent_ref_v0 { __le64 root; __le64 generation; __le64 objectid; __le32 count; } __attribute__ ((__packed__)); /* dev extents record free space on individual devices. The owner * field points back to the chunk allocation mapping tree that allocated * the extent. The chunk tree uuid field is a way to double check the owner */ struct btrfs_dev_extent { __le64 chunk_tree; __le64 chunk_objectid; __le64 chunk_offset; __le64 length; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; } __attribute__ ((__packed__)); struct btrfs_inode_ref { __le64 index; __le16 name_len; /* name goes here */ } __attribute__ ((__packed__)); struct btrfs_timespec { __le64 sec; __le32 nsec; } __attribute__ ((__packed__)); enum btrfs_compression_type { BTRFS_COMPRESS_NONE = 0, BTRFS_COMPRESS_ZLIB = 1, BTRFS_COMPRESS_LAST = 2, }; struct btrfs_inode_item { /* nfs style generation number */ __le64 generation; /* transid that last touched this inode */ __le64 transid; __le64 size; __le64 nbytes; __le64 block_group; __le32 nlink; __le32 uid; __le32 gid; __le32 mode; __le64 rdev; __le64 flags; /* modification sequence number for NFS */ __le64 sequence; /* * a little future expansion, for more than this we can * just grow the inode item and version it */ __le64 reserved[4]; struct btrfs_timespec atime; struct btrfs_timespec ctime; struct btrfs_timespec mtime; struct btrfs_timespec otime; } __attribute__ ((__packed__)); struct btrfs_dir_log_item { __le64 end; } __attribute__ ((__packed__)); struct btrfs_dir_item { struct btrfs_disk_key location; __le64 transid; __le16 data_len; __le16 name_len; u8 type; } __attribute__ ((__packed__)); struct btrfs_root_item { struct btrfs_inode_item inode; __le64 generation; __le64 root_dirid; __le64 bytenr; __le64 byte_limit; __le64 bytes_used; __le64 last_snapshot; __le64 flags; __le32 refs; struct btrfs_disk_key drop_progress; u8 drop_level; u8 level; } __attribute__ ((__packed__)); /* * this is used for both forward and backward root refs */ struct btrfs_root_ref { __le64 dirid; __le64 sequence; __le16 name_len; } __attribute__ ((__packed__)); #define BTRFS_FILE_EXTENT_INLINE 0 #define BTRFS_FILE_EXTENT_REG 1 #define BTRFS_FILE_EXTENT_PREALLOC 2 struct btrfs_file_extent_item { /* * transaction id that created this extent */ __le64 generation; /* * max number of bytes to hold this extent in ram * when we split a compressed extent we can't know how big * each of the resulting pieces will be. So, this is * an upper limit on the size of the extent in ram instead of * an exact limit. */ __le64 ram_bytes; /* * 32 bits for the various ways we might encode the data, * including compression and encryption. If any of these * are set to something a given disk format doesn't understand * it is treated like an incompat flag for reading and writing, * but not for stat. */ u8 compression; u8 encryption; __le16 other_encoding; /* spare for later use */ /* are we inline data or a real extent? */ u8 type; /* * disk space consumed by the extent, checksum blocks are included * in these numbers */ __le64 disk_bytenr; __le64 disk_num_bytes; /* * the logical offset in file blocks (no csums) * this extent record is for. This allows a file extent to point * into the middle of an existing extent on disk, sharing it * between two snapshots (useful if some bytes in the middle of the * extent have changed */ __le64 offset; /* * the logical number of file blocks (no csums included). This * always reflects the size uncompressed and without encoding. */ __le64 num_bytes; } __attribute__ ((__packed__)); struct btrfs_csum_item { u8 csum; } __attribute__ ((__packed__)); /* different types of block groups (and chunks) */ #define BTRFS_BLOCK_GROUP_DATA (1 << 0) #define BTRFS_BLOCK_GROUP_SYSTEM (1 << 1) #define BTRFS_BLOCK_GROUP_METADATA (1 << 2) #define BTRFS_BLOCK_GROUP_RAID0 (1 << 3) #define BTRFS_BLOCK_GROUP_RAID1 (1 << 4) #define BTRFS_BLOCK_GROUP_DUP (1 << 5) #define BTRFS_BLOCK_GROUP_RAID10 (1 << 6) struct btrfs_block_group_item { __le64 used; __le64 chunk_objectid; __le64 flags; } __attribute__ ((__packed__)); struct btrfs_space_info { u64 flags; u64 total_bytes; /* total bytes in the space */ u64 bytes_used; /* total bytes used on disk */ u64 bytes_pinned; /* total bytes pinned, will be freed when the transaction finishes */ u64 bytes_reserved; /* total bytes the allocator has reserved for current allocations */ u64 bytes_readonly; /* total bytes that are read only */ u64 bytes_super; /* total bytes reserved for the super blocks */ /* delalloc accounting */ u64 bytes_delalloc; /* number of bytes reserved for allocation, this space is not necessarily reserved yet by the allocator */ u64 bytes_may_use; /* number of bytes that may be used for delalloc */ int full; /* indicates that we cannot allocate any more chunks for this space */ int force_alloc; /* set if we need to force a chunk alloc for this space */ struct list_head list; /* for block groups in our same type */ struct list_head block_groups; spinlock_t lock; struct rw_semaphore groups_sem; atomic_t caching_threads; }; /* * free clusters are used to claim free space in relatively large chunks, * allowing us to do less seeky writes. They are used for all metadata * allocations and data allocations in ssd mode. */ struct btrfs_free_cluster { spinlock_t lock; spinlock_t refill_lock; struct rb_root root; /* largest extent in this cluster */ u64 max_size; /* first extent starting offset */ u64 window_start; /* if this cluster simply points at a bitmap in the block group */ bool points_to_bitmap; struct btrfs_block_group_cache *block_group; /* * when a cluster is allocated from a block group, we put the * cluster onto a list in the block group so that it can * be freed before the block group is freed. */ struct list_head block_group_list; }; enum btrfs_caching_type { BTRFS_CACHE_NO = 0, BTRFS_CACHE_STARTED = 1, BTRFS_CACHE_FINISHED = 2, }; struct btrfs_caching_control { struct list_head list; struct mutex mutex; wait_queue_head_t wait; struct btrfs_block_group_cache *block_group; u64 progress; atomic_t count; }; struct