/* * wm8994.c -- WM8994 ALSA SoC Audio driver * * Copyright 2009 Wolfson Microelectronics plc * * Author: Mark Brown * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wm8994.h" #include "wm_hubs.h" #define WM8994_NUM_DRC 3 #define WM8994_NUM_EQ 3 static int wm8994_drc_base[] = { WM8994_AIF1_DRC1_1, WM8994_AIF1_DRC2_1, WM8994_AIF2_DRC_1, }; static int wm8994_retune_mobile_base[] = { WM8994_AIF1_DAC1_EQ_GAINS_1, WM8994_AIF1_DAC2_EQ_GAINS_1, WM8994_AIF2_EQ_GAINS_1, }; static int wm8994_readable(struct snd_soc_codec *codec, unsigned int reg) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994 *control = codec->control_data; switch (reg) { case WM8994_GPIO_1: case WM8994_GPIO_2: case WM8994_GPIO_3: case WM8994_GPIO_4: case WM8994_GPIO_5: case WM8994_GPIO_6: case WM8994_GPIO_7: case WM8994_GPIO_8: case WM8994_GPIO_9: case WM8994_GPIO_10: case WM8994_GPIO_11: case WM8994_INTERRUPT_STATUS_1: case WM8994_INTERRUPT_STATUS_2: case WM8994_INTERRUPT_RAW_STATUS_2: return 1; case WM8958_DSP2_PROGRAM: case WM8958_DSP2_CONFIG: case WM8958_DSP2_EXECCONTROL: if (control->type == WM8958) return 1; else return 0; default: break; } if (reg >= WM8994_CACHE_SIZE) return 0; return wm8994_access_masks[reg].readable != 0; } static int wm8994_volatile(struct snd_soc_codec *codec, unsigned int reg) { if (reg >= WM8994_CACHE_SIZE) return 1; switch (reg) { case WM8994_SOFTWARE_RESET: case WM8994_CHIP_REVISION: case WM8994_DC_SERVO_1: case WM8994_DC_SERVO_READBACK: case WM8994_RATE_STATUS: case WM8994_LDO_1: case WM8994_LDO_2: case WM8958_DSP2_EXECCONTROL: case WM8958_MIC_DETECT_3: case WM8994_DC_SERVO_4E: return 1; default: return 0; } } static int wm8994_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { int ret; BUG_ON(reg > WM8994_MAX_REGISTER); if (!wm8994_volatile(codec, reg)) { ret = snd_soc_cache_write(codec, reg, value); if (ret != 0) dev_err(codec->dev, "Cache write to %x failed: %d\n", reg, ret); } return wm8994_reg_write(codec->control_data, reg, value); } static unsigned int wm8994_read(struct snd_soc_codec *codec, unsigned int reg) { unsigned int val; int ret; BUG_ON(reg > WM8994_MAX_REGISTER); if (!wm8994_volatile(codec, reg) && wm8994_readable(codec, reg) && reg < codec->driver->reg_cache_size) { ret = snd_soc_cache_read(codec, reg, &val); if (ret >= 0) return val; else dev_err(codec->dev, "Cache read from %x failed: %d\n", reg, ret); } return wm8994_reg_read(codec->control_data, reg); } static int configure_aif_clock(struct snd_soc_codec *codec, int aif) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int rate; int reg1 = 0; int offset; if (aif) offset = 4; else offset = 0; switch (wm8994->sysclk[aif]) { case WM8994_SYSCLK_MCLK1: rate = wm8994->mclk[0]; break; case WM8994_SYSCLK_MCLK2: reg1 |= 0x8; rate = wm8994->mclk[1]; break; case WM8994_SYSCLK_FLL1: reg1 |= 0x10; rate = wm8994->fll[0].out; break; case WM8994_SYSCLK_FLL2: reg1 |= 0x18; rate = wm8994->fll[1].out; break; default: return -EINVAL; } if (rate >= 13500000) { rate /= 2; reg1 |= WM8994_AIF1CLK_DIV; dev_dbg(codec->dev, "Dividing AIF%d clock to %dHz\n", aif + 1, rate); } if (rate && rate < 3000000) dev_warn(codec->dev, "AIF%dCLK is %dHz, should be >=3MHz for optimal performance\n", aif + 1, rate); wm8994->aifclk[aif] = rate; snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1 + offset, WM8994_AIF1CLK_SRC_MASK | WM8994_AIF1CLK_DIV, reg1); return 0; } static int configure_clock(struct snd_soc_codec *codec) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int old, new; /* Bring up the AIF clocks first */ configure_aif_clock(codec, 0); configure_aif_clock(codec, 1); /* Then switch CLK_SYS over to the higher of them; a change * can only happen as a result of a clocking change which can * only be made outside of DAPM so we can safely redo the * clocking. */ /* If they're equal it doesn't matter which is used */ if (wm8994->aifclk[0] == wm8994->aifclk[1]) return 0; if (wm8994->aifclk[0] < wm8994->aifclk[1]) new = WM8994_SYSCLK_SRC; else new = 0; old = snd_soc_read(codec, WM8994_CLOCKING_1) & WM8994_SYSCLK_SRC; /* If there's no change then we're done. */ if (old == new) return 0; snd_soc_update_bits(codec, WM8994_CLOCKING_1, WM8994_SYSCLK_SRC, new); snd_soc_dapm_sync(&codec->dapm); return 0; } static int check_clk_sys(struct snd_soc_dapm_widget *source, struct snd_soc_dapm_widget *sink) { int reg = snd_soc_read(source->codec, WM8994_CLOCKING_1); const char *clk; /* Check what we're currently using for CLK_SYS */ if (reg & WM8994_SYSCLK_SRC) clk = "AIF2CLK"; else clk = "AIF1CLK"; return strcmp(source->name, clk) == 0; } static const char *sidetone_hpf_text[] = { "2.7kHz", "1.35kHz", "675Hz", "370Hz", "180Hz", "90Hz", "45Hz" }; static const struct soc_enum sidetone_hpf = SOC_ENUM_SINGLE(WM8994_SIDETONE, 7, 7, sidetone_hpf_text); static const char *adc_hpf_text[] = { "HiFi", "Voice 1", "Voice 2", "Voice 3" }; static const struct soc_enum aif1adc1_hpf = SOC_ENUM_SINGLE(WM8994_AIF1_ADC1_FILTERS, 13, 4, adc_hpf_text); static const struct soc_enum aif1adc2_hpf = SOC_ENUM_SINGLE(WM8994_AIF1_ADC2_FILTERS, 13, 4, adc_hpf_text); static const struct soc_enum aif2adc_hpf = SOC_ENUM_SINGLE(WM8994_AIF2_ADC_FILTERS, 13, 4, adc_hpf_text); static const DECLARE_TLV_DB_SCALE(aif_tlv, 0, 600, 0); static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1); static const DECLARE_TLV_DB_SCALE(st_tlv, -3600, 300, 0); static const DECLARE_TLV_DB_SCALE(wm8994_3d_tlv, -1600, 183, 0); static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0); #define WM8994_DRC_SWITCH(xname, reg, shift) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, .get = snd_soc_get_volsw,\ .put = wm8994_put_drc_sw, \ .private_value = SOC_SINGLE_VALUE(reg, shift, 1, 0) } static int wm8994_put_drc_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct soc_mixer_control *mc = (struct soc_mixer_control *)kcontrol->private_value; struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); int mask, ret; /* Can't enable both ADC and DAC paths simultaneously */ if (mc->shift == WM8994_AIF1DAC1_DRC_ENA_SHIFT) mask = WM8994_AIF1ADC1L_DRC_ENA_MASK | WM8994_AIF1ADC1R_DRC_ENA_MASK; else mask = WM8994_AIF1DAC1_DRC_ENA_MASK; ret = snd_soc_read(codec, mc->reg); if (ret < 0) return ret; if (ret & mask) return -EINVAL; return snd_soc_put_volsw(kcontrol, ucontrol); } static void wm8994_set_drc(struct snd_soc_codec *codec, int drc) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994_pdata *pdata = wm8994->pdata; int base = wm8994_drc_base[drc]; int cfg = wm8994->drc_cfg[drc]; int save, i; /* Save any enables; the configuration should clear them. */ save = snd_soc_read(codec, base); save &= WM8994_AIF1DAC1_DRC_ENA | WM8994_AIF1ADC1L_DRC_ENA | WM8994_AIF1ADC1R_DRC_ENA; for (i = 0; i < WM8994_DRC_REGS; i++) snd_soc_update_bits(codec, base + i, 0xffff, pdata->drc_cfgs[cfg].regs[i]); snd_soc_update_bits(codec, base, WM8994_AIF1DAC1_DRC_ENA | WM8994_AIF1ADC1L_DRC_ENA | WM8994_AIF1ADC1R_DRC_ENA, save); } /* Icky as hell but saves code duplication */ static int wm8994_get_drc(const char *name) { if (strcmp(name, "AIF1DRC1 Mode") == 0) return 0; if (strcmp(name, "AIF1DRC2 Mode") == 0) return 1; if (strcmp(name, "AIF2DRC Mode") == 0) return 2; return -EINVAL; } static int wm8994_put_drc_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994_pdata *pdata = wm8994->pdata; int drc = wm8994_get_drc(kcontrol->id.name); int value = ucontrol->value.integer.value[0]; if (drc < 0) return drc; if (value >= pdata->num_drc_cfgs) return -EINVAL; wm8994->drc_cfg[drc] = value; wm8994_set_drc(codec, drc); return 0; } static int wm8994_get_drc_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int drc = wm8994_get_drc(kcontrol->id.name); ucontrol->value.enumerated.item[0] = wm8994->drc_cfg[drc]; return 0; } static void wm8994_set_retune_mobile(struct snd_soc_codec *codec, int block) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994_pdata *pdata = wm8994->pdata; int base = wm8994_retune_mobile_base[block]; int iface, best, best_val, save, i, cfg; if (!pdata || !wm8994->num_retune_mobile_texts) return; switch (block) { case 0: case 1: iface = 0; break; case 2: iface = 1; break; default: return; } /* Find the version of the currently selected configuration * with the nearest sample rate. */ cfg = wm8994->retune_mobile_cfg[block]; best = 0; best_val = INT_MAX; for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) { if (strcmp(pdata->retune_mobile_cfgs[i].name, wm8994->retune_mobile_texts[cfg]) == 0 && abs(pdata->retune_mobile_cfgs[i].rate - wm8994->dac_rates[iface]) < best_val) { best = i; best_val = abs(pdata->retune_mobile_cfgs[i].rate - wm8994->dac_rates[iface]); } } dev_dbg(codec->dev, "ReTune Mobile %d %s/%dHz for %dHz sample rate\n", block, pdata->retune_mobile_cfgs[best].name, pdata->retune_mobile_cfgs[best].rate, wm8994->dac_rates[iface]); /* The EQ will be disabled while reconfiguring it, remember the * current configuration. */ save = snd_soc_read(codec, base); save &= WM8994_AIF1DAC1_EQ_ENA; for (i = 0; i < WM8994_EQ_REGS; i++) snd_soc_update_bits(codec, base + i, 0xffff, pdata->retune_mobile_cfgs[best].regs[i]); snd_soc_update_bits(codec, base, WM8994_AIF1DAC1_EQ_ENA, save); } /* Icky as hell but saves code duplication */ static int wm8994_get_retune_mobile_block(const char *name) { if (strcmp(name, "AIF1.1 EQ Mode") == 0) return 0; if (strcmp(name, "AIF1.2 EQ Mode") == 0) return 1; if (strcmp(name, "AIF2 EQ Mode") == 0) return 2; return -EINVAL; } static int wm8994_put_retune_mobile_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994_pdata *pdata = wm8994->pdata; int block = wm8994_get_retune_mobile_block(kcontrol->id.name); int value = ucontrol->value.integer.value[0]; if (block < 0) return block; if (value >= pdata->num_retune_mobile_cfgs) return -EINVAL; wm8994->retune_mobile_cfg[block] = value; wm8994_set_retune_mobile(codec, block); return 0; } static int wm8994_get_retune_mobile_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol); struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int block = wm8994_get_retune_mobile_block(kcontrol->id.name); ucontrol->value.enumerated.item[0] = wm8994->retune_mobile_cfg[block]; return 0; } static const char *aif_chan_src_text[] = { "Left", "Right" }; static const struct soc_enum aif1adcl_src = SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_1, 15, 2, aif_chan_src_text); static const struct soc_enum aif1adcr_src = SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_1, 14, 2, aif_chan_src_text); static const struct soc_enum aif2adcl_src = SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_1, 15, 2, aif_chan_src_text); static const struct soc_enum aif2adcr_src = SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_1, 14, 2, aif_chan_src_text); static const struct soc_enum aif1dacl_src = SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_2, 15, 2, aif_chan_src_text); static const struct soc_enum aif1dacr_src = SOC_ENUM_SINGLE(WM8994_AIF1_CONTROL_2, 14, 2, aif_chan_src_text); static const struct soc_enum aif2dacl_src = SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_2, 15, 2, aif_chan_src_text); static const struct soc_enum aif2dacr_src = SOC_ENUM_SINGLE(WM8994_AIF2_CONTROL_2, 14, 2, aif_chan_src_text); static const char *osr_text[] = { "Low Power", "High Performance", }; static const struct soc_enum dac_osr = SOC_ENUM_SINGLE(WM8994_OVERSAMPLING, 0, 2, osr_text); static const struct soc_enum adc_osr = SOC_ENUM_SINGLE(WM8994_OVERSAMPLING, 1, 2, osr_text); static const struct snd_kcontrol_new wm8994_snd_controls[] = { SOC_DOUBLE_R_TLV("AIF1ADC1 Volume", WM8994_AIF1_ADC1_LEFT_VOLUME, WM8994_AIF1_ADC1_RIGHT_VOLUME, 1, 119, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF1ADC2 Volume", WM8994_AIF1_ADC2_LEFT_VOLUME, WM8994_AIF1_ADC2_RIGHT_VOLUME, 1, 119, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF2ADC Volume", WM8994_AIF2_ADC_LEFT_VOLUME, WM8994_AIF2_ADC_RIGHT_VOLUME, 1, 119, 0, digital_tlv), SOC_ENUM("AIF1ADCL Source", aif1adcl_src), SOC_ENUM("AIF1ADCR Source", aif1adcr_src), SOC_ENUM("AIF2ADCL Source", aif2adcl_src), SOC_ENUM("AIF2ADCR Source", aif2adcr_src), SOC_ENUM("AIF1DACL Source", aif1dacl_src), SOC_ENUM("AIF1DACR Source", aif1dacr_src), SOC_ENUM("AIF2DACL Source", aif2dacl_src), SOC_ENUM("AIF2DACR Source", aif2dacr_src), SOC_DOUBLE_R_TLV("AIF1DAC1 Volume", WM8994_AIF1_DAC1_LEFT_VOLUME, WM8994_AIF1_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF1DAC2 Volume", WM8994_AIF1_DAC2_LEFT_VOLUME, WM8994_AIF1_DAC2_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R_TLV("AIF2DAC Volume", WM8994_AIF2_DAC_LEFT_VOLUME, WM8994_AIF2_DAC_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_SINGLE_TLV("AIF1 Boost Volume", WM8994_AIF1_CONTROL_2, 10, 3, 0, aif_tlv), SOC_SINGLE_TLV("AIF2 Boost Volume", WM8994_AIF2_CONTROL_2, 10, 3, 0, aif_tlv), SOC_SINGLE("AIF1DAC1 EQ Switch", WM8994_AIF1_DAC1_EQ_GAINS_1, 0, 1, 0), SOC_SINGLE("AIF1DAC2 EQ Switch", WM8994_AIF1_DAC2_EQ_GAINS_1, 0, 1, 0), SOC_SINGLE("AIF2 EQ Switch", WM8994_AIF2_EQ_GAINS_1, 0, 1, 0), WM8994_DRC_SWITCH("AIF1DAC1 DRC Switch", WM8994_AIF1_DRC1_1, 2), WM8994_DRC_SWITCH("AIF1ADC1L DRC Switch", WM8994_AIF1_DRC1_1, 1), WM8994_DRC_SWITCH("AIF1ADC1R DRC Switch", WM8994_AIF1_DRC1_1, 0), WM8994_DRC_SWITCH("AIF1DAC2 DRC Switch", WM8994_AIF1_DRC2_1, 2), WM8994_DRC_SWITCH("AIF1ADC2L DRC Switch", WM8994_AIF1_DRC2_1, 1), WM8994_DRC_SWITCH("AIF1ADC2R DRC Switch", WM8994_AIF1_DRC2_1, 0), WM8994_DRC_SWITCH("AIF2DAC DRC Switch", WM8994_AIF2_DRC_1, 2), WM8994_DRC_SWITCH("AIF2ADCL DRC Switch", WM8994_AIF2_DRC_1, 1), WM8994_DRC_SWITCH("AIF2ADCR DRC Switch", WM8994_AIF2_DRC_1, 0), SOC_SINGLE_TLV("DAC1 Right Sidetone Volume", WM8994_DAC1_MIXER_VOLUMES, 5, 12, 0, st_tlv), SOC_SINGLE_TLV("DAC1 Left Sidetone Volume", WM8994_DAC1_MIXER_VOLUMES, 0, 12, 0, st_tlv), SOC_SINGLE_TLV("DAC2 Right Sidetone Volume", WM8994_DAC2_MIXER_VOLUMES, 5, 12, 0, st_tlv), SOC_SINGLE_TLV("DAC2 Left Sidetone Volume", WM8994_DAC2_MIXER_VOLUMES, 0, 12, 0, st_tlv), SOC_ENUM("Sidetone HPF Mux", sidetone_hpf), SOC_SINGLE("Sidetone HPF Switch", WM8994_SIDETONE, 6, 1, 0), SOC_ENUM("AIF1ADC1 HPF Mode", aif1adc1_hpf), SOC_DOUBLE("AIF1ADC1 HPF Switch", WM8994_AIF1_ADC1_FILTERS, 12, 11, 1, 0), SOC_ENUM("AIF1ADC2 HPF Mode", aif1adc2_hpf), SOC_DOUBLE("AIF1ADC2 HPF Switch", WM8994_AIF1_ADC2_FILTERS, 12, 11, 1, 0), SOC_ENUM("AIF2ADC HPF Mode", aif2adc_hpf), SOC_DOUBLE("AIF2ADC HPF Switch", WM8994_AIF2_ADC_FILTERS, 12, 11, 1, 0), SOC_ENUM("ADC OSR", adc_osr), SOC_ENUM("DAC OSR", dac_osr), SOC_DOUBLE_R_TLV("DAC1 Volume", WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R("DAC1 Switch", WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_RIGHT_VOLUME, 9, 1, 1), SOC_DOUBLE_R_TLV("DAC2 Volume", WM8994_DAC2_LEFT_VOLUME, WM8994_DAC2_RIGHT_VOLUME, 1, 96, 0, digital_tlv), SOC_DOUBLE_R("DAC2 Switch", WM8994_DAC2_LEFT_VOLUME, WM8994_DAC2_RIGHT_VOLUME, 9, 1, 1), SOC_SINGLE_TLV("SPKL DAC2 Volume", WM8994_SPKMIXL_ATTENUATION, 6, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("SPKL DAC1 Volume", WM8994_SPKMIXL_ATTENUATION, 2, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("SPKR