#ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H /* * cloning flags: */ #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ #define CLONE_VM 0x00000100 /* set if VM shared between processes */ #define CLONE_FS 0x00000200 /* set if fs info shared between processes */ #define CLONE_FILES 0x00000400 /* set if open files shared between processes */ #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ #define CLONE_THREAD 0x00010000 /* Same thread group? */ #define CLONE_NEWNS 0x00020000 /* New namespace group? */ #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ #define CLONE_DETACHED 0x00400000 /* Unused, ignored */ #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ /* 0x02000000 was previously the unused CLONE_STOPPED (Start in stopped state) and is now available for re-use. */ #define CLONE_NEWUTS 0x04000000 /* New utsname group? */ #define CLONE_NEWIPC 0x08000000 /* New ipcs */ #define CLONE_NEWUSER 0x10000000 /* New user namespace */ #define CLONE_NEWPID 0x20000000 /* New pid namespace */ #define CLONE_NEWNET 0x40000000 /* New network namespace */ #define CLONE_IO 0x80000000 /* Clone io context */ /* * Scheduling policies */ #define SCHED_NORMAL 0 #define SCHED_FIFO 1 #define SCHED_RR 2 #define SCHED_BATCH 3 /* SCHED_ISO: reserved but not implemented yet */ #define SCHED_IDLE 5 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ #define SCHED_RESET_ON_FORK 0x40000000 #ifdef __KERNEL__ struct sched_param { int sched_priority; }; #include /* for HZ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct exec_domain; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; /* * List of flags we want to share for kernel threads, * if only because they are not used by them anyway. */ #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) /* * These are the constant used to fake the fixed-point load-average * counting. Some notes: * - 11 bit fractions expand to 22 bits by the multiplies: this gives * a load-average precision of 10 bits integer + 11 bits fractional * - if you want to count load-averages more often, you need more * precision, or rounding will get you. With 2-second counting freq, * the EXP_n values would be 1981, 2034 and 2043 if still using only * 11 bit fractions. */ extern unsigned long avenrun[]; /* Load averages */ extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); #define FSHIFT 11 /* nr of bits of precision */ #define FIXED_1 (1<>= FSHIFT; extern unsigned long total_forks; extern int nr_threads; DECLARE_PER_CPU(unsigned long, process_counts); extern int nr_processes(void); extern unsigned long nr_running(void); extern unsigned long nr_uninterruptible(void); extern unsigned long nr_iowait(void); extern unsigned long nr_iowait_cpu(int cpu); extern unsigned long this_cpu_load(void); extern void calc_global_load(unsigned long ticks); extern unsigned long get_parent_ip(unsigned long addr); struct seq_file; struct cfs_rq; struct task_group; #ifdef CONFIG_SCHED_DEBUG extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); extern void proc_sched_set_task(struct task_struct *p); extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); #else static inline void proc_sched_show_task(struct task_struct *p, struct seq_file *m) { } static inline void proc_sched_set_task(struct task_struct *p) { } static inline void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) { } #endif /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define __TASK_STOPPED 4 #define __TASK_TRACED 8 /* in tsk->exit_state */ #define EXIT_ZOMBIE 16 #define EXIT_DEAD 32 /* in tsk->state again */ #define TASK_DEAD 64 #define TASK_WAKEKILL 128 #define TASK_WAKING 256 #define TASK_STATE_MAX 512 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW" extern char ___assert_task_state[1 - 2*!!( sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; /* Convenience macros for the sake of set_task_state */ #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) /* Convenience macros for the sake of wake_up */ #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) /* get_task_state() */ #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ __TASK_TRACED) #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) #define task_is_dead(task) ((task)->exit_state != 0) #define task_is_stopped_or_traced(task) \ ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) #define task_contributes_to_load(task) \ ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ (task->flags & PF_FREEZING) == 0) #define __set_task_state(tsk, state_value) \ do { (tsk)->state = (state_value); } while (0) #define set_task_state(tsk, state_value) \ set_mb((tsk)->state, (state_value)) /* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * set_current_state(TASK_UNINTERRUPTIBLE); * if (do_i_need_to_sleep()) * schedule(); * * If the caller does not need such serialisation then use __set_current_state() */ #define __set_current_state(state_value) \ do { current->state = (state_value); } while (0) #define set_current_state(state_value) \ set_mb(current->state, (state_value)) /* Task command name length */ #define TASK_COMM_LEN 16 #include /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; struct task_struct; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern void sched_init(void); extern void sched_init_smp(void); extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern void init_idle_bootup_task(struct task_struct *idle); extern int runqueue_is_locked(int cpu); extern cpumask_var_t nohz_cpu_mask; #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) extern void select_nohz_load_balancer(int stop_tick); extern int get_nohz_timer_target(void); #else static inline void select_nohz_load_balancer(int stop_tick) { } #endif /* * Only dump TASK_* tasks. (0 for all tasks) */ extern void show_state_filter(unsigned long state_filter); static inline void show_state(void) { show_state_filter(0); } extern void show_regs(struct pt_regs *); /* * TASK is a pointer to the task whose backtrace we want to see (or NULL for current * task), SP is the stack pointer of the first frame that should be shown in the back * trace (or NULL if the entire call-chain of the task should be shown). */ extern void show_stack(struct task_struct *task, unsigned long *sp); void io_schedule(void); long io_schedule_timeout(long timeout); extern void cpu_init (void); extern void trap_init(void); extern void update_process_times(int user); extern void scheduler_tick(void); extern void sched_show_task(struct task_struct *p); #ifdef CONFIG_LOCKUP_DETECTOR extern void touch_softlockup_watchdog(void); extern void touch_softlockup_watchdog_sync(void); extern void touch_all_softlockup_watchdogs(void); extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); extern unsigned int softlockup_panic; void lockup_detector_init(void); #else static inline void touch_softlockup_watchdog(void) { } static inline void touch_softlockup_watchdog_sync(void) { } static inline void touch_all_softlockup_watchdogs(void) { } static inline void lockup_detector_init(void) { } #endif #ifdef CONFIG_DETECT_HUNG_TASK extern unsigned int sysctl_hung_task_panic; extern unsigned long sysctl_hung_task_check_count; extern unsigned long sysctl_hung_task_timeout_secs; extern unsigned long sysctl_hung_task_warnings; extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); #else /* Avoid need for ifdefs elsewhere in the code */ enum { sysctl_hung_task_timeout_secs = 0 }; #endif /* Attach to any functions which should be ignored in wchan output. */ #define __sched __attribute__((__section__(".sched.text"))) /* Linker adds these: start and end of __sched functions */ extern char __sched_text_start[], __sched_text_end[]; /* Is this address in the __sched functions? */ extern int in_sched_functions(unsigned long addr); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern signed long schedule_timeout(signed long timeout); extern signed long schedule_timeout_interruptible(signed long timeout); extern signed long schedule_timeout_killable(signed long timeout); extern signed long schedule_timeout_uninterruptible(signed long timeout); asmlinkage void schedule(void); extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); struct nsproxy; struct user_namespace; /* * Default maximum number of active map areas, this limits the number of vmas * per mm struct. Users can overwrite this number by sysctl but there is a * problem. * * When a program's coredump is generated as ELF format, a section is created * per a vma. In ELF, the number of sections is represented in unsigned short. * This means the number of sections should be smaller than 65535 at coredump. * Because the kernel adds some informative sections to a image of program at * generating coredump, we need some margin. The number of extra sections is * 1-3 now and depends on arch. We use "5" as safe margin, here. */ #define MAPCOUNT_ELF_CORE_MARGIN (5) #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) extern int sysctl_max_map_count; #include #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); extern void arch_unmap_area(struct mm_struct *, unsigned long); extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} #endif extern void set_dumpable(struct mm_struct *mm, int value); extern int get_dumpable(struct mm_struct *mm); /* mm flags */ /* dumpable bits */ #define MMF_DUMPABLE 0 /* core dump is permitted */ #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ #define MMF_DUMPABLE_BITS 2 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) /* coredump filter bits */ #define MMF_DUMP_ANON_PRIVATE 2 #define MMF_DUMP_ANON_SHARED 3 #define MMF_DUMP_MAPPED_PRIVATE 4 #define MMF_DUMP_MAPPED_SHARED 5 #define MMF_DUMP_ELF_HEADERS 6 #define MMF_DUMP_HUGETLB_PRIVATE 7 #define MMF_DUMP_HUGETLB_SHARED 8 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS #define MMF_DUMP_FILTER_BITS 7 #define MMF_DUMP_FILTER_MASK \ (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) #define MMF_DUMP_FILTER_DEFAULT \ ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) #else # define MMF_DUMP_MASK_DEFAULT_ELF 0 #endif /* leave room for more dump flags */ #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) struct sighand_struct { atomic_t count; struct k_sigaction action[_NSIG]; spinlock_t siglock; wait_queue_head_t signalfd_wqh; }; struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; cputime_t ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; struct cpu_itimer { cputime_t expires; cputime_t incr; u32 error; u32 incr_error; }; /** * struct task_cputime - collected CPU time counts * @utime: time spent in user mode, in &cputime_t units * @stime: time spent in kernel mode, in &cputime_t units * @sum_exec_runtime: total time spent on the CPU, in nanoseconds * * This structure groups together three kinds of CPU time that are * tracked for threads and thread groups. Most things considering * CPU time want to group these counts together and treat all three * of them in parallel. */ struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; /* Alternate field names when used to cache expirations. */ #define prof_exp stime #define virt_exp utime #define sched_exp sum_exec_runtime #define INIT_CPUTIME \ (struct task_cputime) { \ .utime = cputime_zero, \ .stime = cputime_zero, \ .sum_exec_runtime = 0, \ } /* * Disable preemption until the scheduler is running. * Reset by start_kernel()->sched_init()->init_idle(). * * We include PREEMPT_ACTIVE to avoid cond_resched() from working * before the scheduler is active -- see should_resched(). */ #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) /** * struct thread_group_cputimer - thread group interval timer counts * @cputime: thread group interval timers. * @running: non-zero when there are timers running and * @cputime receives updates. * @lock: lock for fields in this struct. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime cputime; int running; spinlock_t lock; }; #include struct autogroup; /* * NOTE! "signal_struct" does not have its own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { atomic_t sigcnt; atomic_t live; int nr_threads; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ int notify_count; struct task_struct *group_exit_task; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* POSIX.1b Interval Timers */ struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; struct pid *leader_pid; ktime_t it_real_incr; /* * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these * values are defined to 0 and 1 respectively */ struct cpu_itimer it[2]; /* * Thread group totals for process CPU timers. * See thread_group_cputimer(), et al, for details. */ struct thread_group_cputimer cputimer; /* Earliest-expiration cache. */ struct task_cputime cputime_expires; struct list_head cpu_timers[3]; struct pid *tty_old_pgrp; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ cputime_t utime, stime, cutime, cstime; cputime_t gtime; cputime_t cgtime; #ifndef CONFIG_VIRT_CPU_ACCOUNTING cputime_t prev_utime, prev_stime; #endif unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; unsigned long maxrss, cmaxrss; struct task_io_accounting ioac; /* * Cumulative ns of schedule CPU time fo dead threads in the * group, not including a zombie group leader, (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sum_sched_runtime; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif #ifdef CONFIG_AUDIT unsigned audit_tty; struct tty_audit_buf *tty_audit_buf; #endif #ifdef CONFIG_CGROUPS /* * The threadgroup_fork_lock prevents threads from forking with * CLONE_THREAD while held for writing. Use this for fork-sensitive * threadgroup-wide operations. It's taken for reading in fork.c in * copy_process(). * Currently only needed write-side by cgroups. */ struct rw_semaphore threadgroup_fork_lock; #endif int oom_adj; /* OOM kill score adjustment (bit shift) */ int oom_score_adj; /* OOM kill score adjustment */ int oom_score_adj_min; /* OOM kill score adjustment minimum value. * Only settable by CAP_SYS_RESOURCE. */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) */ }; /* Context switch must be unlocked if interrupts are to be enabled */ #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW # define __ARCH_WANT_UNLOCKED_CTXSW #endif /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ /* * Pending notifications to parent. */ #define SIGNAL_CLD_STOPPED 0x00000010 #define SIGNAL_CLD_CONTINUED 0x00000020 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ /* If true, all threads except ->group_exit_task have pending SIGKILL */ static inline int signal_group_exit(const struct signal_struct *sig) { return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); } /* * Some