btrfs_block_group_cache { struct btrfs_key key; struct btrfs_block_group_item item; struct btrfs_fs_info *fs_info; spinlock_t lock; u64 pinned; u64 reserved; u64 bytes_super; u64 flags; u64 sectorsize; int extents_thresh; int free_extents; int total_bitmaps; int ro; int dirty; /* cache tracking stuff */ int cached; struct btrfs_caching_control *caching_ctl; u64 last_byte_to_unpin; struct btrfs_space_info *space_info; /* free space cache stuff */ spinlock_t tree_lock; struct rb_root free_space_offset; u64 free_space; /* block group cache stuff */ struct rb_node cache_node; /* for block groups in the same raid type */ struct list_head list; /* usage count */ atomic_t count; /* List of struct btrfs_free_clusters for this block group. * Today it will only have one thing on it, but that may change */ struct list_head cluster_list; }; struct reloc_control; struct btrfs_device; struct btrfs_fs_devices; struct btrfs_fs_info { u8 fsid[BTRFS_FSID_SIZE]; u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; struct btrfs_root *extent_root; struct btrfs_root *tree_root; struct btrfs_root *chunk_root; struct btrfs_root *dev_root; struct btrfs_root *fs_root; struct btrfs_root *csum_root; /* the log root tree is a directory of all the other log roots */ struct btrfs_root *log_root_tree; spinlock_t fs_roots_radix_lock; struct radix_tree_root fs_roots_radix; /* block group cache stuff */ spinlock_t block_group_cache_lock; struct rb_root block_group_cache_tree; struct extent_io_tree freed_extents[2]; struct extent_io_tree *pinned_extents; /* logical->physical extent mapping */ struct btrfs_mapping_tree mapping_tree; u64 generation; u64 last_trans_committed; /* * this is updated to the current trans every time a full commit * is required instead of the faster short fsync log commits */ u64 last_trans_log_full_commit; u64 open_ioctl_trans; unsigned long mount_opt; u64 max_extent; u64 max_inline; u64 alloc_start; struct btrfs_transaction *running_transaction; wait_queue_head_t transaction_throttle; wait_queue_head_t transaction_wait; wait_queue_head_t async_submit_wait; struct btrfs_super_block super_copy; struct btrfs_super_block super_for_commit; struct block_device *__bdev; struct super_block *sb; struct inode *btree_inode; struct backing_dev_info bdi; struct mutex trans_mutex; struct mutex tree_log_mutex; struct mutex transaction_kthread_mutex; struct mutex cleaner_mutex; struct mutex chunk_mutex; struct mutex volume_mutex; /* * this protects the ordered operations list only while we are * processing all of the entries on it. This way we make * sure the commit code doesn't find the list temporarily empty * because another function happens to be doing non-waiting preflush * before jumping into the main commit. */ struct mutex ordered_operations_mutex; struct rw_semaphore extent_commit_sem; struct rw_semaphore subvol_sem; struct srcu_struct subvol_srcu; struct list_head trans_list; struct list_head hashers; struct list_head dead_roots; struct list_head caching_block_groups; atomic_t nr_async_submits; atomic_t async_submit_draining; atomic_t nr_async_bios; atomic_t async_delalloc_pages; /* * this is used by the balancing code to wait for all the pending * ordered extents */ spinlock_t ordered_extent_lock; /* * all of the data=ordered extents pending writeback * these can span multiple transactions and basically include * every dirty data page that isn't from nodatacow */ struct list_head ordered_extents; /* * all of the inodes that have delalloc bytes. It is possible for * this list to be empty even when there is still dirty data=ordered * extents waiting to finish IO. */ struct list_head delalloc_inodes; /* * special rename and truncate targets that must be on disk before * we're allowed to commit. This is basically the ext3 style * data=ordered list. */ struct list_head ordered_operations; /* * there is a pool of worker threads for checksumming during writes * and a pool for checksumming after reads. This is because readers * can run with FS locks held, and the writers may be waiting for * those locks. We don't want ordering in the pending list to cause * deadlocks, and so the two are serviced separately. * * A third pool does submit_bio to avoid deadlocking with the other * two */ struct btrfs_workers workers; struct btrfs_workers delalloc_workers; struct btrfs_workers endio_workers; struct btrfs_workers endio_meta_workers; struct btrfs_workers endio_meta_write_workers; struct btrfs_workers endio_write_workers; struct btrfs_workers submit_workers; /* * fixup workers take dirty pages that didn't properly go through * the cow mechanism and make them safe to write. It happens * for the sys_munmap function call path */ struct btrfs_workers fixup_workers; struct task_struct *transaction_kthread; struct task_struct *cleaner_kthread; int thread_pool_size; struct kobject super_kobj; struct completion kobj_unregister; int do_barriers; int closing; int log_root_recovering; u64 total_pinned; /* protected by the delalloc lock, used to keep from writing * metadata until there is a nice batch */ u64 dirty_metadata_bytes; struct list_head dirty_cowonly_roots; struct btrfs_fs_devices *fs_devices; /* * the space_info list is almost entirely read only. It only changes * when we add a new raid type to the FS, and that happens * very rarely. RCU is used to protect it. */ struct list_head space_info; struct reloc_control *reloc_ctl; spinlock_t delalloc_lock; spinlock_t new_trans_lock; u64 delalloc_bytes; /* data_alloc_cluster is only used in ssd mode */ struct btrfs_free_cluster data_alloc_cluster; /* all metadata allocations go through this cluster */ struct btrfs_free_cluster meta_alloc_cluster; spinlock_t ref_cache_lock; u64 total_ref_cache_size; u64 avail_data_alloc_bits; u64 avail_metadata_alloc_bits; u64 avail_system_alloc_bits; u64 data_alloc_profile; u64 metadata_alloc_profile; u64 system_alloc_profile; unsigned data_chunk_allocations; unsigned metadata_ratio; void *bdev_holder; }; /* * in ram representation of the tree. extent_root is used for all allocations * and for the extent