DAC2 Volume", WM8994_SPKMIXR_ATTENUATION, 6, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("SPKR DAC1 Volume", WM8994_SPKMIXR_ATTENUATION, 2, 1, 1, wm_hubs_spkmix_tlv), SOC_SINGLE_TLV("AIF1DAC1 3D Stereo Volume", WM8994_AIF1_DAC1_FILTERS_2, 10, 15, 0, wm8994_3d_tlv), SOC_SINGLE("AIF1DAC1 3D Stereo Switch", WM8994_AIF1_DAC1_FILTERS_2, 8, 1, 0), SOC_SINGLE_TLV("AIF1DAC2 3D Stereo Volume", WM8994_AIF1_DAC2_FILTERS_2, 10, 15, 0, wm8994_3d_tlv), SOC_SINGLE("AIF1DAC2 3D Stereo Switch", WM8994_AIF1_DAC2_FILTERS_2, 8, 1, 0), SOC_SINGLE_TLV("AIF2DAC 3D Stereo Volume", WM8994_AIF2_DAC_FILTERS_2, 10, 15, 0, wm8994_3d_tlv), SOC_SINGLE("AIF2DAC 3D Stereo Switch", WM8994_AIF2_DAC_FILTERS_2, 8, 1, 0), }; static const struct snd_kcontrol_new wm8994_eq_controls[] = { SOC_SINGLE_TLV("AIF1DAC1 EQ1 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ2 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ3 Volume", WM8994_AIF1_DAC1_EQ_GAINS_1, 1, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ4 Volume", WM8994_AIF1_DAC1_EQ_GAINS_2, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC1 EQ5 Volume", WM8994_AIF1_DAC1_EQ_GAINS_2, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ1 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ2 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ3 Volume", WM8994_AIF1_DAC2_EQ_GAINS_1, 1, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ4 Volume", WM8994_AIF1_DAC2_EQ_GAINS_2, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF1DAC2 EQ5 Volume", WM8994_AIF1_DAC2_EQ_GAINS_2, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ1 Volume", WM8994_AIF2_EQ_GAINS_1, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ2 Volume", WM8994_AIF2_EQ_GAINS_1, 6, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ3 Volume", WM8994_AIF2_EQ_GAINS_1, 1, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ4 Volume", WM8994_AIF2_EQ_GAINS_2, 11, 31, 0, eq_tlv), SOC_SINGLE_TLV("AIF2 EQ5 Volume", WM8994_AIF2_EQ_GAINS_2, 6, 31, 0, eq_tlv), }; static const struct snd_kcontrol_new wm8958_snd_controls[] = { SOC_SINGLE_TLV("AIF3 Boost Volume", WM8958_AIF3_CONTROL_2, 10, 3, 0, aif_tlv), }; static int clk_sys_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; switch (event) { case SND_SOC_DAPM_PRE_PMU: return configure_clock(codec); case SND_SOC_DAPM_POST_PMD: configure_clock(codec); break; } return 0; } static void wm8994_update_class_w(struct snd_soc_codec *codec) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int enable = 1; int source = 0; /* GCC flow analysis can't track enable */ int reg, reg_r; /* Only support direct DAC->headphone paths */ reg = snd_soc_read(codec, WM8994_OUTPUT_MIXER_1); if (!(reg & WM8994_DAC1L_TO_HPOUT1L)) { dev_vdbg(codec->dev, "HPL connected to output mixer\n"); enable = 0; } reg = snd_soc_read(codec, WM8994_OUTPUT_MIXER_2); if (!(reg & WM8994_DAC1R_TO_HPOUT1R)) { dev_vdbg(codec->dev, "HPR connected to output mixer\n"); enable = 0; } /* We also need the same setting for L/R and only one path */ reg = snd_soc_read(codec, WM8994_DAC1_LEFT_MIXER_ROUTING); switch (reg) { case WM8994_AIF2DACL_TO_DAC1L: dev_vdbg(codec->dev, "Class W source AIF2DAC\n"); source = 2 << WM8994_CP_DYN_SRC_SEL_SHIFT; break; case WM8994_AIF1DAC2L_TO_DAC1L: dev_vdbg(codec->dev, "Class W source AIF1DAC2\n"); source = 1 << WM8994_CP_DYN_SRC_SEL_SHIFT; break; case WM8994_AIF1DAC1L_TO_DAC1L: dev_vdbg(codec->dev, "Class W source AIF1DAC1\n"); source = 0 << WM8994_CP_DYN_SRC_SEL_SHIFT; break; default: dev_vdbg(codec->dev, "DAC mixer setting: %x\n", reg); enable = 0; break; } reg_r = snd_soc_read(codec, WM8994_DAC1_RIGHT_MIXER_ROUTING); if (reg_r != reg) { dev_vdbg(codec->dev, "Left and right DAC mixers different\n"); enable = 0; } if (enable) { dev_dbg(codec->dev, "Class W enabled\n"); snd_soc_update_bits(codec, WM8994_CLASS_W_1, WM8994_CP_DYN_PWR | WM8994_CP_DYN_SRC_SEL_MASK, source | WM8994_CP_DYN_PWR); wm8994->hubs.class_w = true; } else { dev_dbg(codec->dev, "Class W disabled\n"); snd_soc_update_bits(codec, WM8994_CLASS_W_1, WM8994_CP_DYN_PWR, 0); wm8994->hubs.class_w = false; } } static int late_enable_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_PRE_PMU: if (wm8994->aif1clk_enable) { snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1, WM8994_AIF1CLK_ENA_MASK, WM8994_AIF1CLK_ENA); wm8994->aif1clk_enable = 0; } if (wm8994->aif2clk_enable) { snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1, WM8994_AIF2CLK_ENA_MASK, WM8994_AIF2CLK_ENA); wm8994->aif2clk_enable = 0; } break; } /* We may also have postponed startup of DSP, handle that. */ wm8958_aif_ev(w, kcontrol, event); return 0; } static int late_disable_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_POST_PMD: if (wm8994->aif1clk_disable) { snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1, WM8994_AIF1CLK_ENA_MASK, 0); wm8994->aif1clk_disable = 0; } if (wm8994->aif2clk_disable) { snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1, WM8994_AIF2CLK_ENA_MASK, 0); wm8994->aif2clk_disable = 0; } break; } return 