day this will be a full-fledged user tracking system.. */ struct user_struct { atomic_t __count; /* reference count */ atomic_t processes; /* How many processes does this user have? */ atomic_t files; /* How many open files does this user have? */ atomic_t sigpending; /* How many pending signals does this user have? */ #ifdef CONFIG_INOTIFY_USER atomic_t inotify_watches; /* How many inotify watches does this user have? */ atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ #endif #ifdef CONFIG_FANOTIFY atomic_t fanotify_listeners; #endif #ifdef CONFIG_EPOLL atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ #endif #ifdef CONFIG_POSIX_MQUEUE /* protected by mq_lock */ unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ #endif unsigned long locked_shm; /* How many pages of mlocked shm ? */ #ifdef CONFIG_KEYS struct key *uid_keyring; /* UID specific keyring */ struct key *session_keyring; /* UID's default session keyring */ #endif /* Hash table maintenance information */ struct hlist_node uidhash_node; uid_t uid; struct user_namespace *user_ns; #ifdef CONFIG_PERF_EVENTS atomic_long_t locked_vm; #endif }; extern int uids_sysfs_init(void); extern struct user_struct *find_user(uid_t); extern struct user_struct root_user; #define INIT_USER (&root_user) struct backing_dev_info; struct reclaim_state; #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) struct sched_info { /* cumulative counters */ unsigned long pcount; /* # of times run on this cpu */ unsigned long long run_delay; /* time spent waiting on a runqueue */ /* timestamps */ unsigned long long last_arrival,/* when we last ran on a cpu */ last_queued; /* when we were last queued to run */ }; #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info { spinlock_t lock; unsigned int flags; /* Private per-task flags */ /* For each stat XXX, add following, aligned appropriately * * struct timespec XXX_start, XXX_end; * u64 XXX_delay; * u32 XXX_count; * * Atomicity of updates to XXX_delay, XXX_count protected by * single lock above (split into XXX_lock if contention is an issue). */ /* * XXX_count is incremented on every XXX operation, the delay * associated with the operation is added to XXX_delay. * XXX_delay contains the accumulated delay time in nanoseconds. */ struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ u64 blkio_delay; /* wait for sync block io completion */ u64 swapin_delay; /* wait for swapin block io completion */ u32 blkio_count; /* total count of the number of sync block */ /* io operations performed */ u32 swapin_count; /* total count of the number of swapin block */ /* io operations performed */ struct timespec freepages_start, freepages_end; u64 freepages_delay; /* wait for memory reclaim */ u32 freepages_count; /* total count of memory reclaim */ }; #endif /* CONFIG_TASK_DELAY_ACCT */ static inline int sched_info_on(void) { #ifdef CONFIG_SCHEDSTATS return 1; #elif defined(CONFIG_TASK_DELAY_ACCT) extern int delayacct_on; return delayacct_on; #else return 0; #endif } enum cpu_idle_type { CPU_IDLE, CPU_NOT_IDLE, CPU_NEWLY_IDLE, CPU_MAX_IDLE_TYPES }; /* * Increase resolution of nice-level calculations for 64-bit architectures. * The extra resolution improves shares distribution and load balancing of * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup * hierarchies, especially on larger systems. This is not a user-visible change * and does not change the user-interface for setting shares/weights. * * We increase resolution only if we have enough bits to allow this increased * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the * increased costs. */ #if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ # define SCHED_LOAD_RESOLUTION 10 # define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) # define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) #else # define SCHED_LOAD_RESOLUTION 0 # define scale_load(w) (w) # define scale_load_down(w) (w) #endif #define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) /* * Increase resolution of cpu_power calculations */ #define SCHED_POWER_SHIFT 10 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) /* * sched-domains (multiprocessor balancing) declarations: */ #ifdef CONFIG_SMP #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */ #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */ #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ enum powersavings_balance_level { POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */ POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package * first for long running threads */ POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle * cpu package for power savings */ MAX_POWERSAVINGS_BALANCE_LEVELS }; extern int sched_mc_power_savings, sched_smt_power_savings; static inline int sd_balance_for_mc_power(void) { if (sched_smt_power_savings) return SD_POWERSAVINGS_BALANCE; if (!sched_mc_power_savings) return SD_PREFER_SIBLING; return 0; } static inline int sd_balance_for_package_power(void) { if (sched_mc_power_savings | sched_smt_power_savings) return SD_POWERSAVINGS_BALANCE; return SD_PREFER_SIBLING; } extern int __weak arch_sd_sibiling_asym_packing(void); /* * Optimise SD flags for power savings: * SD_BALANCE_NEWIDLE helps aggressive task consolidation and power savings. * Keep default SD flags if sched_{smt,mc}_power_saving=0 */ static inline int sd_power_saving_flags(void) { if (sched_mc_power_savings | sched_smt_power_savings) return SD_BALANCE_NEWIDLE; return 0; } struct sched_group_power { atomic_t ref; /* * CPU power of this group, SCHED_LOAD_SCALE being max power for a * single CPU. */ unsigned int power, power_orig; }; struct sched_group { struct sched_group *next; /* Must be a circular list */ atomic_t ref; unsigned int group_weight; struct sched_group_power *sgp; /* * The CPUs this group covers. * * NOTE: this field is variable length. (Allocated dynamically * by attaching extra space to the end of the structure, * depending on how many CPUs the kernel has booted up with) */ unsigned long cpumask[0]; }; static inline struct cpumask *sched_group_cpus(struct sched_group *sg) { return to_cpumask(sg->cpumask); } struct sched_domain_attr { int relax_domain_level; }; #define SD_ATTR_INIT (struct sched_domain_attr) { \ .relax_domain_level = -1, \ } extern int sched_domain_level_max; struct sched_domain { /* These fields must be setup */ struct sched_domain *parent; /* top domain must be null terminated */ struct sched_domain *child; /* bottom domain must be null terminated */ struct sched_group *groups; /* the balancing groups of the domain */ unsigned long min_interval; /* Minimum balance interval ms */ unsigned long max_interval; /* Maximum balance interval ms */ unsigned int busy_factor; /* less balancing by factor if busy */ unsigned int imbalance_pct; /* No balance until over watermark */ unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ unsigned int busy_idx; unsigned int idle_idx; unsigned int newidle_idx; unsigned int wake_idx; unsigned int forkexec_idx; unsigned int smt_gain; int flags; /* See SD_* */ int level; /* Runtime fields. */ unsigned long last_balance; /* init to jiffies. units in jiffies */ unsigned int balance_interval; /* initialise to 1. units in ms. */ unsigned int nr_balance_failed; /* initialise to 0 */ u64 last_update; #ifdef