/* * Implementation of the kernel access vector cache (AVC). * * Authors: Stephen Smalley, * James Morris * * Update: KaiGai, Kohei * Replaced the avc_lock spinlock by RCU. * * Copyright (C) 2003 Red Hat, Inc., James Morris * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2, * as published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "avc.h" #include "avc_ss.h" #include "classmap.h" #define AVC_CACHE_SLOTS 512 #define AVC_DEF_CACHE_THRESHOLD 512 #define AVC_CACHE_RECLAIM 16 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) #else #define avc_cache_stats_incr(field) do {} while (0) #endif struct avc_entry { u32 ssid; u32 tsid; u16 tclass; struct av_decision avd; struct avc_operation_node *ops_node; }; struct avc_node { struct avc_entry ae; struct hlist_node list; /* anchored in avc_cache->slots[i] */ struct rcu_head rhead; }; struct avc_operation_decision_node { struct operation_decision od; struct list_head od_list; }; struct avc_operation_node { struct operation ops; struct list_head od_head; /* list of operation_decision_node */ }; struct avc_cache { struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ atomic_t lru_hint; /* LRU hint for reclaim scan */ atomic_t active_nodes; u32 latest_notif; /* latest revocation notification */ }; struct avc_callback_node { int (*callback) (u32 event, u32 ssid, u32 tsid, u16 tclass, u32 perms, u32 *out_retained); u32 events; u32 ssid; u32 tsid; u16 tclass; u32 perms; struct avc_callback_node *next; }; /* Exported via selinufs */ unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; #endif static struct avc_cache avc_cache; static struct avc_callback_node *avc_callbacks; static struct kmem_cache *avc_node_cachep; static struct kmem_cache *avc_operation_decision_node_cachep; static struct kmem_cache *avc_operation_node_cachep; static struct kmem_cache *avc_operation_perm_cachep; static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass) { return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); } /** * avc_dump_av - Display an access vector in human-readable form. * @tclass: target security class * @av: access vector */ static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av) { const char **perms; int i, perm; if (av == 0) { audit_log_format(ab, " null"); return; } perms = secclass_map[tclass-1].perms; audit_log_format(ab, " {"); i = 0; perm = 1; while (i < (sizeof(av) * 8)) { if ((perm & av) && perms[i]) { audit_log_format(ab, " %s", perms[i]); av &= ~perm; } i++; perm <<= 1; } if (av) audit_log_format(ab, " 0x%x", av); audit_log_format(ab, " }"); } /** * avc_dump_query - Display a SID pair and a class in human-readable form. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class */ static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass) { int rc; char *scontext; u32 scontext_len; rc = security_sid_to_context(ssid, &scontext, &scontext_len); if (rc) audit_log_format(ab, "ssid=%d", ssid); else { audit_log_format(ab, "scontext=%s", scontext); kfree(scontext); } rc = security_sid_to_context(tsid, &scontext, &scontext_len); if (rc) audit_log_format(ab, " tsid=%d", tsid); else { audit_log_format(ab, " tcontext=%s", scontext); kfree(scontext); } BUG_ON(tclass >= ARRAY_SIZE(secclass_map)); audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name); } /** * avc_init - Initialize the AVC. * * Initialize the access vector cache. */ void __init avc_init(void) { int i; for (i = 0; i < AVC_CACHE_SLOTS; i++) { INIT_HLIST_HEAD(&avc_cache.slots[i]); spin_lock_init(&avc_cache.slots_lock[i]); } atomic_set(&avc_cache.active_nodes, 0); atomic_set(&avc_cache.lru_hint, 0); avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node), 0, SLAB_PANIC, NULL); avc_operation_node_cachep = kmem_cache_create("avc_operation_node", sizeof(struct