/* * Copyright (C) 2008 Red Hat. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/sched.h> #include "ctree.h" #include "free-space-cache.h" #include "transaction.h" struct btrfs_free_space { struct rb_node bytes_index; struct rb_node offset_index; u64 offset; u64 bytes; }; static int tree_insert_offset(struct rb_root *root, u64 offset, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, offset_index); if (offset < info->offset) p = &(*p)->rb_left; else if (offset > info->offset) p = &(*p)->rb_right; else return -EEXIST; } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } static int tree_insert_bytes(struct rb_root *root, u64 bytes, struct rb_node *node) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct btrfs_free_space *info; while (*p) { parent = *p; info = rb_entry(parent, struct btrfs_free_space, bytes_index); if (bytes < info->bytes) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(node, parent, p); rb_insert_color(node, root); return 0; } /* * searches the tree for the given offset. * * fuzzy == 1: this is used for allocations where we are given a hint of where * to look for free space. Because the hint may not be completely on an offset * mark, or the hint may no longer point to free space we need to fudge our * results a bit. So we look for free space starting at or after offset with at * least bytes size. We prefer to find as close to the given offset as we can. * Also if the offset is within a free space range, then we will return the free * space that contains the given offset, which means we can return a free space * chunk with an offset before the provided offset. * * fuzzy == 0: this is just a normal tree search. Give us the free space that * starts at the given offset which is at least bytes size, and if its not there * return NULL. */ static struct btrfs_free_space *tree_search_offset(struct rb_root *root, u64 offset, u64 bytes, int fuzzy) { struct rb_node *n = root->rb_node; struct btrfs_free_space *entry, *ret = NULL; while (n) { entry = rb_entry(n, struct btrfs_free_space, offset_index); if (offset < entry->offset) { if (fuzzy && (!ret || entry->offset < ret->offset) && (bytes <= entry->bytes)) ret = entry; n = n->rb_left; } else if (offset > entry->offset) { if (fuzzy && (entry->offset + entry->bytes - 1) >= offset && bytes <= entry->bytes) { ret = entry; break; } n = n->rb_right; } else { if (bytes > entry->bytes) { n = n->rb_right; continue; } ret = entry; break; } } return ret; } /* * return a chunk at least bytes size, as close to offset that we can get. */ static struct btrfs_free_space *tree_search_bytes(struct rb_root *root, u64 offset, u64 bytes) { struct rb_node *n = root->rb_node; struct btrfs_free_space *entry, *ret = NULL; while (n) { entry = rb_entry(n, struct btrfs_free_space, bytes_index); if (bytes < entry->bytes) { /* * We prefer to get a hole size as close to the size we * are asking for so we don't take small slivers out of * huge holes, but we also want to get as close to the * offset as possible so we don't have a whole lot of * fragmentation. */ if (offset <= entry->offset) { if (!ret) ret = entry; else if (entry->bytes < ret->bytes) ret = entry; else if (entry->offset < ret->offset) ret = entry; } n = n->rb_left; } else if (bytes > entry->bytes) { n = n->rb_right; } else { /* * Ok we may have multiple chunks of the wanted size, * so we don't want to take the first one we find, we * want to take the one closest to our given offset, so * keep searching just in case theres a better match. */ n = n->rb_right; if (offset > entry->offset) continue; else if (!ret || entry->offset < ret->offset) ret = entry; } } return ret; } static void unlink_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { rb_erase(&info->offset_index, &block_group->free_space_offset); rb_erase(&info->bytes_index, &block_group->free_space_bytes); } static int link_free_space(struct btrfs_block_group_cache *block_group, struct btrfs_free_space *info) { int ret = 0; BUG_ON(!info->bytes); ret = tree_insert_offset(&block_group->free_space_offset, info->offset, &info->offset_index); if (ret) return ret; ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes, &info->bytes_index); if (ret) return ret; return ret; } int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *right_info; struct btrfs_free_space *left_info; struct btrfs_free_space *info = NULL; int ret = 0; info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); if (!info) return -ENOMEM; info->offset = offset; info->bytes = bytes; spin_lock(&block_group->tree_lock); /* * first we want to see if there is free space adjacent to the range we * are adding, if there is remove that struct and add a new one to * cover the entire range */ right_info = tree_search_offset(&block_group->free_space_offset, offset+bytes, 0, 0); left_info = tree_search_offset(&block_group->free_space_offset, offset-1, 0, 1); if (right_info) { unlink_free_space(block_group, right_info); info->bytes += right_info->bytes; kfree(right_info); } if (left_info && left_info->offset + left_info->bytes == offset) { unlink_free_space(block_group, left_info); info->offset = left_info->offset; info->bytes += left_info->bytes; kfree(left_info); } ret = link_free_space(block_group, info); if (ret) kfree(info); spin_unlock(&block_group->tree_lock); if (ret) { printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret); BUG_ON(ret == -EEXIST); } return ret; } int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes) { struct