tree extent_root root. */ struct btrfs_root { struct extent_buffer *node; /* the node lock is held while changing the node pointer */ spinlock_t node_lock; struct extent_buffer *commit_root; struct btrfs_root *log_root; struct btrfs_root *reloc_root; struct btrfs_root_item root_item; struct btrfs_key root_key; struct btrfs_fs_info *fs_info; struct extent_io_tree dirty_log_pages; struct kobject root_kobj; struct completion kobj_unregister; struct mutex objectid_mutex; struct mutex log_mutex; wait_queue_head_t log_writer_wait; wait_queue_head_t log_commit_wait[2]; atomic_t log_writers; atomic_t log_commit[2]; unsigned long log_transid; unsigned long log_batch; u64 objectid; u64 last_trans; /* data allocations are done in sectorsize units */ u32 sectorsize; /* node allocations are done in nodesize units */ u32 nodesize; /* leaf allocations are done in leafsize units */ u32 leafsize; u32 stripesize; u32 type; u64 highest_objectid; int ref_cows; int track_dirty; int in_radix; u64 defrag_trans_start; struct btrfs_key defrag_progress; struct btrfs_key defrag_max; int defrag_running; int defrag_level; char *name; int in_sysfs; /* the dirty list is only used by non-reference counted roots */ struct list_head dirty_list; struct list_head root_list; spinlock_t list_lock; struct list_head orphan_list; spinlock_t inode_lock; /* red-black tree that keeps track of in-memory inodes */ struct rb_root inode_tree; /* * right now this just gets used so that a root has its own devid * for stat. It may be used for more later */ struct super_block anon_super; }; /* * inode items have the data typically returned from stat and store other * info about object characteristics. There is one for every file and dir in * the FS */ #define BTRFS_INODE_ITEM_KEY 1 #define BTRFS_INODE_REF_KEY 12 #define BTRFS_XATTR_ITEM_KEY 24 #define BTRFS_ORPHAN_ITEM_KEY 48 /* reserve 2-15 close to the inode for later flexibility */ /* * dir items are the name -> inode pointers in a directory. There is one * for every name in a directory. */ #define BTRFS_DIR_LOG_ITEM_KEY 60 #define BTRFS_DIR_LOG_INDEX_KEY 72 #define BTRFS_DIR_ITEM_KEY 84 #define BTRFS_DIR_INDEX_KEY 96 /* * extent data is for file data */ #define BTRFS_EXTENT_DATA_KEY 108 /* * extent csums are stored in a separate tree and hold csums for * an entire extent on disk. */ #define BTRFS_EXTENT_CSUM_KEY 128 /* * root items point to tree roots. They are typically in the root * tree used by the super block to find all the other trees */ #define BTRFS_ROOT_ITEM_KEY 132 /* * root backrefs tie subvols and snapshots to the directory entries that * reference them */ #define BTRFS_ROOT_BACKREF_KEY 144 /* * root refs make a fast index for listing all of the snapshots and * subvolumes referenced by a given root. They point directly to the * directory item in the root that references the subvol */ #define BTRFS_ROOT_REF_KEY 156 /* * extent items are in the extent map tree. These record which blocks * are used, and how many references there are to each block */ #define BTRFS_EXTENT_ITEM_KEY 168 #define BTRFS_TREE_BLOCK_REF_KEY 176 #define BTRFS_EXTENT_DATA_REF_KEY 178 #define BTRFS_EXTENT_REF_V0_KEY 180 #define BTRFS_SHARED_BLOCK_REF_KEY 182 #define BTRFS_SHARED_DATA_REF_KEY 184 /* * block groups give us hints into the extent allocation trees. Which * blocks are free etc etc */ #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 #define BTRFS_DEV_EXTENT_KEY 204 #define BTRFS_DEV_ITEM_KEY 216 #define BTRFS_CHUNK_ITEM_KEY 228 /* * string items are for debugging. They just store a short string of * data in the FS */ #define BTRFS_STRING_ITEM_KEY 253 #define BTRFS_MOUNT_NODATASUM (1 << 0) #define BTRFS_MOUNT_NODATACOW (1 << 1) #define BTRFS_MOUNT_NOBARRIER (1 << 2) #define BTRFS_MOUNT_SSD (1 << 3) #define BTRFS_MOUNT_DEGRADED (1 << 4) #define BTRFS_MOUNT_COMPRESS (1 << 5) #define BTRFS_MOUNT_NOTREELOG (1 << 6) #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) #define BTRFS_MOUNT_NOSSD (1 << 9) #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \ BTRFS_MOUNT_##opt) /* * Inode flags */ #define BTRFS_INODE_NODATASUM (1 << 0) #define BTRFS_INODE_NODATACOW (1 << 1) #define BTRFS_INODE_READONLY (1 << 2) #define BTRFS_INODE_NOCOMPRESS (1 << 3) #define BTRFS_INODE_PREALLOC (1 << 4) #define BTRFS_INODE_SYNC (1 << 5) #define BTRFS_INODE_IMMUTABLE (1 << 6) #define BTRFS_INODE_APPEND (1 << 7) #define BTRFS_INODE_NODUMP (1 << 8) #define BTRFS_INODE_NOATIME (1 << 9) #define BTRFS_INODE_DIRSYNC (1 << 10) /* some macros to generate set/get funcs for the struct fields. This * assumes there is a lefoo_to_cpu for every type, so lets make a simple * one for u8: */ #define le8_to_cpu(v) (v) #define cpu_to_le8(v) (v) #define __le8 u8 #define read_eb_member(eb, ptr, type, member, result) ( \ read_extent_buffer(eb, (char *)(result), \ ((unsigned long)(ptr)) + \ offsetof(type, member), \ sizeof(((type *)0)->member))) #define write_eb_member(eb, ptr, type, member, result) ( \ write_extent_buffer(eb, (char *)(result), \ ((unsigned long)(ptr)) + \ offsetof(type, member), \ sizeof(((type *)0)->member))) #ifndef BTRFS_SETGET_FUNCS #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ u##bits btrfs_##name(struct extent_buffer *eb, type *s); \ void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val); #endif #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(struct extent_buffer *eb) \ { \ type *p = kmap_atomic(eb->first_page, KM_USER0); \ u##bits res = le##bits##_to_cpu(p->member); \ kunmap_atomic(p, KM_USER0); \ return res; \ } \ static inline void btrfs_set_##name(struct extent_buffer *eb, \ u##bits val) \ { \ type *p = kmap_atomic(eb->first_page, KM_USER0); \ p->member = cpu_to_le##bits(val); \ kunmap_atomic(p, KM_USER0); \ } #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ static inline u##bits btrfs_##name(type *s) \ { \ return le##bits##_to_cpu(s->member); \ } \ static inline void btrfs_set_##name(type *s, u##bits val) \ { \ s->member = cpu_to_le##bits(val); \ } BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64); BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, start_offset, 64); BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, io_align, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, io_width, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, sector_size, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, dev_group, 32); BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, seek_speed, 8); BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, bandwidth, 8); BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, generation, 64); static inline char *btrfs_device_uuid(struct btrfs_dev_item *d) { return (char *)d + offsetof(struct btrfs_dev_item, uuid); } static inline char *btrfs_device_fsid(struct btrfs_dev_item *d) { return (char *)d + offsetof(struct btrfs_dev_item, fsid); } BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) { return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); } BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, io_align, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, io_width, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, sector_size, 32); BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, int nr) { unsigned long offset = (unsigned long)c; offset += offsetof(struct btrfs_chunk, stripe); offset += nr * sizeof(struct btrfs_stripe); return (struct btrfs_stripe *)offset; } static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) { return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); } static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb, struct btrfs_chunk *c, int nr) { return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); } static inline void btrfs_set_stripe_offset_nr(struct extent_buffer *eb, struct btrfs_chunk *c, int nr, u64 val) { btrfs_set_stripe_offset(eb, btrfs_stripe_nr(c, nr), val); } static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb, struct btrfs_chunk *c, int nr) { return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); } static inline void btrfs_set_stripe_devid_nr(struct extent_buffer *eb, struct btrfs_chunk *c, int nr, u64 val) { btrfs_set_stripe_devid(eb, btrfs_stripe_nr(c, nr), val); } /* struct btrfs_block_group_item */ BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item, used, 64); BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid, struct btrfs_block_group_item, chunk_objectid, 64); BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid, struct btrfs_block_group_item, chunk_objectid, 64); BTRFS_SETGET_FUNCS(disk_block_group_flags, struct btrfs_block_group_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(block_group_flags, struct btrfs_block_group_item, flags, 64); /* struct btrfs_inode_ref */ BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); /* struct btrfs_inode_item */ BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); static inline struct btrfs_timespec * btrfs_inode_atime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, atime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec * btrfs_inode_mtime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, mtime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec * btrfs_inode_ctime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, ctime); return (struct btrfs_timespec *)ptr; } static inline struct btrfs_timespec * btrfs_inode_otime(struct btrfs_inode_item *inode_item) { unsigned long ptr = (unsigned long)inode_item; ptr += offsetof(struct btrfs_inode_item, otime); return (struct btrfs_timespec *)ptr; } BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); /* struct btrfs_dev_extent */ BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, chunk_tree, 64); BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, chunk_objectid, 64); BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, chunk_offset, 64); BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) { unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); return (u8 *)((unsigned long)dev + ptr); } BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, generation, 64); BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32); BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); static inline void btrfs_tree_block_key(struct extent_buffer *eb, struct btrfs_tree_block_info *item, struct btrfs_disk_key *key) { read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); } static inline void btrfs_set_tree_block_key(struct extent_buffer *eb, struct btrfs_tree_block_info *item, struct btrfs_disk_key *key) { write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); } BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, root, 64); BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, objectid, 64); BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, offset, 64); BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, count, 32); BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, count, 32); BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, type, 8); BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, offset, 64); static inline u32 btrfs_extent_inline_ref_size(int type) { if (type == BTRFS_TREE_BLOCK_REF_KEY || type == BTRFS_SHARED_BLOCK_REF_KEY) return sizeof(struct btrfs_extent_inline_ref); if (type == BTRFS_SHARED_DATA_REF_KEY) return sizeof(struct btrfs_shared_data_ref) + sizeof(struct btrfs_extent_inline_ref); if (type == BTRFS_EXTENT_DATA_REF_KEY) return sizeof(struct btrfs_extent_data_ref) + offsetof(struct btrfs_extent_inline_ref, offset); BUG(); return 0; } BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64); BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0, generation, 64); BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64); BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32); /* struct btrfs_node */ BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); } static inline void btrfs_set_node_blockptr(struct extent_buffer *eb, int nr, u64 val) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); } static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); } static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb, int