avc_operation_node), 0, SLAB_PANIC, NULL); avc_operation_decision_node_cachep = kmem_cache_create( "avc_operation_decision_node", sizeof(struct avc_operation_decision_node), 0, SLAB_PANIC, NULL); avc_operation_perm_cachep = kmem_cache_create("avc_operation_perm", sizeof(struct operation_perm), 0, SLAB_PANIC, NULL); audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n"); } int avc_get_hash_stats(char *page) { int i, chain_len, max_chain_len, slots_used; struct avc_node *node; struct hlist_head *head; rcu_read_lock(); slots_used = 0; max_chain_len = 0; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc_cache.slots[i]; if (!hlist_empty(head)) { struct hlist_node *next; slots_used++; chain_len = 0; hlist_for_each_entry_rcu(node, next, head, list) chain_len++; if (chain_len > max_chain_len) max_chain_len = chain_len; } } rcu_read_unlock(); return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" "longest chain: %d\n", atomic_read(&avc_cache.active_nodes), slots_used, AVC_CACHE_SLOTS, max_chain_len); } /* * using a linked list for operation_decision lookup because the list is * always small. i.e. less than 5, typically 1 */ static struct operation_decision *avc_operation_lookup(u8 type, struct avc_operation_node *ops_node) { struct avc_operation_decision_node *od_node; struct operation_decision *od = NULL; list_for_each_entry(od_node, &ops_node->od_head, od_list) { if (od_node->od.type != type) continue; od = &od_node->od; break; } return od; } static inline unsigned int avc_operation_has_perm(struct operation_decision *od, u16 cmd, u8 specified) { unsigned int rc = 0; u8 num = cmd & 0xff; if ((specified == OPERATION_ALLOWED) && (od->specified & OPERATION_ALLOWED)) rc = security_operation_test(od->allowed->perms, num); else if ((specified == OPERATION_AUDITALLOW) && (od->specified & OPERATION_AUDITALLOW)) rc = security_operation_test(od->auditallow->perms, num); else if ((specified == OPERATION_DONTAUDIT) && (od->specified & OPERATION_DONTAUDIT)) rc = security_operation_test(od->dontaudit->perms, num); return rc; } static void avc_operation_allow_perm(struct avc_operation_node *node, u16 cmd) { struct operation_decision *od; u8 type; u8 num; type = cmd >> 8; num = cmd & 0xff; security_operation_set(node->ops.type, type); od = avc_operation_lookup(type, node); if (od && od->allowed) security_operation_set(od->allowed->perms, num); } static void avc_operation_decision_free( struct avc_operation_decision_node *od_node) { struct operation_decision *od; od = &od_node->od; if (od->allowed) kmem_cache_free(avc_operation_perm_cachep, od->allowed); if (od->auditallow) kmem_cache_free(avc_operation_perm_cachep, od->auditallow); if (od->dontaudit) kmem_cache_free(avc_operation_perm_cachep, od->dontaudit); kmem_cache_free(avc_operation_decision_node_cachep, od_node); } static void avc_operation_free(struct avc_operation_node *ops_node) { struct avc_operation_decision_node *od_node, *tmp; if (!ops_node) return; list_for_each_entry_safe(od_node, tmp, &ops_node->od_head, od_list) { list_del(&od_node->od_list); avc_operation_decision_free(od_node); } kmem_cache_free(avc_operation_node_cachep, ops_node); } static void avc_copy_operation_decision(struct operation_decision *dest, struct operation_decision *src) { dest->type = src->type; dest->specified = src->specified; if (dest->specified & OPERATION_ALLOWED) memcpy(dest->allowed->perms, src->allowed->perms, sizeof(src->allowed->perms)); if (dest->specified & OPERATION_AUDITALLOW) memcpy(dest->auditallow->perms, src->auditallow->perms, sizeof(src->auditallow->perms)); if (dest->specified & OPERATION_DONTAUDIT) memcpy(dest->dontaudit->perms, src->dontaudit->perms, sizeof(src->dontaudit->perms)); } /* * similar to avc_copy_operation_decision, but only copy decision * information