btrfs_free_space *info; int ret = 0; spin_lock(&block_group->tree_lock); info = tree_search_offset(&block_group->free_space_offset, offset, 0, 1); if (info && info->offset == offset) { if (info->bytes < bytes) { printk(KERN_ERR "Found free space at %llu, size %llu," "trying to use %llu\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (unsigned long long)bytes); WARN_ON(1); ret = -EINVAL; spin_unlock(&block_group->tree_lock); goto out; } unlink_free_space(block_group, info); if (info->bytes == bytes) { kfree(info); spin_unlock(&block_group->tree_lock); goto out; } info->offset += bytes; info->bytes -= bytes; ret = link_free_space(block_group, info); spin_unlock(&block_group->tree_lock); BUG_ON(ret); } else if (info && info->offset < offset && info->offset + info->bytes >= offset + bytes) { u64 old_start = info->offset; /* * we're freeing space in the middle of the info, * this can happen during tree log replay * * first unlink the old info and then * insert it again after the hole we're creating */ unlink_free_space(block_group, info); if (offset + bytes < info->offset + info->bytes) { u64 old_end = info->offset + info->bytes; info->offset = offset + bytes; info->bytes = old_end - info->offset; ret = link_free_space(block_group, info); BUG_ON(ret); } else { /* the hole we're creating ends at the end * of the info struct, just free the info */ kfree(info); } spin_unlock(&block_group->tree_lock); /* step two, insert a new info struct to cover anything * before the hole */ ret = btrfs_add_free_space(block_group, old_start, offset - old_start); BUG_ON(ret); } else { spin_unlock(&block_group->tree_lock); if (!info) { printk(KERN_ERR "couldn't find space %llu to free\n", (unsigned long long)offset); printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n", block_group->cached, (unsigned long long)block_group->key.objectid, (unsigned long long)block_group->key.offset); btrfs_dump_free_space(block_group, bytes); } else if (info) { printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, " "but wanted offset=%llu bytes=%llu\n", (unsigned long long)info->offset, (unsigned long long)info->bytes, (unsigned long long)offset, (unsigned long long)bytes); } WARN_ON(1); } out: return ret; } void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, u64 bytes) { struct btrfs_free_space *info; struct rb_node *n; int count = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); if (info->bytes >= bytes) count++; printk(KERN_ERR "entry offset %llu, bytes %llu\n", (unsigned long long)info->offset, (unsigned long long)info->bytes); } printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" "\n", count); } u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *n; u64 ret = 0; for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { info = rb_entry(n, struct btrfs_free_space, offset_index); ret += info->bytes; } return ret; } /* * for a given cluster, put all of its extents back into the free * space cache. If the block group passed doesn't match the block group * pointed to by the cluster, someone else raced in and freed the * cluster already. In that case, we just return without changing anything */ static int __btrfs_return_cluster_to_free_space( struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster) { struct btrfs_free_space *entry; struct rb_node *node; spin_lock(&cluster->lock); if (cluster->block_group != block_group) goto out; cluster->window_start = 0; node = rb_first(&cluster->root); while(node) { entry = rb_entry(node, struct btrfs_free_space, offset_index); node = rb_next(&entry->offset_index); rb_erase(&entry->offset_index, &cluster->root); link_free_space(block_group, entry); } list_del_init(&cluster->block_group_list); btrfs_put_block_group(cluster->block_group); cluster->block_group = NULL; cluster->root.rb_node = NULL; out: spin_unlock(&cluster->lock); return 0; } void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) { struct btrfs_free_space *info; struct rb_node *node; struct btrfs_free_cluster *cluster; struct btrfs_free_cluster *safe; spin_lock(&block_group->tree_lock); list_for_each_entry_safe(cluster, safe, &block_group->cluster_list, block_group_list) { WARN_ON(cluster->block_group != block_group); __btrfs_return_cluster_to_free_space(block_group, cluster); } while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { info = rb_entry(node, struct btrfs_free_space, bytes_index); unlink_free_space(block_group, info); kfree(info); if (need_resched()) { spin_unlock(&block_group->tree_lock); cond_resched(); spin_lock(&block_group->tree_lock); } } spin_unlock(&block_group->tree_lock); } u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space *entry = NULL; u64 ret = 0; spin_lock(&block_group->tree_lock); entry = tree_search_offset(&block_group->free_space_offset, offset, bytes + empty_size, 1); if (!entry) entry = tree_search_bytes(&block_group->free_space_bytes, offset, bytes + empty_size); if (entry) { unlink_free_space(block_group, entry); ret = entry->offset; entry->offset += bytes; entry->bytes -= bytes; if (!entry->bytes) kfree(entry); else link_free_space(block_group, entry); } spin_unlock(&block_group->tree_lock); return ret; } /* * given a cluster, put all of its extents back into the free space * cache. If a block group is passed, this function will only free * a cluster that belongs to the passed block group. * * Otherwise, it'll get a reference on the block group pointed to by the * cluster and remove the cluster from it. */ int btrfs_return_cluster_to_free_space( struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster) { int ret; /* first, get a safe pointer to the block group */ spin_lock(&cluster->lock); if (!block_group) { block_group = cluster->block_group; if (!block_group) { spin_unlock(&cluster->lock); return 0; } } else if (cluster->block_group != block_group) { /* someone else has already freed it don't redo their work */ spin_unlock(&cluster->lock); return 0; } atomic_inc(&block_group->count); spin_unlock(&cluster->lock); /* now return any extents the cluster had on it */ spin_lock(&block_group->tree_lock); ret = __btrfs_return_cluster_to_free_space(block_group, cluster); spin_unlock(&block_group->tree_lock); /* finally drop our ref */ btrfs_put_block_group(block_group); return ret; } /* * given a cluster, try to allocate 'bytes' from it, returns 0 * if it couldn't find anything suitably large, or a logical disk offset * if things worked out */ u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 bytes, u64 min_start) { struct btrfs_free_space *entry = NULL; struct rb_node *node; u64 ret = 0; spin_lock(&cluster->lock); if (bytes > cluster->max_size) goto out; if (cluster->block_group != block_group) goto out; node = rb_first(&cluster->root); if (!node) goto out; entry = rb_entry(node, struct btrfs_free_space, offset_index); while(1) { if (entry->bytes < bytes || entry->offset < min_start) { struct rb_node *node; node = rb_next(&entry->offset_index); if (!node) break; entry = rb_entry(node, struct btrfs_free_space, offset_index); continue; } ret = entry->offset; entry->offset += bytes; entry->bytes -= bytes; if (entry->bytes == 0) { rb_erase(&entry->offset_index, &cluster->root); kfree(entry); } break; } out: spin_unlock(&cluster->lock); return ret; } /* * here we try to find a cluster of blocks in a block group. The goal * is to find at least bytes free and up to empty_size + bytes free. * We might not find them all in one contiguous area. * * returns zero and sets up cluster if things worked out, otherwise * it returns -enospc */ int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_block_group_cache *block_group, struct btrfs_free_cluster *cluster, u64 offset, u64 bytes, u64 empty_size) { struct btrfs_free_space *entry = NULL; struct rb_node *node; struct btrfs_free_space *next; struct btrfs_free_space *last; u64 min_bytes; u64 window_start; u64 window_free; u64 max_extent = 0; int total_retries = 0; int ret; /* for metadata, allow allocates with more holes */ if (btrfs_test_opt(root, SSD_SPREAD)) { min_bytes = bytes + empty_size; } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { /* * we want to do larger allocations when we are * flushing out the delayed refs, it helps prevent * making more work as we go along. */ if (trans->transaction->delayed_refs.flushing) min_bytes = max(bytes, (bytes + empty_size) >> 1); else min_bytes = max(bytes, (bytes + empty_size) >> 4); } else min_bytes = max(bytes, (bytes + empty_size) >> 2); spin_lock(&block_group->tree_lock); spin_lock(&cluster->lock); /* someone already found a cluster, hooray */ if (cluster->block_group) { ret = 0; goto out; } again: min_bytes = min(min_bytes, bytes + empty_size); entry = tree_search_bytes(&block_group->free_space_bytes, offset, min_bytes); if (!entry) { ret = -ENOSPC; goto out; } window_start = entry->offset; window_free = entry->bytes; last = entry; max_extent = entry->bytes; while(1) { /* out window is just right, lets fill it */ if (window_free >= bytes + empty_size) break; node = rb_next(&last->offset_index); if (!node) { ret = -ENOSPC; goto out; } next = rb_entry(node, struct btrfs_free_space, offset_index); /* * we haven't filled the empty size and the window is * very large. reset and try again */ if (next->offset - (last->offset + last->bytes) > 128 * 1024 || next->offset - window_start > (bytes + empty_size) * 2) { entry = next; window_start = entry->offset; window_free = entry->bytes; last = entry; max_extent = 0; total_retries++; if (total_retries % 64 == 0) { if (min_bytes >= (bytes + empty_size)) { ret = -ENOSPC; goto out; } /* * grow our allocation a bit, we're not having * much luck */ min_bytes *= 2; goto again; } } else { last = next; window_free += next->bytes; if (entry->bytes > max_extent) max_extent = entry->bytes; } } cluster->window_start = entry->offset; /* * now we've found our entries, pull them out of the free space * cache and put them into the cluster rbtree * * The cluster includes an rbtree, but only uses the offset index * of each free space cache entry. */ while(1) { node = rb_next(&entry->offset_index); unlink_free_space(block_group, entry); ret = tree_insert_offset(&cluster->root, entry->offset, &entry->offset_index); BUG_ON(ret); if (!node || entry == last) break; entry = rb_entry(node, struct btrfs_free_space, offset_index); } ret = 0; cluster->max_size = max_extent; atomic_inc(&block_group->count); list_add_tail(&cluster->block_group_list, &block_group->cluster_list); cluster->block_group = block_group; out: spin_unlock(&cluster->lock); spin_unlock(&block_group->tree_lock); return ret; } /* * simple code to zero out a cluster */ void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) { spin_lock_init(&cluster->lock); spin_lock_init(&cluster->refill_lock); cluster->root.rb_node = NULL; cluster->max_size = 0; INIT_LIST_HEAD(&cluster->block_group_list); cluster->block_group = NULL; }