nr, u64 val) { unsigned long ptr; ptr = offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); } static inline unsigned long btrfs_node_key_ptr_offset(int nr) { return offsetof(struct btrfs_node, ptrs) + sizeof(struct btrfs_key_ptr) * nr; } void btrfs_node_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr); static inline void btrfs_set_node_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { unsigned long ptr; ptr = btrfs_node_key_ptr_offset(nr); write_eb_member(eb, (struct btrfs_key_ptr *)ptr, struct btrfs_key_ptr, key, disk_key); } /* struct btrfs_item */ BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); static inline unsigned long btrfs_item_nr_offset(int nr) { return offsetof(struct btrfs_leaf, items) + sizeof(struct btrfs_item) * nr; } static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb, int nr) { return (struct btrfs_item *)btrfs_item_nr_offset(nr); } static inline u32 btrfs_item_end(struct extent_buffer *eb, struct btrfs_item *item) { return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); } static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr) { return btrfs_item_end(eb, btrfs_item_nr(eb, nr)); } static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr) { return btrfs_item_offset(eb, btrfs_item_nr(eb, nr)); } static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr) { return btrfs_item_size(eb, btrfs_item_nr(eb, nr)); } static inline void btrfs_item_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { struct btrfs_item *item = btrfs_item_nr(eb, nr); read_eb_member(eb, item, struct btrfs_item, key, disk_key); } static inline void btrfs_set_item_key(struct extent_buffer *eb, struct btrfs_disk_key *disk_key, int nr) { struct btrfs_item *item = btrfs_item_nr(eb, nr); write_eb_member(eb, item, struct btrfs_item, key, disk_key); } BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); /* * struct btrfs_root_ref */ BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); /* struct btrfs_dir_item */ BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); static inline void btrfs_dir_item_key(struct extent_buffer *eb, struct btrfs_dir_item *item, struct btrfs_disk_key *key) { read_eb_member(eb, item, struct btrfs_dir_item, location, key); } static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, struct btrfs_dir_item *item, struct btrfs_disk_key *key) { write_eb_member(eb, item, struct btrfs_dir_item, location, key); } /* struct btrfs_disk_key */ BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, objectid, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, struct btrfs_disk_key *disk) { cpu->offset = le64_to_cpu(disk->offset); cpu->type = disk->type; cpu->objectid = le64_to_cpu(disk->objectid); } static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, struct btrfs_key *cpu) { disk->offset = cpu_to_le64(cpu->offset); disk->type = cpu->type; disk->objectid = cpu_to_le64(cpu->objectid); } static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb, struct btrfs_key *key, int nr) { struct btrfs_disk_key disk_key; btrfs_node_key(eb, &disk_key, nr); btrfs_disk_key_to_cpu(key, &disk_key); } static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb, struct btrfs_key *key, int nr) { struct btrfs_disk_key disk_key; btrfs_item_key(eb, &disk_key, nr); btrfs_disk_key_to_cpu(key, &disk_key); } static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb, struct btrfs_dir_item *item, struct btrfs_key *key) { struct btrfs_disk_key disk_key; btrfs_dir_item_key(eb, item, &disk_key); btrfs_disk_key_to_cpu(key, &disk_key); } static inline u8 btrfs_key_type(struct btrfs_key *key) { return key->type; } static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) { key->type = val; } /* struct btrfs_header */ BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, generation, 64); BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag) { return (btrfs_header_flags(eb) & flag) == flag; } static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) { u64 flags = btrfs_header_flags(eb); btrfs_set_header_flags(eb, flags | flag); return (flags & flag) == flag; } static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) { u64 flags = btrfs_header_flags(eb); btrfs_set_header_flags(eb, flags & ~flag); return (flags & flag) == flag; } static inline int btrfs_header_backref_rev(struct extent_buffer *eb) { u64 flags = btrfs_header_flags(eb); return flags >> BTRFS_BACKREF_REV_SHIFT; } static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, int rev) { u64 flags = btrfs_header_flags(eb); flags &= ~BTRFS_BACKREF_REV_MASK; flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; btrfs_set_header_flags(eb, flags); } static inline u8 *btrfs_header_fsid(struct extent_buffer *eb) { unsigned long ptr = offsetof(struct btrfs_header, fsid); return (u8 *)ptr; } static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb) { unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid); return (u8 *)ptr; } static inline u8 *btrfs_super_fsid(struct extent_buffer *eb) { unsigned long ptr = offsetof(struct btrfs_super_block, fsid); return (u8 *)ptr; } static inline u8 *btrfs_header_csum(struct extent_buffer *eb) { unsigned long ptr = offsetof(struct btrfs_header, csum); return (u8 *)ptr; } static inline struct btrfs_node *btrfs_buffer_node(struct extent_buffer *eb) { return NULL; } static inline struct btrfs_leaf *btrfs_buffer_leaf(struct extent_buffer *eb) { return NULL; } static inline struct btrfs_header *btrfs_buffer_header(struct extent_buffer *eb) { return NULL; } static inline int btrfs_is_leaf(struct extent_buffer *eb) { return btrfs_header_level(eb) == 0; } /* struct btrfs_root_item */ BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, generation, 64); BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, generation, 64); BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, last_snapshot, 64); /* struct btrfs_super_block */ BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, struct btrfs_super_block, sys_chunk_array_size, 32); BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, struct