relevant to this command */ static inline void avc_quick_copy_operation_decision(u16 cmd, struct operation_decision *dest, struct operation_decision *src) { /* * compute index of the u32 of the 256 bits (8 u32s) that contain this * command permission */ u8 i = (0xff & cmd) >> 5; dest->specified = src->specified; if (dest->specified & OPERATION_ALLOWED) dest->allowed->perms[i] = src->allowed->perms[i]; if (dest->specified & OPERATION_AUDITALLOW) dest->auditallow->perms[i] = src->auditallow->perms[i]; if (dest->specified & OPERATION_DONTAUDIT) dest->dontaudit->perms[i] = src->dontaudit->perms[i]; } static struct avc_operation_decision_node *avc_operation_decision_alloc(u8 specified) { struct avc_operation_decision_node *node; struct operation_decision *od; node = kmem_cache_zalloc(avc_operation_decision_node_cachep, GFP_ATOMIC | __GFP_NOMEMALLOC); if (!node) return NULL; od = &node->od; if (specified & OPERATION_ALLOWED) { od->allowed = kmem_cache_zalloc(avc_operation_perm_cachep, GFP_ATOMIC | __GFP_NOMEMALLOC); if (!od->allowed) goto error; } if (specified & OPERATION_AUDITALLOW) { od->auditallow = kmem_cache_zalloc(avc_operation_perm_cachep, GFP_ATOMIC | __GFP_NOMEMALLOC); if (!od->auditallow) goto error; } if (specified & OPERATION_DONTAUDIT) { od->dontaudit = kmem_cache_zalloc(avc_operation_perm_cachep, GFP_ATOMIC | __GFP_NOMEMALLOC); if (!od->dontaudit) goto error; } return node; error: avc_operation_decision_free(node); return NULL; } static int avc_add_operation(struct avc_node *node, struct operation_decision *od) { struct avc_operation_decision_node *dest_od; node->ae.ops_node->ops.len++; dest_od = avc_operation_decision_alloc(od->specified); if (!dest_od) return -ENOMEM; avc_copy_operation_decision(&dest_od->od, od); list_add(&dest_od->od_list, &node->ae.ops_node->od_head); return 0; } static struct avc_operation_node *avc_operation_alloc(void) { struct avc_operation_node *ops; ops = kmem_cache_zalloc(avc_operation_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC); if (!ops) return ops; INIT_LIST_HEAD(&ops->od_head); return ops; } static int avc_operation_populate(struct avc_node *node, struct avc_operation_node *src) { struct avc_operation_node *dest; struct avc_operation_decision_node *dest_od; struct avc_operation_decision_node *src_od; if (src->ops.len == 0) return 0; dest = avc_operation_alloc(); if (!dest) return -ENOMEM; memcpy(dest->ops.type, &src->ops.type, sizeof(dest->ops.type)); dest->ops.len = src->ops.len; /* for each source od allocate a destination od and copy */ list_for_each_entry(src_od, &src->od_head, od_list) { dest_od = avc_operation_decision_alloc(src_od->od.specified); if (!dest_od) goto error; avc_copy_operation_decision(&dest_od->od, &src_od->od); list_add(&dest_od->od_list, &dest->od_head); } node->ae.ops_node = dest; return 0; error: avc_operation_free(dest); return -ENOMEM; } static inline u32 avc_operation_audit_required(u32 requested, struct av_decision *avd, struct operation_decision *od, u16 cmd, int result, u32 *deniedp) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; if (audited && od) { if (avc_operation_has_perm(od, cmd, OPERATION_DONTAUDIT)) audited &= ~requested; } } else if (result) { audited = denied = requested; } else { audited = requested & avd->auditallow; if (audited && od) { if (!avc_operation_has_perm(od, cmd, OPERATION_AUDITALLOW)) audited &= ~requested; } } *deniedp = denied; return audited; } static void avc_node_free(struct rcu_head *rhead) { struct avc_node *node = container_of(rhead, struct avc_node, rhead); avc_operation_free(node->ae.ops_node); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); } static void avc_node_delete(struct avc_node *node) { hlist_del_rcu(&node->list); call_rcu(&node->rhead, avc_node_free); atomic_dec(&avc_cache.active_nodes); } static