0; } static int aif1clk_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_PRE_PMU: wm8994->aif1clk_enable = 1; break; case SND_SOC_DAPM_POST_PMD: wm8994->aif1clk_disable = 1; break; } return 0; } static int aif2clk_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); switch (event) { case SND_SOC_DAPM_PRE_PMU: wm8994->aif2clk_enable = 1; break; case SND_SOC_DAPM_POST_PMD: wm8994->aif2clk_disable = 1; break; } return 0; } static int adc_mux_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { late_enable_ev(w, kcontrol, event); return 0; } static int micbias_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { late_enable_ev(w, kcontrol, event); return 0; } static int dac_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; unsigned int mask = 1 << w->shift; snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_5, mask, mask); return 0; } static const char *hp_mux_text[] = { "Mixer", "DAC", }; #define WM8994_HP_ENUM(xname, xenum) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_enum_double, \ .get = snd_soc_dapm_get_enum_double, \ .put = wm8994_put_hp_enum, \ .private_value = (unsigned long)&xenum } static int wm8994_put_hp_enum(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *w = wlist->widgets[0]; struct snd_soc_codec *codec = w->codec; int ret; ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol); wm8994_update_class_w(codec); return ret; } static const struct soc_enum hpl_enum = SOC_ENUM_SINGLE(WM8994_OUTPUT_MIXER_1, 8, 2, hp_mux_text); static const struct snd_kcontrol_new hpl_mux = WM8994_HP_ENUM("Left Headphone Mux", hpl_enum); static const struct soc_enum hpr_enum = SOC_ENUM_SINGLE(WM8994_OUTPUT_MIXER_2, 8, 2, hp_mux_text); static const struct snd_kcontrol_new hpr_mux = WM8994_HP_ENUM("Right Headphone Mux", hpr_enum); static const char *adc_mux_text[] = { "ADC", "DMIC", }; static const struct soc_enum adc_enum = SOC_ENUM_SINGLE(0, 0, 2, adc_mux_text); static const struct snd_kcontrol_new adcl_mux = SOC_DAPM_ENUM_VIRT("ADCL Mux", adc_enum); static const struct snd_kcontrol_new adcr_mux = SOC_DAPM_ENUM_VIRT("ADCR Mux", adc_enum); static const struct snd_kcontrol_new left_speaker_mixer[] = { SOC_DAPM_SINGLE("DAC2 Switch", WM8994_SPEAKER_MIXER, 9, 1, 0), SOC_DAPM_SINGLE("Input Switch", WM8994_SPEAKER_MIXER, 7, 1, 0), SOC_DAPM_SINGLE("IN1LP Switch", WM8994_SPEAKER_MIXER, 5, 1, 0), SOC_DAPM_SINGLE("Output Switch", WM8994_SPEAKER_MIXER, 3, 1, 0), SOC_DAPM_SINGLE("DAC1 Switch", WM8994_SPEAKER_MIXER, 1, 1, 0), }; static const struct snd_kcontrol_new right_speaker_mixer[] = { SOC_DAPM_SINGLE("DAC2 Switch", WM8994_SPEAKER_MIXER, 8, 1, 0), SOC_DAPM_SINGLE("Input Switch", WM8994_SPEAKER_MIXER, 6, 1, 0), SOC_DAPM_SINGLE("IN1RP Switch", WM8994_SPEAKER_MIXER, 4, 1, 0), SOC_DAPM_SINGLE("Output Switch", WM8994_SPEAKER_MIXER, 2, 1, 0), SOC_DAPM_SINGLE("DAC1 Switch", WM8994_SPEAKER_MIXER, 0, 1, 0), }; /* Debugging; dump chip status after DAPM transitions */ static int post_ev(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; dev_dbg(codec->dev, "SRC status: %x\n", snd_soc_read(codec, WM8994_RATE_STATUS)); return 0; } static const struct snd_kcontrol_new aif1adc1l_mix[] = { SOC_DAPM_SINGLE("ADC/DMIC Switch", WM8994_AIF1_ADC1_LEFT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC1_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif1adc1r_mix[] = { SOC_DAPM_SINGLE("ADC/DMIC Switch", WM8994_AIF1_ADC1_RIGHT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC1_RIGHT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif1adc2l_mix[] = { SOC_DAPM_SINGLE("DMIC Switch", WM8994_AIF1_ADC2_LEFT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC2_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif1adc2r_mix[] = { SOC_DAPM_SINGLE("DMIC Switch", WM8994_AIF1_ADC2_RIGHT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_AIF1_ADC2_RIGHT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif2dac2l_mix[] = { SOC_DAPM_SINGLE("Right Sidetone Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 5, 1, 0), SOC_DAPM_SINGLE("Left Sidetone Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 4, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 2, 1, 0), SOC_DAPM_SINGLE("AIF1.2 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF1.1 Switch", WM8994_DAC2_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new aif2dac2r_mix[] = { SOC_DAPM_SINGLE("Right Sidetone Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 5, 1, 0), SOC_DAPM_SINGLE("Left Sidetone Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 4, 1, 0), SOC_DAPM_SINGLE("AIF2 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 2, 1, 0), SOC_DAPM_SINGLE("AIF1.2 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 1, 1, 0), SOC_DAPM_SINGLE("AIF1.1 Switch", WM8994_DAC2_RIGHT_MIXER_ROUTING, 0, 1, 0), }; #define WM8994_CLASS_W_SWITCH(xname, reg, shift, max, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, \ .get = snd_soc_dapm_get_volsw, .put = wm8994_put_class_w, \ .