btrfs_super_block, chunk_root_generation, 64); BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, chunk_root, 64); BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, chunk_root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, log_root, 64); BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, log_root_transid, 64); BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, log_root_level, 8); BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, total_bytes, 64); BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, bytes_used, 64); BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, sectorsize, 32); BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, nodesize, 32); BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block, leafsize, 32); BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, stripesize, 32); BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, root_dir_objectid, 64); BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, num_devices, 64); BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, compat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, compat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, incompat_flags, 64); BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, csum_type, 16); static inline int btrfs_super_csum_size(struct btrfs_super_block *s) { int t = btrfs_super_csum_type(s); BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes)); return btrfs_csum_sizes[t]; } static inline unsigned long btrfs_leaf_data(struct extent_buffer *l) { return offsetof(struct btrfs_leaf, items); } /* struct btrfs_file_extent_item */ BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); static inline unsigned long btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) { unsigned long offset = (unsigned long)e; offset += offsetof(struct btrfs_file_extent_item, disk_bytenr); return offset; } static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) { return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize; } BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, disk_bytenr, 64); BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, generation, 64); BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, disk_num_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, offset, 64); BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, num_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, ram_bytes, 64); BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, compression, 8); BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, encryption, 8); BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, other_encoding, 16); /* this returns the number of file bytes represented by the inline item. * If an item is compressed, this is the uncompressed size */ static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb, struct btrfs_file_extent_item *e) { return btrfs_file_extent_ram_bytes(eb, e); } /* * this returns the number of bytes used by the item on disk, minus the * size of any extent headers. If a file is compressed on disk, this is * the compressed size */ static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb, struct btrfs_item *e) { unsigned long offset; offset = offsetof(struct btrfs_file_extent_item, disk_bytenr); return btrfs_item_size(eb, e) - offset; } static inline struct btrfs_root *btrfs_sb(struct super_block *sb) { return sb->s_fs_info; } static inline int btrfs_set_root_name(struct btrfs_root *root, const char *name, int len) { /* if we already have a name just free it */ kfree(root->name); root->name = kmalloc(len+1, GFP_KERNEL); if (!root->name) return -ENOMEM; memcpy(root->name, name, len); root->name[len] = '\0'; return 0; } static inline u32 btrfs_level_size(struct btrfs_root *root, int level) { if (level == 0) return root->leafsize; return root->nodesize; } /* helper function to cast into the data area of the leaf. */ #define btrfs_item_ptr(leaf, slot, type) \ ((type *)(btrfs_leaf_data(leaf) + \ btrfs_item_offset_nr(leaf, slot))) #define btrfs_item_ptr_offset(leaf, slot) \ ((unsigned long)(btrfs_leaf_data(leaf) + \ btrfs_item_offset_nr(leaf, slot))) static inline struct dentry *fdentry(struct file *file) { return file->f_path.dentry; } /* extent-tree.c */ void btrfs_put_block_group(struct btrfs_block_group_cache *cache); int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, struct btrfs_root *root, unsigned long count); int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len); int btrfs_pin_extent(struct btrfs_root *root, u64 bytenr, u64 num, int reserved); int btrfs_drop_leaf_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *leaf); int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 offset, u64 bytenr); int btrfs_copy_pinned(struct btrfs_root *root, struct extent_io_tree *copy); struct btrfs_block_group_cache *btrfs_lookup_block_group( struct btrfs_fs_info *info, u64 bytenr); void btrfs_put_block_group(struct btrfs_block_group_cache *cache); u64 btrfs_find_block_group(struct btrfs_root *root, u64 search_start, u64 search_hint, int owner); struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, u32 blocksize, u64 parent, u64 root_objectid, struct btrfs_disk_key *key, int level, u64 hint, u64 empty_size); struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u32 blocksize, int level); int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 root_objectid, u64 owner, u64 offset, struct btrfs_key *ins); int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 root_objectid, u64 owner, u64 offset, struct btrfs_key *ins); int btrfs_reserve_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 num_bytes, u64 min_alloc_size, u64 empty_size, u64 hint_byte, u64 search_end, struct btrfs_key *ins, u64 data); int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref); int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, int full_backref); int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 flags, int is_data); int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset); int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len); int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, u64 