void avc_node_kill(struct avc_node *node) { avc_operation_free(node->ae.ops_node); kmem_cache_free(avc_node_cachep, node); avc_cache_stats_incr(frees); atomic_dec(&avc_cache.active_nodes); } static void avc_node_replace(struct avc_node *new, struct avc_node *old) { hlist_replace_rcu(&old->list, &new->list); call_rcu(&old->rhead, avc_node_free); atomic_dec(&avc_cache.active_nodes); } static inline int avc_reclaim_node(void) { struct avc_node *node; int hvalue, try, ecx; unsigned long flags; struct hlist_head *head; struct hlist_node *next; spinlock_t *lock; for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1); head = &avc_cache.slots[hvalue]; lock = &avc_cache.slots_lock[hvalue]; if (!spin_trylock_irqsave(lock, flags)) continue; rcu_read_lock(); hlist_for_each_entry(node, next, head, list) { avc_node_delete(node); avc_cache_stats_incr(reclaims); ecx++; if (ecx >= AVC_CACHE_RECLAIM) { rcu_read_unlock(); spin_unlock_irqrestore(lock, flags); goto out; } } rcu_read_unlock(); spin_unlock_irqrestore(lock, flags); } out: return ecx; } static struct avc_node *avc_alloc_node(void) { struct avc_node *node; node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC); if (!node) goto out; INIT_HLIST_NODE(&node->list); avc_cache_stats_incr(allocations); if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold) avc_reclaim_node(); out: return node; } static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) { node->ae.ssid = ssid; node->ae.tsid = tsid; node->ae.tclass = tclass; memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); } static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node, *ret = NULL; int hvalue; struct hlist_head *head; struct hlist_node *next; hvalue = avc_hash(ssid, tsid, tclass); head = &avc_cache.slots[hvalue]; hlist_for_each_entry_rcu(node, next, head, list) { if (ssid == node->ae.ssid && tclass == node->ae.tclass && tsid == node->ae.tsid) { ret = node; break; } } return ret; } /** * avc_lookup - Look up an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * * Look up an AVC entry that is valid for the * (@ssid, @tsid), interpreting the permissions * based on @tclass. If a valid AVC entry exists, * then this function returns the avc_node. * Otherwise, this function returns NULL. */ static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) { struct avc_node *node; avc_cache_stats_incr(lookups); node = avc_search_node(ssid, tsid, tclass); if (node) return node; avc_cache_stats_incr(misses); return NULL; } static int avc_latest_notif_update(int seqno, int is_insert) { int ret = 0; static DEFINE_SPINLOCK(notif_lock); unsigned long flag; spin_lock_irqsave(¬if_lock, flag); if (is_insert) { if (seqno < avc_cache.latest_notif) { printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n", seqno, avc_cache.latest_notif); ret = -EAGAIN; } } else { if (seqno > avc_cache.latest_notif) avc_cache.latest_notif = seqno; } spin_unlock_irqrestore(¬if_lock, flag); return ret; } /** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @avd: resulting av decision * @ops: resulting operation decisions * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call. If the * sequence number @avd->seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, returns * avc_node inserted. Otherwise, this function returns NULL. */ static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct avc_operation_node *ops_node) { struct avc_node *pos, *node = NULL; int hvalue; unsigned long flag; if (avc_latest_notif_update(avd->seqno, 1)) goto out; node = avc_alloc_node(); if (node) { struct hlist_head *head; struct hlist_node *next; spinlock_t *lock; int rc = 0; hvalue = avc_hash(ssid, tsid, tclass); avc_node_populate(node, ssid, tsid, tclass, avd); rc = avc_operation_populate(node, ops_node); if (rc) { kmem_cache_free(avc_node_cachep, node); return NULL; } head = &avc_cache.slots[hvalue]; lock = &avc_cache.slots_lock[hvalue]; spin_lock_irqsave(lock, flag); hlist_for_each_entry(pos, next, head, list) { if (pos->ae.ssid == ssid && pos->ae.tsid == tsid && pos->ae.tclass == tclass) { avc_node_replace(node, pos); goto found; } } hlist_add_head_rcu(&node->list, head); found: spin_unlock_irqrestore(lock, flag); } out: return node; } /** * avc_audit_pre_callback - SELinux specific information * will be called by generic audit code * @ab: the audit buffer * @a: audit_data */ static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) { struct common_audit_data *ad = a; audit_log_format(ab, "avc: %s ", ad->selinux_audit_data->denied ? "denied" : "granted"); avc_dump_av(ab, ad->selinux_audit_data->tclass, ad->selinux_audit_data->audited); audit_log_format(ab, " for "); } /** * avc_audit_post_callback - SELinux specific information * will be called by generic audit code * @ab: the audit buffer * @a: audit_data */ static void avc_audit_post_callback(struct audit_buffer *ab, void *a) { struct common_audit_data *ad = a; audit_log_format(ab, " "); avc_dump_query(ab, ad->selinux_audit_data->ssid, ad->selinux_audit_data->tsid, ad->selinux_audit_data->tclass); if (ad->selinux_audit_data->denied) { audit_log_format(ab, " permissive=%u", ad->selinux_audit_data->result ? 0 : 1); } } /* This is the slow part of avc audit with big stack footprint */ static noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, u32 requested, u32 audited, u32 denied, int result, struct av_decision *avd, struct common_audit_data *a, unsigned flags) { struct common_audit_data stack_data; struct selinux_audit_data sad = {0,}; if (!a) { a = &stack_data; COMMON_AUDIT_DATA_INIT(a, NONE); a->selinux_audit_data = &sad; } /* * When in a RCU walk do the audit on the RCU retry. This is because * the collection of the dname in an inode audit message is not RCU * safe. Note this may drop some audits when the situation changes * during retry. However this is logically just as if the operation * happened a little later. */ if ((a->type == LSM_AUDIT_DATA_INODE) && (flags & IPERM_FLAG_RCU)) return -ECHILD; a->selinux_audit_data->tclass = tclass; a->selinux_audit_data->requested = requested; a->selinux_audit_data->ssid = ssid; a->selinux_audit_data->tsid = tsid; a->selinux_audit_data->audited = audited; a->selinux_audit_data->denied = denied; a->selinux_audit_data->result = result; a->lsm_pre_audit = avc_audit_pre_callback; a->lsm_post_audit = avc_audit_post_callback; common_lsm_audit(a); return 0; } static inline int avc_operation_audit(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, struct operation_decision *od, u16 cmd, int result, struct common_audit_data *ad) { u32 audited, denied; audited = avc_operation_audit_required( requested, avd, od, cmd, result, &denied); if (likely(!audited)) return 0; return slow_avc_audit(ssid, tsid, tclass, requested, audited, denied, result, avd, ad, 0); } /** * avc_audit - Audit the granting or denial of permissions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * @result: result from avc_has_perm_noaudit * @a: auxiliary audit data * @flags: VFS walk flags * * Audit the granting or denial of permissions in accordance * with the policy. This function is typically called by * avc_has_perm() after a permission check, but can also be * called directly by callers who use avc_has_perm_noaudit() * in order to separate the permission check from the auditing. * For example, this separation is useful when the permission check must * be performed under a lock, to allow the lock to be released * before calling the auditing code. */ inline int avc_audit(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, int