/* * Filesystem access notification for Linux * * Copyright (C) 2008 Red Hat, Inc., Eric Paris */ #ifndef __LINUX_FSNOTIFY_BACKEND_H #define __LINUX_FSNOTIFY_BACKEND_H #ifdef __KERNEL__ #include /* struct inode */ #include #include /* struct path */ #include #include #include /* * IN_* from inotfy.h lines up EXACTLY with FS_*, this is so we can easily * convert between them. dnotify only needs conversion at watch creation * so no perf loss there. fanotify isn't defined yet, so it can use the * wholes if it needs more events. */ #define FS_ACCESS 0x00000001 /* File was accessed */ #define FS_MODIFY 0x00000002 /* File was modified */ #define FS_ATTRIB 0x00000004 /* Metadata changed */ #define FS_CLOSE_WRITE 0x00000008 /* Writtable file was closed */ #define FS_CLOSE_NOWRITE 0x00000010 /* Unwrittable file closed */ #define FS_OPEN 0x00000020 /* File was opened */ #define FS_MOVED_FROM 0x00000040 /* File was moved from X */ #define FS_MOVED_TO 0x00000080 /* File was moved to Y */ #define FS_CREATE 0x00000100 /* Subfile was created */ #define FS_DELETE 0x00000200 /* Subfile was deleted */ #define FS_DELETE_SELF 0x00000400 /* Self was deleted */ #define FS_MOVE_SELF 0x00000800 /* Self was moved */ #define FS_UNMOUNT 0x00002000 /* inode on umount fs */ #define FS_Q_OVERFLOW 0x00004000 /* Event queued overflowed */ #define FS_IN_IGNORED 0x00008000 /* last inotify event here */ #define FS_IN_ISDIR 0x40000000 /* event occurred against dir */ #define FS_IN_ONESHOT 0x80000000 /* only send event once */ #define FS_DN_RENAME 0x10000000 /* file renamed */ #define FS_DN_MULTISHOT 0x20000000 /* dnotify multishot */ struct fsnotify_group; struct fsnotify_event; /* * Each group much define these ops. The fsnotify infrastructure will call * these operations for each relevant group. * * handle_event - main call for a group to handle an fs event * free_group_priv - called when a group refcnt hits 0 to clean up the private union */ struct fsnotify_ops { int (*handle_event)(struct fsnotify_group *group, struct fsnotify_event *event); void (*free_group_priv)(struct fsnotify_group *group); }; /* * A group is a "thing" that wants to receive notification about filesystem * events. The mask holds the subset of event types this group cares about. * refcnt on a group is up to the implementor and at any moment if it goes 0 * everything will be cleaned up. */ struct fsnotify_group { /* * global list of all groups receiving events from fsnotify. * anchored by fsnotify_groups and protected by either fsnotify_grp_mutex * or fsnotify_grp_srcu depending on write vs read. */ struct list_head group_list; /* * Defines all of the event types in which this group is interested. * This mask is a bitwise OR of the FS_* events from above. Each time * this mask changes for a group (if it changes) the correct functions * must be called to update the global structures which indicate global * interest in event types. */ __u32 mask; /* * How the refcnt is used is up to each group. When the refcnt hits 0 * fsnotify will clean up all of the resources associated with this group. * As an example, the dnotify group will always have a refcnt=1 and that * will never change. Inotify, on the other hand, has a group per * inotify_init() and the refcnt will hit 0 only when that fd has been * closed. */ atomic_t refcnt; /* things with interest in this group */ unsigned int group_num; /* simply prevents accidental group collision */ const struct fsnotify_ops *ops; /* how this group handles things */ /* prevents double list_del of group_list. protected by global fsnotify_gr_mutex */ bool on_group_list; /* groups can define private fields here or use the void *private */ union { void *private; }; }; /* * all of the information about the original object we want to now send to * a group. If you want to carry more info from the accessing task to the * listener this structure is where you need to be adding fields. */ struct fsnotify_event { spinlock_t lock; /* protection for the associated event_holder and private_list */ /* to_tell may ONLY be dereferenced during handle_event(). */ struct inode *to_tell; /* either the inode the event happened to or its parent */ /* * depending on the event type we should have either a path or inode * We hold a reference on path, but NOT on inode. Since we have the ref on * the path, it may be dereferenced at any point during this object's * lifetime. That reference is dropped when this object's refcnt hits * 0. If this event contains an inode instead of a path, the inode may * ONLY be used during handle_event(). */ union { struct path path; struct inode *inode; }; /* when calling fsnotify tell it if the data is a path or inode */ #define FSNOTIFY_EVENT_NONE 0 #define FSNOTIFY_EVENT_PATH 1 #define FSNOTIFY_EVENT_INODE 2 #define FSNOTIFY_EVENT_FILE 3 int data_type; /* which of the above union we have */ atomic_t refcnt; /* how many groups still are using/need to send this event */ __u32 mask; /* the type of access, bitwise OR for FS_* event types */ }; #ifdef CONFIG_FSNOTIFY /* called from the vfs helpers */ /* main fsnotify call to send events */ extern void fsnotify(struct inode *to_tell, __u32 mask, void *data, int data_is); /* called from fsnotify listeners, such as fanotify or dnotify */ /* must call when a group changes its ->mask */ extern void fsnotify_recalc_global_mask(void); /* get a reference to an existing or create a new group */ extern struct fsnotify_group *fsnotify_obtain_group(unsigned int group_num, __u32 mask, const struct fsnotify_ops *ops); /* drop reference on a group from fsnotify_obtain_group */ extern void fsnotify_put_group(struct fsnotify_group *group); /* take a reference to an event */ extern void fsnotify_get_event(struct fsnotify_event *event); extern void fsnotify_put_event(struct fsnotify_event *event); /* find private data previously attached to an event */ extern struct fsnotify_event_private_data *fsnotify_get_priv_from_event(struct fsnotify_group *group, struct fsnotify_event *event); /* put here because inotify does some weird stuff when destroying watches */ extern struct fsnotify_event *fsnotify_create_event(struct inode *to_tell, __u32 mask, void *data, int data_is); #else static inline void fsnotify(struct inode *to_tell, __u32 mask, void *data, int data_is) {} #endif /* CONFIG_FSNOTIFY */ #endif /* __KERNEL __ */ #endif /* __LINUX_FSNOTIFY_BACKEND_H */