owner, u64 offset); int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr); int btrfs_free_block_groups(struct btrfs_fs_info *info); int btrfs_read_block_groups(struct btrfs_root *root); int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr); int btrfs_make_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytes_used, u64 type, u64 chunk_objectid, u64 chunk_offset, u64 size); int btrfs_remove_block_group(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 group_start); int btrfs_prepare_block_group_relocation(struct btrfs_root *root, struct btrfs_block_group_cache *group); u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags); void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *ionde); void btrfs_clear_space_info_full(struct btrfs_fs_info *info); int btrfs_check_metadata_free_space(struct btrfs_root *root); int btrfs_check_data_free_space(struct btrfs_root *root, struct inode *inode, u64 bytes); void btrfs_free_reserved_data_space(struct btrfs_root *root, struct inode *inode, u64 bytes); void btrfs_delalloc_reserve_space(struct btrfs_root *root, struct inode *inode, u64 bytes); void btrfs_delalloc_free_space(struct btrfs_root *root, struct inode *inode, u64 bytes); /* ctree.c */ int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, int level, int *slot); int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2); int btrfs_previous_item(struct btrfs_root *root, struct btrfs_path *path, u64 min_objectid, int type); int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *new_key); struct extent_buffer *btrfs_root_node(struct btrfs_root *root); struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, int lowest_level, int cache_only, u64 min_trans); int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, struct btrfs_key *max_key, struct btrfs_path *path, int cache_only, u64 min_trans); int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *parent, int parent_slot, struct extent_buffer **cow_ret); int btrfs_copy_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer **cow_ret, u64 new_root_objectid); int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf); int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u32 data_size); int btrfs_truncate_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u32 new_size, int from_end); int btrfs_split_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *new_key, unsigned long split_offset); int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow); int btrfs_realloc_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *parent, int start_slot, int cache_only, u64 *last_ret, struct btrfs_key *progress); void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p); struct btrfs_path *btrfs_alloc_path(void); void btrfs_free_path(struct btrfs_path *p); void btrfs_set_path_blocking(struct btrfs_path *p); void btrfs_unlock_up_safe(struct btrfs_path *p, int level); int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int slot, int nr); static inline int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path) { return btrfs_del_items(trans, root, path, path->slots[0], 1); } int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, void *data, u32 data_size); int btrfs_insert_some_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 *data_size, int nr); int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 *data_size, int nr); static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *key, u32 data_size) { return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); } int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf); int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref); int btrfs_drop_subtree(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *node, struct extent_buffer *parent); /* root-item.c */ int btrfs_find_root_ref(struct btrfs_root *tree_root, struct btrfs_path *path, u64 root_id, u64 ref_id); int btrfs_add_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *tree_root, u64 root_id, u64 ref_id, u64 dirid, u64 sequence, const char *name, int name_len); int btrfs_del_root_ref(struct btrfs_trans_handle *trans, struct btrfs_root *tree_root, u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, const char *name, int name_len); int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key); int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_root_item *item); int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct btrfs_root_item *item, struct btrfs_key *key); int btrfs_search_root(struct btrfs_root *root, u64 search_start, u64 *found_objectid); int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid); int btrfs_find_orphan_roots(struct btrfs_root *tree_root); int btrfs_set_root_node(struct btrfs_root_item *item, struct extent_buffer *node); /* dir-item.c */ int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 dir, struct btrfs_key *location, u8 type, u64 index); struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, int name_len, int mod); struct btrfs_dir_item * btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, u64 objectid, const char *name, int name_len, int mod); struct btrfs_dir_item * btrfs_search_dir_index_item(struct btrfs_root *root, struct btrfs_path *path, u64 dirid, const char *name, int name_len); struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path, const char *name, int name_len); int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_dir_item *di); int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, u16 name_len, const void *data, u16 data_len, u64 dir); struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 dir, const char *name, u16 name_len, int mod); /* orphan.c */ int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 offset); int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 offset); int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); /* inode-map.c */ int btrfs_find_free_objectid(struct btrfs_trans_handle *trans, struct btrfs_root *fs_root, u64 dirid, u64 *objectid); int