CONFIG_SCHEDSTATS /* load_balance() stats */ unsigned int lb_count[CPU_MAX_IDLE_TYPES]; unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; /* Active load balancing */ unsigned int alb_count; unsigned int alb_failed; unsigned int alb_pushed; /* SD_BALANCE_EXEC stats */ unsigned int sbe_count; unsigned int sbe_balanced; unsigned int sbe_pushed; /* SD_BALANCE_FORK stats */ unsigned int sbf_count; unsigned int sbf_balanced; unsigned int sbf_pushed; /* try_to_wake_up() stats */ unsigned int ttwu_wake_remote; unsigned int ttwu_move_affine; unsigned int ttwu_move_balance; #endif #ifdef CONFIG_SCHED_DEBUG char *name; #endif union { void *private; /* used during construction */ struct rcu_head rcu; /* used during destruction */ }; unsigned int span_weight; /* * Span of all CPUs in this domain. * * NOTE: this field is variable length. (Allocated dynamically * by attaching extra space to the end of the structure, * depending on how many CPUs the kernel has booted up with) */ unsigned long span[0]; }; static inline struct cpumask *sched_domain_span(struct sched_domain *sd) { return to_cpumask(sd->span); } extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new); /* Allocate an array of sched domains, for partition_sched_domains(). */ cpumask_var_t *alloc_sched_domains(unsigned int ndoms); void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); /* Test a flag in parent sched domain */ static inline int test_sd_parent(struct sched_domain *sd, int flag) { if (sd->parent && (sd->parent->flags & flag)) return 1; return 0; } unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); #else /* CONFIG_SMP */ struct sched_domain_attr; static inline void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new) { } #endif /* !CONFIG_SMP */ struct io_context; /* See blkdev.h */ #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK extern void prefetch_stack(struct task_struct *t); #else static inline void prefetch_stack(struct task_struct *t) { } #endif struct audit_context; /* See audit.c */ struct mempolicy; struct pipe_inode_info; struct uts_namespace; struct rq; struct sched_domain; /* * wake flags */ #define WF_SYNC 0x01 /* waker goes to sleep after wakup */ #define WF_FORK 0x02 /* child wakeup after fork */ #define WF_MIGRATED 0x04 /* internal use, task got migrated */ #define ENQUEUE_WAKEUP 1 #define ENQUEUE_HEAD 2 #ifdef CONFIG_SMP #define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ #else #define ENQUEUE_WAKING 0 #endif #define DEQUEUE_SLEEP 1 struct sched_class { const struct sched_class *next; void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); void (*yield_task) (struct rq *rq); bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); struct task_struct * (*pick_next_task) (struct rq *rq); void (*put_prev_task) (struct rq *rq, struct task_struct *p); #ifdef CONFIG_SMP int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); void (*post_schedule) (struct rq *this_rq); void (*task_waking) (struct task_struct *task); void (*task_woken) (struct rq *this_rq, struct task_struct *task); void (*set_cpus_allowed)(struct task_struct *p, const struct cpumask *newmask); void (*rq_online)(struct rq *rq); void (*rq_offline)(struct rq *rq); #endif void (*set_curr_task) (struct rq *rq); void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); void (*task_fork) (struct task_struct *p); void (*switched_from) (struct rq *this_rq, struct task_struct *task); void (*switched_to) (struct rq *this_rq, struct task_struct *task); void (*prio_changed) (struct rq *this_rq, struct task_struct *task, int oldprio); unsigned int (*get_rr_interval) (struct rq *rq, struct task_struct *task); #ifdef CONFIG_FAIR_GROUP_SCHED void (*task_move_group) (struct task_struct *p, int on_rq); #endif }; struct load_weight { unsigned long weight, inv_weight; }; #ifdef CONFIG_SCHEDSTATS struct sched_statistics { u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; }; #endif struct sched_entity { struct load_weight load; /* for load-balancing */ struct rb_node run_node; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 vruntime; u64 prev_sum_exec_runtime; u64 nr_migrations; #ifdef CONFIG_SCHEDSTATS struct sched_statistics statistics; #endif #ifdef CONFIG_FAIR_GROUP_SCHED struct sched_entity *parent; /* rq on which this entity is (to be) queued: */ struct cfs_rq *cfs_rq; /* rq "owned" by this entity/group: */ struct cfs_rq *my_q; #endif }; struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned int time_slice; int nr_cpus_allowed; struct sched_rt_entity *back; #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity *parent; /* rq on which this entity is (to be) queued: */ struct rt_rq *rt_rq; /* rq "owned" by this entity/group: */ struct rt_rq *my_q; #endif }; struct rcu_node; enum perf_event_task_context { perf_invalid_context = -1, perf_hw_context = 0, perf_sw_context, perf_nr_task_contexts, }; struct task_struct { volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ void *stack; atomic_t usage; unsigned int flags; /* per process flags, defined below */ unsigned int ptrace; #ifdef CONFIG_SMP struct task_struct *wake_entry; int on_cpu; #endif int on_rq; int prio, static_prio, normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ struct hlist_head preempt_notifiers; #endif /* * fpu_counter contains the number of consecutive context switches * that the FPU is used. If this is over a threshold, the lazy fpu * saving becomes unlazy to save the trap. This is an unsigned char * so that after 256 times the counter wraps and the behavior turns * lazy again; this to deal with bursty apps that only use FPU for * a short time */ unsigned char fpu_counter; #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned int policy; cpumask_t cpus_allowed; #ifdef CONFIG_PREEMPT_RCU int rcu_read_lock_nesting; char rcu_read_unlock_special; #if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU) int rcu_boosted; #endif /* #if defined(CONFIG_RCU_BOOST) && defined(CONFIG_TREE_PREEMPT_RCU) */ struct list_head rcu_node_entry; #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TREE_PREEMPT_RCU struct rcu_node *rcu_blocked_node; #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ #ifdef CONFIG_RCU_BOOST struct rt_mutex *rcu_boost_mutex; #endif /* #ifdef CONFIG_RCU_BOOST */ #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) struct sched_info sched_info; #endif struct list_head tasks; #ifdef CONFIG_SMP struct plist_node pushable_tasks; #endif struct mm_struct *mm, *active_mm; #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif #if defined(SPLIT_RSS_COUNTING) struct task_rss_stat rss_stat; #endif /* task state */ int exit_state; int exit_code, exit_signal; int pdeath_signal; /* The signal sent when the parent dies */ unsigned int group_stop; /* GROUP_STOP_*, siglock protected */ /* ??? */ unsigned int personality; unsigned did_exec:1; unsigned in_execve:1; /* Tell the LSMs that the process is doing an * execve */ unsigned in_iowait:1; /* Revert to default priority/policy when forking */ unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; pid_t pid; pid_t tgid; #ifdef CONFIG_CC_STACKPROTECTOR /* Canary value for the -fstack-protector gcc feature */ unsigned long stack_canary; #endif /* * pointers to (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ struct task_struct *real_parent; /* real parent process */ struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */ /* * children/sibling forms the list of my natural children */ struct list_head children; /* list of my children */ struct list_head sibling; /* linkage in my parent's children list */ struct task_struct *group_leader; /* threadgroup leader */ /* * ptraced is the list of tasks this task is using ptrace on. * This includes both natural children and PTRACE_ATTACH targets. * p->ptrace_entry is p's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid_link pids[PIDTYPE_MAX]; struct list_head thread_group; struct completion *vfork_done; /* for vfork() */ int __user *set_child_tid; /* CLONE_CHILD_SETTID */ int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ cputime_t utime, stime, utimescaled, stimescaled; cputime_t gtime; #ifndef CONFIG_VIRT_CPU_ACCOUNTING cputime_t prev_utime, prev_stime; #endif unsigned long nvcsw, nivcsw; /* context switch counts */ struct timespec start_time; /* monotonic time */ struct timespec real_start_time; /* boot based time */ /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ unsigned long min_flt, maj_flt; struct task_cputime cputime_expires; struct list_head cpu_timers[3]; /* process credentials */ const struct cred __rcu *real_cred; /* objective and real subjective task * credentials (COW) */ const struct cred __rcu *cred; /* effective (overridable) subjective task * credentials (COW) */ struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */ char comm[TASK_COMM_LEN]; /* executable name excluding path - access with [gs]et_task_comm (which lock it with task_lock()) - initialized normally by setup_new_exec */ /* file system info */ int link_count, total_link_count; #ifdef CONFIG_SYSVIPC /* ipc stuff */ struct sysv_sem sysvsem; #endif #ifdef CONFIG_DETECT_HUNG_TASK /* hung task detection */ unsigned long last_switch_count; #endif /* CPU-specific state of this task */ struct thread_struct thread; /* filesystem information */ struct fs_struct *fs; /* open file information */ struct files_struct *files; /* namespaces */ struct nsproxy *nsproxy; /* signal handlers */ struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked, real_blocked; sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; int (*notifier)(void *priv); void *notifier_data; sigset_t *notifier_mask; struct audit_context *audit_context; #ifdef CONFIG_AUDITSYSCALL uid_t loginuid; unsigned int sessionid; #endif seccomp_t seccomp; /* Thread group tracking */ u32 parent_exec_id; u32 self_exec_id; /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, * mempolicy */ spinlock_t alloc_lock; #ifdef CONFIG_GENERIC_HARDIRQS /* IRQ handler threads */ struct irqaction *irqaction; #endif /* Protection of the PI data structures: */ raw_spinlock_t pi_lock; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task */ struct plist_head pi_waiters; /* Deadlock detection and priority inheritance handling */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* mutex deadlock detection */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_TRACE_IRQFLAGS unsigned int irq_events; unsigned long hardirq_enable_ip; unsigned long hardirq_disable_ip; unsigned int hardirq_enable_event; unsigned int hardirq_disable_event; int hardirqs_enabled; int hardirq_context; unsigned long softirq_disable_ip; unsigned long softirq_enable_ip; unsigned int softirq_disable_event; unsigned int softirq_enable_event; int softirqs_enabled; int softirq_context; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; gfp_t lockdep_reclaim_gfp; #endif /* journalling filesystem info */ void *journal_info; /* stacked block device info */ struct bio_list *bio_list; #ifdef CONFIG_BLOCK /* stack plugging */ struct blk_plug *plug; #endif /* VM state */ struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; /* For ptrace use. */ struct task_io_accounting ioac; #if defined(CONFIG_TASK_XACCT) u64 acct_rss_mem1; /* accumulated rss usage */ u64 acct_vm_mem1; /* accumulated virtual memory usage */ cputime_t acct_timexpd; /* stime + utime since last update */ #endif #ifdef CONFIG_CPUSETS nodemask_t mems_allowed; /* Protected by alloc_lock */ seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock */ struct css_set __rcu *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock */ struct list_head cg_list; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; #endif #ifdef CONFIG_PERF_EVENTS struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_NUMA struct mempolicy *mempolicy; /* Protected by alloc_lock */ short il_next; short pref_node_fork; #endif atomic_t fs_excl; /* holding fs exclusive resources */ struct rcu_head rcu; /* * cache last used pipe for splice */ struct pipe_inode_info *splice_pipe; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; #endif struct prop_local_single dirties; #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */ unsigned long timer_slack_ns; unsigned long default_timer_slack_ns; struct list_head *scm_work_list; #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Index of current stored address in ret_stack */ int curr_ret_stack; /* Stack of return addresses for return function tracing */ struct ftrace_ret_stack *ret_stack; /* time stamp for last schedule */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun. */ atomic_t trace_overrun; /* Pause for the tracing */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* state flags for use by tracers */ unsigned long trace; /* bitmask and counter of trace recursion */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */ struct memcg_batch_info { int do_batch; /* incremented when batch uncharge started */ struct mem_cgroup *memcg; /* target memcg of uncharge */ unsigned long nr_pages; /* uncharged usage */ unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ } memcg_batch; #endif #ifdef CONFIG_HAVE_HW_BREAKPOINT atomic_t ptrace_bp_refcnt; #endif }; /* Future-safe accessor for struct task_struct's cpus_allowed. */ #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) /* * Priority of a process goes from 0..MAX_PRIO-1, valid RT * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority * values are inverted: lower p->prio value means higher priority. * * The MAX_USER_RT_PRIO value allows the actual maximum * RT priority to be separate from the value exported to * user-space. This allows kernel threads to set their * priority to a value higher than any user task. Note: * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. */ #define MAX_USER_RT_PRIO 100 #define MAX_RT_PRIO MAX_USER_RT_PRIO #define MAX_PRIO (MAX_RT_PRIO + 40) #define DEFAULT_PRIO (MAX_RT_PRIO + 20) static inline int rt_prio(int prio) { if (unlikely(prio < MAX_RT_PRIO)) return 1; return 0; } static inline int rt_task(struct task_struct *p) { return rt_prio(p->prio); } static inline struct pid *task_pid(struct task_struct *task) { return task->pids[PIDTYPE_PID].pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PID].pid; } /* * Without tasklist or rcu lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PGID].pid; } static inline struct pid *task_session(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_SID].pid; } struct pid_namespace; /* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * set_task_vxid() : assigns a virtual id to a task; * * see also pid_nr() etc in include/linux/pid.h */ pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); static inline pid_t task_pid_nr(struct task_struct *tsk) { return tsk->pid; } static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); } static inline pid_t task_pid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); } static inline pid_t task_tgid_nr(struct task_struct *tsk) { return tsk->tgid; } pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); static inline pid_t task_tgid_vnr(struct task_struct *tsk) { return pid_vnr(task_tgid(tsk)); } static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); } static inline pid_t task_pgrp_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); } static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); } static inline pid_t task_session_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); } /* obsolete, do not use */ static inline pid_t task_pgrp_nr(struct task_struct *tsk) { return task_pgrp_nr_ns(tsk, &init_pid_ns); } /** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. */ static inline int pid_alive(struct task_struct *p) { return p->pids[PIDTYPE_PID].pid != NULL; } /** * is_global_init - check if a task structure is init * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. */ static inline int is_global_init(struct task_struct *tsk) { return tsk->pid == 1; } /* * is_container_init: * check whether in the task is init in its own pid namespace. */ extern int is_container_init(struct task_struct *tsk); extern struct pid *cad_pid; extern void free_task(struct task_struct *tsk); #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (atomic_dec_and_test(&t->usage)) __put_task_struct(t); } extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st); extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st); extern int task_free_register(struct notifier_block *n); extern int task_free_unregister(struct notifier_block *n); /* * Per process flags */ #define PF_STARTING 0x00000002 /* being created */ #define PF_EXITING 0x00000004 /* getting shut down */ #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* dumped core */ #define PF_SIGNALED 0x00000400 /* killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */ #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ #define PF_FROZEN 0x00010000 /* frozen for system suspend */ #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ #define PF_KSWAPD 0x00040000 /* I am kswapd */ #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */ /* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */ #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) #define clear_used_math() clear_stopped_child_used_math(current) #define set_used_math() set_stopped_child_used_math(current) #define conditional_stopped_child_used_math(condition, child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) #define conditional_used_math(condition) \ conditional_stopped_child_used_math(condition, current) #define copy_to_stopped_child_used_math(child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) #define used_math() tsk_used_math(current) /* * task->group_stop flags */ #define GROUP_STOP_SIGMASK 0xffff /* signr of the last group stop */ #define GROUP_STOP_PENDING (1 << 16) /* task should stop for group stop */ #define GROUP_STOP_CONSUME (1 << 17) /* consume group stop count */ #define GROUP_STOP_TRAPPING (1 << 18) /* switching from STOPPED to TRACED */ #define GROUP_STOP_DEQUEUED (1 << 19) /* stop signal dequeued */ extern void task_clear_group_stop_pending(struct task_struct *task); #ifdef CONFIG_PREEMPT_RCU #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ #define RCU_READ_UNLOCK_BOOSTED (1 << 1) /* boosted while in RCU read-side. */ #define RCU_READ_UNLOCK_NEED_QS (1 << 2) /* RCU core needs CPU response. */ static inline void rcu_copy_process(struct task_struct *p) { p->rcu_read_lock_nesting = 0; p->rcu_read_unlock_special = 0; #ifdef CONFIG_TREE_PREEMPT_RCU p->rcu_blocked_node = NULL; #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ #ifdef CONFIG_RCU_BOOST p->rcu_boost_mutex = NULL; #endif /* #ifdef CONFIG_RCU_BOOST */ INIT_LIST_HEAD(&p->rcu_node_entry); } #else static inline void rcu_copy_process(struct task_struct *p) { } #endif #ifdef CONFIG_SMP extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); #else static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { } static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { if (!cpumask_test_cpu(0, new_mask)) return -EINVAL; return 0; } #endif #ifndef CONFIG_CPUMASK_OFFSTACK static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) { return set_cpus_allowed_ptr(p, &new_mask); } #endif /* * Do not use outside of architecture code which knows its limitations. * * sched_clock() has no promise of monotonicity or bounded drift between * CPUs, use (which you should not) requires disabling IRQs. * * Please use one of the three interfaces below. */ extern unsigned long long notrace sched_clock(void); /* * See the comment in kernel/sched_clock.c */ extern u64 cpu_clock(int cpu); extern u64 local_clock(void); extern u64 sched_clock_cpu(int cpu); extern void sched_clock_init(void); #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK static inline void sched_clock_tick(void) { } static inline void sched_clock_idle_sleep_event(void) { } static inline void sched_clock_idle_wakeup_event(u64 delta_ns) { } #else /* * Architectures can set this to 1 if they have specified * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, * but then during bootup it turns out that sched_clock() * is reliable after all: */ extern int sched_clock_stable; extern void sched_clock_tick(void); extern void sched_clock_idle_sleep_event(void); extern void sched_clock_idle_wakeup_event(u64 delta_ns); #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * An i/f to runtime opt-in for irq time accounting based off of sched_clock. * The reason for this explicit opt-in is not to have perf penalty with * slow sched_clocks. */ extern void enable_sched_clock_irqtime(void); extern void disable_sched_clock_irqtime(void); #else static inline void enable_sched_clock_irqtime(void) {} static inline void disable_sched_clock_irqtime(void) {} #endif extern unsigned long long task_sched_runtime(struct task_struct *task); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif extern void sched_clock_idle_sleep_event(void); extern void sched_clock_idle_wakeup_event(u64 delta_ns); #ifdef CONFIG_HOTPLUG_CPU extern void idle_task_exit(void); #else static inline void idle_task_exit(void) {} #endif #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) extern void wake_up_idle_cpu(int cpu); #else static inline void wake_up_idle_cpu(int cpu) { } #endif extern unsigned int sysctl_sched_latency; extern unsigned int sysctl_sched_min_granularity; extern unsigned int sysctl_sched_wakeup_granularity; extern unsigned int sysctl_sched_child_runs_first; enum sched_tunable_scaling { SCHED_TUNABLESCALING_NONE, SCHED_TUNABLESCALING_LOG, SCHED_TUNABLESCALING_LINEAR, SCHED_TUNABLESCALING_END, }; extern enum sched_tunable_scaling sysctl_sched_tunable_scaling; #ifdef CONFIG_SCHED_DEBUG extern unsigned int sysctl_sched_migration_cost; extern unsigned int sysctl_sched_nr_migrate; extern unsigned int sysctl_sched_time_avg; extern unsigned int sysctl_timer_migration; extern unsigned int sysctl_sched_shares_window; int