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) } static int wm8994_put_class_w(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol); struct snd_soc_dapm_widget *w = wlist->widgets[0]; struct snd_soc_codec *codec = w->codec; int ret; ret = snd_soc_dapm_put_volsw(kcontrol, ucontrol); wm8994_update_class_w(codec); return ret; } static const struct snd_kcontrol_new dac1l_mix[] = { WM8994_CLASS_W_SWITCH("Right Sidetone Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 5, 1, 0), WM8994_CLASS_W_SWITCH("Left Sidetone Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 4, 1, 0), WM8994_CLASS_W_SWITCH("AIF2 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 2, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.2 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 1, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.1 Switch", WM8994_DAC1_LEFT_MIXER_ROUTING, 0, 1, 0), }; static const struct snd_kcontrol_new dac1r_mix[] = { WM8994_CLASS_W_SWITCH("Right Sidetone Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 5, 1, 0), WM8994_CLASS_W_SWITCH("Left Sidetone Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 4, 1, 0), WM8994_CLASS_W_SWITCH("AIF2 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 2, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.2 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 1, 1, 0), WM8994_CLASS_W_SWITCH("AIF1.1 Switch", WM8994_DAC1_RIGHT_MIXER_ROUTING, 0, 1, 0), }; static const char *sidetone_text[] = { "ADC/DMIC1", "DMIC2", }; static const struct soc_enum sidetone1_enum = SOC_ENUM_SINGLE(WM8994_SIDETONE, 0, 2, sidetone_text); static const struct snd_kcontrol_new sidetone1_mux = SOC_DAPM_ENUM("Left Sidetone Mux", sidetone1_enum); static const struct soc_enum sidetone2_enum = SOC_ENUM_SINGLE(WM8994_SIDETONE, 1, 2, sidetone_text); static const struct snd_kcontrol_new sidetone2_mux = SOC_DAPM_ENUM("Right Sidetone Mux", sidetone2_enum); static const char *aif1dac_text[] = { "AIF1DACDAT", "AIF3DACDAT", }; static const struct soc_enum aif1dac_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 0, 2, aif1dac_text); static const struct snd_kcontrol_new aif1dac_mux = SOC_DAPM_ENUM("AIF1DAC Mux", aif1dac_enum); static const char *aif2dac_text[] = { "AIF2DACDAT", "AIF3DACDAT", }; static const struct soc_enum aif2dac_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 1, 2, aif2dac_text); static const struct snd_kcontrol_new aif2dac_mux = SOC_DAPM_ENUM("AIF2DAC Mux", aif2dac_enum); static const char *aif2adc_text[] = { "AIF2ADCDAT", "AIF3DACDAT", }; static const struct soc_enum aif2adc_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 2, 2, aif2adc_text); static const struct snd_kcontrol_new aif2adc_mux = SOC_DAPM_ENUM("AIF2ADC Mux", aif2adc_enum); static const char *aif3adc_text[] = { "AIF1ADCDAT", "AIF2ADCDAT", "AIF2DACDAT", "Mono PCM", }; static const struct soc_enum wm8994_aif3adc_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 3, 3, aif3adc_text); static const struct snd_kcontrol_new wm8994_aif3adc_mux = SOC_DAPM_ENUM("AIF3ADC Mux", wm8994_aif3adc_enum); static const struct soc_enum wm8958_aif3adc_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 3, 4, aif3adc_text); static const struct snd_kcontrol_new wm8958_aif3adc_mux = SOC_DAPM_ENUM("AIF3ADC Mux", wm8958_aif3adc_enum); static const char *mono_pcm_out_text[] = { "None", "AIF2ADCL", "AIF2ADCR", }; static const struct soc_enum mono_pcm_out_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 9, 3, mono_pcm_out_text); static const struct snd_kcontrol_new mono_pcm_out_mux = SOC_DAPM_ENUM("Mono PCM Out Mux", mono_pcm_out_enum); static const char *aif2dac_src_text[] = { "AIF2", "AIF3", }; /* Note that these two control shouldn't be simultaneously switched to AIF3 */ static const struct soc_enum aif2dacl_src_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 7, 2, aif2dac_src_text); static const struct snd_kcontrol_new aif2dacl_src_mux = SOC_DAPM_ENUM("AIF2DACL Mux", aif2dacl_src_enum); static const struct soc_enum aif2dacr_src_enum = SOC_ENUM_SINGLE(WM8994_POWER_MANAGEMENT_6, 8, 2, aif2dac_src_text); static const struct snd_kcontrol_new aif2dacr_src_mux = SOC_DAPM_ENUM("AIF2DACR Mux", aif2dacr_src_enum); static const struct snd_soc_dapm_widget wm8994_lateclk_revd_widgets[] = { SND_SOC_DAPM_SUPPLY("AIF1CLK", SND_SOC_NOPM, 0, 0, aif1clk_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_SUPPLY("AIF2CLK", SND_SOC_NOPM, 0, 0, aif2clk_ev, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("Late DAC1L Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Late DAC1R Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Late DAC2L Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Late DAC2R Enable PGA", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_PGA_E("Direct Voice", SND_SOC_NOPM, 0, 0, NULL, 0, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("SPKL", WM8994_POWER_MANAGEMENT_3, 8, 0, left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer), late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MIXER_E("SPKR", WM8994_POWER_MANAGEMENT_3, 9, 