result, struct common_audit_data *a, unsigned flags) { u32 denied, audited; denied = requested & ~avd->allowed; if (unlikely(denied)) { audited = denied & avd->auditdeny; /* * a->selinux_audit_data->auditdeny is TRICKY! Setting a bit in * this field means that ANY denials should NOT be audited if * the policy contains an explicit dontaudit rule for that * permission. Take notice that this is unrelated to the * actual permissions that were denied. As an example lets * assume: * * denied == READ * avd.auditdeny & ACCESS == 0 (not set means explicit rule) * selinux_audit_data->auditdeny & ACCESS == 1 * * We will NOT audit the denial even though the denied * permission was READ and the auditdeny checks were for * ACCESS */ if (a && a->selinux_audit_data->auditdeny && !(a->selinux_audit_data->auditdeny & avd->auditdeny)) audited = 0; } else if (result) audited = denied = requested; else audited = requested & avd->auditallow; if (likely(!audited)) return 0; return slow_avc_audit(ssid, tsid, tclass, requested, audited, denied, result, avd, a, flags); } /** * avc_add_callback - Register a callback for security events. * @callback: callback function * @events: security events * @ssid: source security identifier or %SECSID_WILD * @tsid: target security identifier or %SECSID_WILD * @tclass: target security class * @perms: permissions * * Register a callback function for events in the set @events * related to the SID pair (@ssid, @tsid) * and the permissions @perms, interpreting * @perms based on @tclass. Returns %0 on success or * -%ENOMEM if insufficient memory exists to add the callback. */ int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, u16 tclass, u32 perms, u32 *out_retained), u32 events, u32 ssid, u32 tsid, u16 tclass, u32 perms) { struct avc_callback_node *c; int rc = 0; c = kmalloc(sizeof(*c), GFP_ATOMIC); if (!c) { rc = -ENOMEM; goto out; } c->callback = callback; c->events = events; c->ssid = ssid; c->tsid = tsid; c->perms = perms; c->next = avc_callbacks; avc_callbacks = c; out: return rc; } static inline int avc_sidcmp(u32 x, u32 y) { return (x == y || x == SECSID_WILD || y == SECSID_WILD); } /** * avc_update_node Update an AVC entry * @event : Updating event * @perms : Permission mask bits * @ssid,@tsid,@tclass : identifier of an AVC entry * @seqno : sequence number when decision was made * @od: operation_decision to be added to the node * * if a valid AVC entry doesn't exist,this function returns -ENOENT. * if kmalloc() called internal returns NULL, this function returns -ENOMEM. * otherwise, this function updates the AVC entry. The original AVC-entry object * will release later by RCU. */ static int avc_update_node(u32 event, u32 perms, u16 cmd, u32 ssid, u32 tsid, u16 tclass, u32 seqno, struct operation_decision *od, u32 flags) { int hvalue, rc = 0; unsigned long flag; struct avc_node *pos, *node, *orig = NULL; struct hlist_head *head; struct hlist_node *next; spinlock_t *lock; node = avc_alloc_node(); if (!node) { rc = -ENOMEM; goto out; } /* Lock the target slot */ hvalue = avc_hash(ssid, tsid, tclass); head = &avc_cache.slots[hvalue]; lock = &avc_cache.slots_lock[hvalue]; spin_lock_irqsave(lock, flag); hlist_for_each_entry(pos, next, head, list) { if (ssid == pos->ae.ssid && tsid == pos->ae.tsid && tclass == pos->ae.tclass && seqno == pos->ae.avd.seqno){ orig = pos; break; } } if (!orig) { rc = -ENOENT; avc_node_kill(node); goto out_unlock; } /* * Copy and replace original node. */ avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); if (orig->ae.ops_node) { rc = avc_operation_populate(node, orig->ae.ops_node); if (rc) { kmem_cache_free(avc_node_cachep, node); goto out_unlock; } } switch (event) { case AVC_CALLBACK_GRANT: node->ae.avd.allowed |= perms; if (node->ae.ops_node && (flags & AVC_OPERATION_CMD)) avc_operation_allow_perm(node->ae.ops_node, cmd); break; case AVC_CALLBACK_TRY_REVOKE: case AVC_CALLBACK_REVOKE: node->ae.avd.allowed &= ~perms; break; case AVC_CALLBACK_AUDITALLOW_ENABLE: node->ae.avd.auditallow |= perms; break; case AVC_CALLBACK_AUDITALLOW_DISABLE: node->ae.avd.auditallow &= ~perms; break; case AVC_CALLBACK_AUDITDENY_ENABLE: node->ae.avd.auditdeny |= perms; break; case AVC_CALLBACK_AUDITDENY_DISABLE: node->ae.avd.auditdeny &= ~perms; break; case AVC_CALLBACK_ADD_OPERATION: avc_add_operation(node, od); break; } avc_node_replace(node, orig); out_unlock: spin_unlock_irqrestore(lock, flag); out: return rc; } /** * avc_flush - Flush the cache */ static void avc_flush(void) { struct hlist_head *head; struct hlist_node *next; struct avc_node *node; spinlock_t *lock; unsigned long flag; int i; for (i = 0; i < AVC_CACHE_SLOTS; i++) { head = &avc_cache.slots[i]; lock = &avc_cache.slots_lock[i]; spin_lock_irqsave(lock, flag); /* * With preemptable RCU, the outer spinlock does not * prevent RCU grace periods from ending. */ rcu_read_lock(); hlist_for_each_entry(node, next, head, list) avc_node_delete(node); rcu_read_unlock(); spin_unlock_irqrestore(lock, flag); } } /** * avc_ss_reset - Flush the cache and revalidate migrated permissions. * @seqno: policy sequence number */ int avc_ss_reset(u32 seqno) { struct avc_callback_node *c; int rc = 0, tmprc; avc_flush(); for (c = avc_callbacks; c; c = c->next) { if (c->events & AVC_CALLBACK_RESET) { tmprc = c->callback(AVC_CALLBACK_RESET, 0, 0, 0, 0, NULL); /* save the first error encountered for the return value and continue processing the callbacks */ if (!rc) rc = tmprc; } } avc_latest_notif_update(seqno, 0); return rc; } /* * Slow-path helper function for avc_has_perm_noaudit, * when the avc_node lookup fails. We get called with * the RCU read lock held, and need to return with it * still held, but drop if for the security compute. * * Don't inline this, since it's the slow-path and just * results in a bigger stack frame. */ static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd, struct avc_operation_node *ops_node) { rcu_read_unlock(); INIT_LIST_HEAD(&ops_node->od_head); security_compute_av(ssid, tsid, tclass, avd, &ops_node->ops); rcu_read_lock(); return avc_insert(ssid, tsid, tclass, avd, ops_node); } static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested, u16 cmd, unsigned flags, struct av_decision *avd) { if (flags & AVC_STRICT) return -EACCES; if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE)) return -EACCES; avc_update_node(AVC_CALLBACK_GRANT, requested, cmd, ssid, tsid, tclass, avd->seqno, NULL, flags); return 0; } /* * ioctl commands are comprised of four fields, direction, size, type, and * number. The avc operation logic filters based on two of them: * * type: or code, typically unique to each driver * number: or function * * For example, 0x89 is a socket type, and number 0x27 is the get hardware * address function. */ int avc_has_operation(u32 ssid, u32 tsid, u16 tclass, u32 requested, u16 cmd, struct common_audit_data *ad) { struct avc_node *node; struct av_decision avd; u32 denied; struct operation_decision *od = NULL; struct operation_decision od_local; struct operation_perm allowed; struct operation_perm auditallow; struct operation_perm dontaudit; struct avc_operation_node local_ops_node; struct avc_operation_node *ops_node; u8 type = cmd >> 8; int rc = 0, rc2; ops_node = &local_ops_node; BUG_ON(!requested); rcu_read_lock(); node = avc_lookup(ssid, tsid, tclass); if (unlikely(!node)) { node = avc_compute_av(ssid, tsid, tclass, &avd, ops_node); } else { memcpy(&avd, &node->ae.avd, sizeof(avd)); ops_node = node->ae.ops_node; } /* if operations are not defined, only consider