sched_proc_update_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos); #endif #ifdef CONFIG_SCHED_DEBUG static inline unsigned int get_sysctl_timer_migration(void) { return sysctl_timer_migration; } #else static inline unsigned int get_sysctl_timer_migration(void) { return 1; } #endif extern unsigned int sysctl_sched_rt_period; extern int sysctl_sched_rt_runtime; int sched_rt_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); #ifdef CONFIG_SCHED_AUTOGROUP extern unsigned int sysctl_sched_autogroup_enabled; extern void sched_autogroup_create_attach(struct task_struct *p); extern void sched_autogroup_detach(struct task_struct *p); extern void sched_autogroup_fork(struct signal_struct *sig); extern void sched_autogroup_exit(struct signal_struct *sig); #ifdef CONFIG_PROC_FS extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); extern int proc_sched_autogroup_set_nice(struct task_struct *p, int *nice); #endif #else static inline void sched_autogroup_create_attach(struct task_struct *p) { } static inline void sched_autogroup_detach(struct task_struct *p) { } static inline void sched_autogroup_fork(struct signal_struct *sig) { } static inline void sched_autogroup_exit(struct signal_struct *sig) { } #endif #ifdef CONFIG_RT_MUTEXES extern int rt_mutex_getprio(struct task_struct *p); extern void rt_mutex_setprio(struct task_struct *p, int prio); extern void rt_mutex_adjust_pi(struct task_struct *p); #else static inline int rt_mutex_getprio(struct task_struct *p) { return p->normal_prio; } # define rt_mutex_adjust_pi(p) do { } while (0) #endif extern bool yield_to(struct task_struct *p, bool preempt); extern void set_user_nice(struct task_struct *p, long nice); extern int task_prio(const struct task_struct *p); extern int task_nice(const struct task_struct *p); extern int can_nice(const struct task_struct *p, const int nice); extern int task_curr(const struct task_struct *p); extern int idle_cpu(int cpu); extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); extern struct task_struct *idle_task(int cpu); extern struct task_struct *curr_task(int cpu); extern void set_curr_task(int cpu, struct task_struct *p); void yield(void); /* * The default (Linux) execution domain. */ extern struct exec_domain default_exec_domain; union thread_union { struct thread_info thread_info; unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif extern union thread_union init_thread_union; extern struct task_struct init_task; extern struct mm_struct init_mm; extern struct pid_namespace init_pid_ns; /* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */ extern struct task_struct *find_task_by_vpid(pid_t nr); extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); extern void __set_special_pids(struct pid *pid); /* per-UID process charging. */ extern struct user_struct * alloc_uid(struct user_namespace *, uid_t); static inline struct user_struct *get_uid(struct user_struct *u) { atomic_inc(&u->__count); return u; } extern void free_uid(struct user_struct *); extern void release_uids(struct user_namespace *ns); #include extern void xtime_update(unsigned long ticks); extern int wake_up_state(struct task_struct *tsk, unsigned int state); extern int wake_up_process(struct task_struct *tsk); extern void wake_up_new_task(struct task_struct *tsk); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif extern void sched_fork(struct task_struct *p); extern void sched_dead(struct task_struct *p); extern void proc_caches_init(void); extern void flush_signals(struct task_struct *); extern void __flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) { unsigned long flags; int ret; spin_lock_irqsave(&tsk->sighand->siglock, flags); ret = dequeue_signal(tsk, mask, info); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); return ret; } extern void block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask); extern void unblock_all_signals(void); extern void release_task(struct task_struct * p); extern int send_sig_info(int, struct siginfo *, struct task_struct *); extern int force_sigsegv(int, struct task_struct *); extern int force_sig_info(int, struct siginfo *, struct task_struct *); extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern int kill_proc_info(int, struct siginfo *, pid_t); extern int do_notify_parent(struct task_struct *, int); extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); extern void force_sig(int, struct task_struct *); extern int send_sig(int, struct task_struct *, int); extern int zap_other_threads(struct task_struct *p); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct siginfo *) 0) #define SEND_SIG_PRIV ((struct siginfo *) 1) #define SEND_SIG_FORCED ((struct siginfo *) 2) /* * True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; #else return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; #endif } static inline int sas_ss_flags(unsigned long sp) { return (current->sas_ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } /* * Routines for handling mm_structs */ extern struct mm_struct * mm_alloc(void); /* mmdrop drops the mm and the page tables */ extern void __mmdrop(struct mm_struct *); static inline void mmdrop(struct mm_struct * mm) { if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* Remove the current tasks stale references to the old mm_struct */ extern void mm_release(struct task_struct *, struct mm_struct *); /* Allocate a new mm structure and copy contents from tsk->mm */ extern struct mm_struct *dup_mm(struct task_struct *tsk); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); extern void flush_thread(void); extern void exit_thread(void); extern void exit_files(struct task_struct *); extern void __cleanup_sighand(struct sighand_struct *); extern void exit_itimers(struct signal_struct *); extern void flush_itimer_signals(void); extern NORET_TYPE void do_group_exit(int); extern void daemonize(const char *, ...); extern int allow_signal(int); extern int disallow_signal(int); extern int do_execve(const char *, const char __user * const __user *, const char __user * const __user *, struct pt_regs *); extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); struct task_struct *fork_idle(int); extern void set_task_comm(struct task_struct *tsk, char *from); extern char *get_task_comm(char *to, struct task_struct *tsk); #ifdef CONFIG_SMP void scheduler_ipi(void); extern unsigned long wait_task_inactive(struct task_struct *, long match_state); #else static inline void scheduler_ipi(void) { } static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) { return 1; } #endif #define next_task(p) \ list_entry_rcu((p)->tasks.next, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) extern bool current_is_single_threaded(void); /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) static inline int get_nr_threads(struct task_struct *tsk) { return tsk->signal->nr_threads; } /* de_thread depends on thread_group_leader not being a pid based check */ #define thread_group_leader(p) (p == p->group_leader) /* Do to the insanities of de_thread it is possible for a process * to have the pid of the thread group leader without actually being * the thread group leader. For iteration through the pids in proc * all we care about is that we have a task with the appropriate * pid, we don't actually care if we have the right task. */ static inline int has_group_leader_pid(struct