btrfs_find_highest_inode(struct btrfs_root *fs_root, u64 *objectid); /* inode-item.c */ int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 index); int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, const char *name, int name_len, u64 inode_objectid, u64 ref_objectid, u64 *index); int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid); int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *location, int mod); /* file-item.c */ int btrfs_del_csums(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 bytenr, u64 len); int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, struct bio *bio, u32 *dst); int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, u64 objectid, u64 pos, u64 disk_offset, u64 disk_num_bytes, u64 num_bytes, u64 offset, u64 ram_bytes, u8 compression, u8 encryption, u16 other_encoding); int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 objectid, u64 bytenr, int mod); int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_ordered_sum *sums); int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, struct bio *bio, u64 file_start, int contig); int btrfs_csum_file_bytes(struct btrfs_root *root, struct inode *inode, u64 start, unsigned long len); struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 bytenr, int cow); int btrfs_csum_truncate(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, u64 isize); int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, struct list_head *list); /* inode.c */ /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */ #if defined(ClearPageFsMisc) && !defined(ClearPageChecked) #define ClearPageChecked ClearPageFsMisc #define SetPageChecked SetPageFsMisc #define PageChecked PageFsMisc #endif struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); int btrfs_set_inode_index(struct inode *dir, u64 *index); int btrfs_unlink_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, struct inode *inode, const char *name, int name_len); int btrfs_add_link(struct btrfs_trans_handle *trans, struct inode *parent_inode, struct inode *inode, const char *name, int name_len, int add_backref, u64 index); int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *dir, u64 objectid, const char *name, int name_len); int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 new_size, u32 min_type); int btrfs_start_delalloc_inodes(struct btrfs_root *root); int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end); int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc); int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, struct btrfs_root *new_root, u64 new_dirid, u64 alloc_hint); int btrfs_merge_bio_hook(struct page *page, unsigned long offset, size_t size, struct bio *bio, unsigned long bio_flags); unsigned long btrfs_force_ra(struct address_space *mapping, struct file_ra_state *ra, struct file *file, pgoff_t offset, pgoff_t last_index); int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); int btrfs_readpage(struct file *file, struct page *page); void btrfs_delete_inode(struct inode *inode); void btrfs_put_inode(struct inode *inode); int btrfs_write_inode(struct inode *inode, int wait); void btrfs_dirty_inode(struct inode *inode); struct inode *btrfs_alloc_inode(struct super_block *sb); void btrfs_destroy_inode(struct inode *inode); void btrfs_drop_inode(struct inode *inode); int btrfs_init_cachep(void); void btrfs_destroy_cachep(void); long btrfs_ioctl_trans_end(struct file *file); struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, struct btrfs_root *root); int btrfs_commit_write(struct file *file, struct page *page, unsigned from, unsigned to); struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, size_t page_offset, u64 start, u64 end, int create); int btrfs_update_inode(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode); int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode); int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode); void btrfs_orphan_cleanup(struct btrfs_root *root); int btrfs_cont_expand(struct inode *inode, loff_t size); int btrfs_invalidate_inodes(struct btrfs_root *root); extern struct dentry_operations btrfs_dentry_operations; /* ioctl.c */ long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); void btrfs_update_iflags(struct inode *inode); void btrfs_inherit_iflags(struct inode *inode, struct inode *dir); /* file.c */ int btrfs_sync_file(struct file *file, struct dentry *dentry, int datasync); int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, int skip_pinned); int btrfs_check_file(struct btrfs_root *root, struct inode *inode); extern struct file_operations btrfs_file_operations; int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end, u64 locked_end, u64 inline_limit, u64 *hint_block, int drop_cache); int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct inode *inode, u64 start, u64 end); int btrfs_release_file(struct inode *inode, struct file *file); /* tree-defrag.c */ int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, struct btrfs_root *root, int cache_only); /* sysfs.c */ int btrfs_init_sysfs(void); void btrfs_exit_sysfs(void); int btrfs_sysfs_add_super(struct btrfs_fs_info *fs); int btrfs_sysfs_add_root(struct btrfs_root *root); void btrfs_sysfs_del_root(struct btrfs_root *root); void btrfs_sysfs_del_super(struct btrfs_fs_info *root); /* xattr.c */ ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size); /* super.c */ u64 btrfs_parse_size(char *str); int btrfs_parse_options(struct btrfs_root *root, char *options); int btrfs_sync_fs(struct super_block *sb, int wait); /* acl.c */ #ifdef CONFIG_FS_POSIX_ACL int btrfs_check_acl(struct inode *inode, int mask); #else #define btrfs_check_acl NULL #endif int btrfs_init_acl(struct inode *inode, struct inode *dir); int btrfs_acl_chmod(struct inode *inode); /* relocation.c */ int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start); int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, struct btrfs_root *root); int btrfs_recover_relocation(struct btrfs_root *root); int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len); #endif