av_decision */ if (!ops_node || !ops_node->ops.len) goto decision; od_local.allowed = &allowed; od_local.auditallow = &auditallow; od_local.dontaudit = &dontaudit; /* lookup operation decision */ od = avc_operation_lookup(type, ops_node); if (unlikely(!od)) { /* Compute operation decision if type is flagged */ if (!security_operation_test(ops_node->ops.type, type)) { avd.allowed &= ~requested; goto decision; } rcu_read_unlock(); security_compute_operation(ssid, tsid, tclass, type, &od_local); rcu_read_lock(); avc_update_node(AVC_CALLBACK_ADD_OPERATION, requested, cmd, ssid, tsid, tclass, avd.seqno, &od_local, 0); } else { avc_quick_copy_operation_decision(cmd, &od_local, od); } od = &od_local; if (!avc_operation_has_perm(od, cmd, OPERATION_ALLOWED)) avd.allowed &= ~requested; decision: denied = requested & ~(avd.allowed); if (unlikely(denied)) rc = avc_denied(ssid, tsid, tclass, requested, cmd, AVC_OPERATION_CMD, &avd); rcu_read_unlock(); rc2 = avc_operation_audit(ssid, tsid, tclass, requested, &avd, od, cmd, rc, ad); if (rc2) return rc2; return rc; } /** * avc_has_perm_noaudit - Check permissions but perform no auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @flags: AVC_STRICT or 0 * @avd: access vector decisions * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Return a copy of the decisions * in @avd. Return %0 if all @requested permissions are granted, * -%EACCES if any permissions are denied, or another -errno upon * other errors. This function is typically called by avc_has_perm(), * but may also be called directly to separate permission checking from * auditing, e.g. in cases where a lock must be held for the check but * should be released for the auditing. */ inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, u16 tclass, u32 requested, unsigned flags, struct av_decision *avd) { struct avc_node *node; struct avc_operation_node ops_node; int rc = 0; u32 denied; BUG_ON(!requested); rcu_read_lock(); node = avc_lookup(ssid, tsid, tclass); if (unlikely(!node)) node = avc_compute_av(ssid, tsid, tclass, avd, &ops_node); else memcpy(avd, &node->ae.avd, sizeof(*avd)); denied = requested & ~(avd->allowed); if (unlikely(denied)) rc = avc_denied(ssid, tsid, tclass, requested, 0, flags, avd); rcu_read_unlock(); return rc; } /** * avc_has_perm - Check permissions and perform any appropriate auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @auditdata: auxiliary audit data * @flags: VFS walk flags * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Audit the granting or denial of * permissions in accordance with the policy. Return %0 if all @requested * permissions are granted, -%EACCES if any permissions are denied, or * another -errno upon other errors. */ int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct common_audit_data *auditdata, unsigned flags) { struct av_decision avd; int rc, rc2; rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd); rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, flags); if (rc2) return rc2; return rc; } u32 avc_policy_seqno(void) { return avc_cache.latest_notif; } void avc_disable(void) { /* * If you are looking at this because you have realized that we are * not destroying the avc_node_cachep it might be easy to fix, but * I don't know the memory barrier semantics well enough to know. It's * possible that some other task dereferenced security_ops when * it still pointed to selinux operations. If that is the case it's * possible that it is about to use the avc and is about to need the * avc_node_cachep. I know I could wrap the security.c security_ops call * in an rcu_lock, but seriously, it's not worth it. Instead I just flush * the cache and get that memory back. */ if (avc_node_cachep) { avc_flush(); /* kmem_cache_destroy(avc_node_cachep); */ } }