task_struct *p) { return p->pid == p->tgid; } static inline int same_thread_group(struct task_struct *p1, struct task_struct *p2) { return p1->tgid == p2->tgid; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) static inline int task_detached(struct task_struct *p) { return p->exit_signal == -1; } /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, unsigned long *flags); #define lock_task_sighand(tsk, flags) \ ({ struct sighand_struct *__ss; \ __cond_lock(&(tsk)->sighand->siglock, \ (__ss = __lock_task_sighand(tsk, flags))); \ __ss; \ }) \ static inline void unlock_task_sighand(struct task_struct *tsk, unsigned long *flags) { spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); } /* See the declaration of threadgroup_fork_lock in signal_struct. */ #ifdef CONFIG_CGROUPS static inline void threadgroup_fork_read_lock(struct task_struct *tsk) { down_read(&tsk->signal->threadgroup_fork_lock); } static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) { up_read(&tsk->signal->threadgroup_fork_lock); } static inline void threadgroup_fork_write_lock(struct task_struct *tsk) { down_write(&tsk->signal->threadgroup_fork_lock); } static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) { up_write(&tsk->signal->threadgroup_fork_lock); } #else static inline void threadgroup_fork_read_lock(struct task_struct *tsk) {} static inline void threadgroup_fork_read_unlock(struct task_struct *tsk) {} static inline void threadgroup_fork_write_lock(struct task_struct *tsk) {} static inline void threadgroup_fork_write_unlock(struct task_struct *tsk) {} #endif #ifndef __HAVE_THREAD_FUNCTIONS #define task_thread_info(task) ((struct thread_info *)(task)->stack) #define task_stack_page(task) ((task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } static inline unsigned long *end_of_stack(struct task_struct *p) { return (unsigned long *)(task_thread_info(p) + 1); } #endif static inline int object_is_on_stack(void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_info_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ n++; } while (!*n); return (unsigned long)n - (unsigned long)end_of_stack(p); } #endif /* set thread flags in other task's structures * - see asm/thread_info.h for TIF_xxxx flags available */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(task_thread_info(tsk), flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(task_thread_info(tsk), flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int test_tsk_need_resched(struct task_struct *tsk) { return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); } static inline int restart_syscall(void) { set_tsk_thread_flag(current, TIF_SIGPENDING); return -ERESTARTNOINTR; } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int __fatal_signal_pending(struct task_struct *p) { return unlikely(sigismember(&p->pending.signal, SIGKILL)); } static inline int fatal_signal_pending(struct task_struct *p) { return signal_pending(p) && __fatal_signal_pending(p); } static inline int signal_pending_state(long state, struct task_struct *p) { if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) return 0; if (!signal_pending(p)) return 0; return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); } static inline int need_resched(void) { return unlikely(test_thread_flag(TIF_NEED_RESCHED)); } /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, * cond_resched_softirq() will enable bhs before scheduling. */ extern int _cond_resched(void); #define cond_resched() ({ \ __might_sleep(__FILE__, __LINE__, 0); \ _cond_resched(); \ }) extern int __cond_resched_lock(spinlock_t *lock); #ifdef CONFIG_PREEMPT #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET #else #define PREEMPT_LOCK_OFFSET 0 #endif #define cond_resched_lock(lock) ({ \ __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ __cond_resched_lock(lock); \ }) extern int __cond_resched_softirq(void); #define cond_resched_softirq() ({ \ __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ __cond_resched_softirq(); \ }) /* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPT, * but a general need for low latency) */ static inline int spin_needbreak(spinlock_t *lock) { #ifdef CONFIG_PREEMPT return spin_is_contended(lock); #else return 0; #endif } /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); static inline void thread_group_cputime_init(struct signal_struct *sig) { spin_lock_init(&sig->cputimer.lock); } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void signal_wake_up_state(struct task_struct *t, unsigned int state); static inline void signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); } static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? __TASK_TRACED : 0); } /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { return task_thread_info(p)->cpu; } extern void set_task_cpu(struct task_struct *p, unsigned int cpu); #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); extern long sched_getaffinity(pid_t pid, struct cpumask *mask); extern void normalize_rt_tasks(void); #ifdef CONFIG_CGROUP_SCHED extern struct task_group root_task_group; extern struct task_group *sched_create_group(struct task_group *parent); extern void sched_destroy_group(struct task_group *tg); extern void sched_move_task(struct task_struct *tsk); #ifdef CONFIG_FAIR_GROUP_SCHED extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); extern unsigned long sched_group_shares(struct task_group *tg); #endif #ifdef CONFIG_RT_GROUP_SCHED extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); extern long sched_group_rt_runtime(struct task_group *tg); extern int sched_group_set_rt_period(struct task_group *tg, long rt_period_us); extern long sched_group_rt_period(struct task_group *tg); extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); #endif #endif /* CONFIG_CGROUP_SCHED */ extern int task_can_switch_user(struct user_struct *up, struct task_struct *tsk); #ifdef CONFIG_TASK_XACCT static inline void add_rchar(struct task_struct *tsk, ssize_t amt) { tsk->ioac.rchar += amt; } static inline void add_wchar(struct task_struct *tsk, ssize_t amt) { tsk->ioac.wchar += amt; } static inline void inc_syscr(struct task_struct *tsk) { tsk->ioac.syscr++; } static inline void inc_syscw(struct task_struct *tsk) { tsk->ioac.syscw++; } #else static inline void add_rchar(struct task_struct *tsk, ssize_t amt) { } static inline void add_wchar(struct task_struct *tsk, ssize_t amt) { } static inline void inc_syscr(struct task_struct *tsk) { } static inline void inc_syscw(struct task_struct *tsk) { } #endif #ifndef TASK_SIZE_OF #define TASK_SIZE_OF(tsk) TASK_SIZE #endif #ifdef CONFIG_MM_OWNER extern void mm_update_next_owner(struct mm_struct *mm); extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) { } #endif /* CONFIG_MM_OWNER */ static inline unsigned long task_rlimit(const struct task_struct *tsk, unsigned int limit) { return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); } static inline unsigned long task_rlimit_max(const struct task_struct *tsk, unsigned int limit) { return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); } static inline unsigned long rlimit(unsigned int limit) { return task_rlimit(current, limit); } static inline unsigned long rlimit_max(unsigned int limit) { return task_rlimit_max(current, limit); } #endif /* __KERNEL__ */ #endif