0, right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer), late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("Left Headphone Mux", SND_SOC_NOPM, 0, 0, &hpl_mux, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("Right Headphone Mux", SND_SOC_NOPM, 0, 0, &hpr_mux, late_enable_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_POST("Late Disable PGA", late_disable_ev) }; static const struct snd_soc_dapm_widget wm8994_lateclk_widgets[] = { SND_SOC_DAPM_SUPPLY("AIF1CLK", WM8994_AIF1_CLOCKING_1, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("AIF2CLK", WM8994_AIF2_CLOCKING_1, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("Direct Voice", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_MIXER("SPKL", WM8994_POWER_MANAGEMENT_3, 8, 0, left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer)), SND_SOC_DAPM_MIXER("SPKR", WM8994_POWER_MANAGEMENT_3, 9, 0, right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer)), SND_SOC_DAPM_MUX("Left Headphone Mux", SND_SOC_NOPM, 0, 0, &hpl_mux), SND_SOC_DAPM_MUX("Right Headphone Mux", SND_SOC_NOPM, 0, 0, &hpr_mux), }; static const struct snd_soc_dapm_widget wm8994_dac_revd_widgets[] = { SND_SOC_DAPM_DAC_E("DAC2L", NULL, SND_SOC_NOPM, 3, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_DAC_E("DAC2R", NULL, SND_SOC_NOPM, 2, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_DAC_E("DAC1L", NULL, SND_SOC_NOPM, 1, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_DAC_E("DAC1R", NULL, SND_SOC_NOPM, 0, 0, dac_ev, SND_SOC_DAPM_PRE_PMU), }; static const struct snd_soc_dapm_widget wm8994_dac_widgets[] = { SND_SOC_DAPM_DAC("DAC2L", NULL, WM8994_POWER_MANAGEMENT_5, 3, 0), SND_SOC_DAPM_DAC("DAC2R", NULL, WM8994_POWER_MANAGEMENT_5, 2, 0), SND_SOC_DAPM_DAC("DAC1L", NULL, WM8994_POWER_MANAGEMENT_5, 1, 0), SND_SOC_DAPM_DAC("DAC1R", NULL, WM8994_POWER_MANAGEMENT_5, 0, 0), }; static const struct snd_soc_dapm_widget wm8994_adc_revd_widgets[] = { SND_SOC_DAPM_MUX_E("ADCL Mux", WM8994_POWER_MANAGEMENT_4, 1, 0, &adcl_mux, adc_mux_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_MUX_E("ADCR Mux", WM8994_POWER_MANAGEMENT_4, 0, 0, &adcr_mux, adc_mux_ev, SND_SOC_DAPM_PRE_PMU), }; static const struct snd_soc_dapm_widget wm8994_adc_widgets[] = { SND_SOC_DAPM_MUX("ADCL Mux", WM8994_POWER_MANAGEMENT_4, 1, 0, &adcl_mux), SND_SOC_DAPM_MUX("ADCR Mux", WM8994_POWER_MANAGEMENT_4, 0, 0, &adcr_mux), }; static const struct snd_soc_dapm_widget wm8994_dapm_widgets[] = { SND_SOC_DAPM_INPUT("DMIC1DAT"), SND_SOC_DAPM_INPUT("DMIC2DAT"), SND_SOC_DAPM_INPUT("Clock"), SND_SOC_DAPM_SUPPLY_S("MICBIAS Supply", 1, SND_SOC_NOPM, 0, 0, micbias_ev, SND_SOC_DAPM_PRE_PMU), SND_SOC_DAPM_SUPPLY("VMID", SND_SOC_NOPM, 0, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CLK_SYS", SND_SOC_NOPM, 0, 0, clk_sys_event, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_SUPPLY("DSP1CLK", WM8994_CLOCKING_1, 3, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DSP2CLK", WM8994_CLOCKING_1, 2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DSPINTCLK", WM8994_CLOCKING_1, 1, 0, NULL, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADC1L", NULL, 0, WM8994_POWER_MANAGEMENT_4, 9, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADC1R", NULL, 0, WM8994_POWER_MANAGEMENT_4, 8, 0), SND_SOC_DAPM_AIF_IN_E("AIF1DAC1L", NULL, 0, WM8994_POWER_MANAGEMENT_5, 9, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("AIF1DAC1R", NULL, 0, WM8994_POWER_MANAGEMENT_5, 8, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT("AIF1ADC2L", NULL, 0, WM8994_POWER_MANAGEMENT_4, 11, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADC2R", NULL, 0, WM8994_POWER_MANAGEMENT_4, 10, 0), SND_SOC_DAPM_AIF_IN_E("AIF1DAC2L", NULL, 0, WM8994_POWER_MANAGEMENT_5, 11, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN_E("AIF1DAC2R", NULL, 0, WM8994_POWER_MANAGEMENT_5, 10, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_MIXER("AIF1ADC1L Mixer", SND_SOC_NOPM, 0, 0, aif1adc1l_mix, ARRAY_SIZE(aif1adc1l_mix)), SND_SOC_DAPM_MIXER("AIF1ADC1R Mixer", SND_SOC_NOPM, 0, 0, aif1adc1r_mix, ARRAY_SIZE(aif1adc1r_mix)), SND_SOC_DAPM_MIXER("AIF1ADC2L Mixer", SND_SOC_NOPM, 0, 0, aif1adc2l_mix, ARRAY_SIZE(aif1adc2l_mix)), SND_SOC_DAPM_MIXER("AIF1ADC2R Mixer", SND_SOC_NOPM, 0, 0, aif1adc2r_mix, ARRAY_SIZE(aif1adc2r_mix)), SND_SOC_DAPM_MIXER("AIF2DAC2L Mixer", SND_SOC_NOPM, 0, 0, aif2dac2l_mix, ARRAY_SIZE(aif2dac2l_mix)), SND_SOC_DAPM_MIXER("AIF2DAC2R Mixer", SND_SOC_NOPM, 0, 0, aif2dac2r_mix, ARRAY_SIZE(aif2dac2r_mix)), SND_SOC_DAPM_MUX("Left Sidetone", SND_SOC_NOPM, 0, 0, &sidetone1_mux), SND_SOC_DAPM_MUX("Right Sidetone", SND_SOC_NOPM, 0, 0, &sidetone2_mux), SND_SOC_DAPM_MIXER("DAC1L Mixer", SND_SOC_NOPM, 0, 0, dac1l_mix, ARRAY_SIZE(dac1l_mix)), SND_SOC_DAPM_MIXER("DAC1R Mixer", SND_SOC_NOPM, 0, 0, dac1r_mix, ARRAY_SIZE(dac1r_mix)), SND_SOC_DAPM_AIF_OUT("AIF2ADCL", NULL, 0, WM8994_POWER_MANAGEMENT_4, 13, 0), SND_SOC_DAPM_AIF_OUT("AIF2ADCR", NULL, 0, WM8994_POWER_MANAGEMENT_4, 12, 0), SND_SOC_DAPM_AIF_IN_E("AIF2DACL", NULL, 0, WM8994_POWER_MANAGEMENT_5, 13, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_AIF_IN_E("AIF2DACR", NULL, 0, WM8994_POWER_MANAGEMENT_5, 12, 0, wm8958_aif_ev, SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD), SND_SOC_DAPM_AIF_IN("AIF1DACDAT", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_IN("AIF2DACDAT", "AIF2 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF1ADCDAT", "AIF1 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF2ADCDAT", "AIF2 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_MUX("AIF1DAC Mux", SND_SOC_NOPM, 0, 0, &aif1dac_mux), SND_SOC_DAPM_MUX("AIF2DAC Mux", SND_SOC_NOPM, 0, 0, &aif2dac_mux), SND_SOC_DAPM_MUX("AIF2ADC Mux", SND_SOC_NOPM, 0, 0, &aif2adc_mux), SND_SOC_DAPM_AIF_IN("AIF3DACDAT", "AIF3 Playback", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_AIF_OUT("AIF3ADCDAT", "AIF3 Capture", 0, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_SUPPLY("TOCLK", WM8994_CLOCKING_1, 4, 0, NULL, 0), SND_SOC_DAPM_ADC("DMIC2L", NULL, WM8994_POWER_MANAGEMENT_4, 5, 0), SND_SOC_DAPM_ADC("DMIC2R", NULL, WM8994_POWER_MANAGEMENT_4, 4, 0), SND_SOC_DAPM_ADC("DMIC1L", NULL, WM8994_POWER_MANAGEMENT_4, 3, 0), SND_SOC_DAPM_ADC("DMIC1R", NULL, WM8994_POWER_MANAGEMENT_4, 2, 0), /* Power is done with the muxes since the ADC power also controls the * downsampling chain, the chip will automatically manage the analogue * specific portions. */ SND_SOC_DAPM_ADC("ADCL", NULL, SND_SOC_NOPM, 1, 0), SND_SOC_DAPM_ADC("ADCR", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_POST("Debug log", post_ev), }; static const struct snd_soc_dapm_widget wm8994_specific_dapm_widgets[] = { SND_SOC_DAPM_MUX("AIF3ADC Mux", SND_SOC_NOPM, 0, 0, &wm8994_aif3adc_mux), }; static const struct snd_soc_dapm_widget wm8958_dapm_widgets[] = { SND_SOC_DAPM_MUX("Mono PCM Out Mux", SND_SOC_NOPM, 0, 0, &mono_pcm_out_mux), SND_SOC_DAPM_MUX("AIF2DACL Mux", SND_SOC_NOPM, 0, 0, &aif2dacl_src_mux), SND_SOC_DAPM_MUX("AIF2DACR Mux", SND_SOC_NOPM, 0, 0, &aif2dacr_src_mux), SND_SOC_DAPM_MUX("AIF3ADC Mux", SND_SOC_NOPM, 0, 0, &wm8958_aif3adc_mux), }; static const struct snd_soc_dapm_route intercon[] = { { "CLK_SYS", NULL, "AIF1CLK", check_clk_sys }, { "CLK_SYS", NULL, "AIF2CLK", check_clk_sys }, { "DSP1CLK", NULL, "CLK_SYS" }, { "DSP2CLK", NULL, "CLK_SYS" }, { "DSPINTCLK", NULL, "CLK_SYS" }, { "AIF1ADC1L", NULL, "AIF1CLK" }, { "AIF1ADC1L", NULL, "DSP1CLK" }, { "AIF1ADC1R", NULL, "AIF1CLK" }, { "AIF1ADC1R", NULL, "DSP1CLK" }, { "AIF1ADC1R", NULL, "DSPINTCLK" }, { "AIF1DAC1L", NULL, "AIF1CLK" }, { "AIF1DAC1L", NULL, "DSP1CLK" }, { "AIF1DAC1R", NULL, "AIF1CLK" }, { "AIF1DAC1R", NULL, "DSP1CLK" }, { "AIF1DAC1R", NULL, "DSPINTCLK" }, { "AIF1ADC2L", NULL, "AIF1CLK" }, { "AIF1ADC2L", NULL, "DSP1CLK" }, { "AIF1ADC2R", NULL, "AIF1CLK" }, { "AIF1ADC2R", NULL, "DSP1CLK" }, { "AIF1ADC2R", NULL, "DSPINTCLK" }, { "AIF1DAC2L", NULL, "AIF1CLK" }, { "AIF1DAC2L", NULL, "DSP1CLK" }, { "AIF1DAC2R", NULL, "AIF1CLK" }, { "AIF1DAC2R", NULL, "DSP1CLK" }, { "AIF1DAC2R", NULL, "DSPINTCLK" }, { "AIF2ADCL", NULL, "AIF2CLK" }, { "AIF2ADCL", NULL, "DSP2CLK" }, { "AIF2ADCR", NULL, "AIF2CLK" }, { "AIF2ADCR", NULL, "DSP2CLK" }, { "AIF2ADCR", NULL, "DSPINTCLK" }, { "AIF2DACL", NULL, "AIF2CLK" }, { "AIF2DACL", NULL, "DSP2CLK" }, { "AIF2DACR", NULL, "AIF2CLK" }, { "AIF2DACR", NULL, "DSP2CLK" }, { "AIF2DACR", NULL, "DSPINTCLK" }, { "DMIC1L", NULL, "DMIC1DAT" }, { "DMIC1L", NULL, "CLK_SYS" }, { "DMIC1R", NULL, "DMIC1DAT" }, { "DMIC1R", NULL, "CLK_SYS" }, { "DMIC2L", NULL, "DMIC2DAT" }, { "DMIC2L", NULL, "CLK_SYS" }, { "DMIC2R", NULL, "DMIC2DAT" }, { "DMIC2R", NULL, "CLK_SYS" }, { "ADCL", NULL, "AIF1CLK" }, { "ADCL", NULL, "DSP1CLK" }, { "ADCL", NULL, "DSPINTCLK" }, { "ADCR", NULL, "AIF1CLK" }, { "ADCR", NULL, "DSP1CLK" }, { "ADCR", NULL, "DSPINTCLK" }, { "ADCL Mux", "ADC", "ADCL" }, { "ADCL Mux", "DMIC", "DMIC1L" }, { "ADCR Mux", "ADC", "ADCR" }, { "ADCR Mux", "DMIC", "DMIC1R" }, { "DAC1L", NULL, "AIF1CLK" }, { "DAC1L", NULL, "DSP1CLK" }, { "DAC1L", NULL, "DSPINTCLK" }, { "DAC1R", NULL, "AIF1CLK" }, { "DAC1R", NULL, "DSP1CLK" }, { "DAC1R", NULL, "DSPINTCLK" }, { "DAC2L", NULL, "AIF2CLK" }, { "DAC2L", NULL, "DSP2CLK" }, { "DAC2L", NULL, "DSPINTCLK" }, { "DAC2R", NULL, "AIF2DACR" }, { "DAC2R", NULL, "AIF2CLK" }, { "DAC2R", NULL, "DSP2CLK" }, { "DAC2R", NULL, "DSPINTCLK" }, { "TOCLK", NULL, "CLK_SYS" }, /* AIF1 outputs */ { "AIF1ADC1L", NULL, "AIF1ADC1L Mixer" }, { "AIF1ADC1L Mixer", "ADC/DMIC Switch", "ADCL Mux" }, { "AIF1ADC1L Mixer", "AIF2 Switch", "AIF2DACL" }, { "AIF1ADC1R", NULL, "AIF1ADC1R Mixer" }, { "AIF1ADC1R Mixer", "ADC/DMIC Switch", "ADCR Mux" }, { "AIF1ADC1R Mixer", "AIF2 Switch", "AIF2DACR" }, { "AIF1ADC2L", NULL, "AIF1ADC2L Mixer" }, { "AIF1ADC2L Mixer", "DMIC Switch", "DMIC2L" }, { "AIF1ADC2L Mixer", "AIF2 Switch", "AIF2DACL" }, { "AIF1ADC2R", NULL, "AIF1ADC2R Mixer" }, { "AIF1ADC2R Mixer", "DMIC Switch", "DMIC2R" }, { "AIF1ADC2R Mixer", "AIF2 Switch", "AIF2DACR" }, /* Pin level routing for AIF3 */ { "AIF1DAC1L", NULL, "AIF1DAC Mux" }, { "AIF1DAC1R", NULL, "AIF1DAC Mux" }, { "AIF1DAC2L", NULL, "AIF1DAC Mux" }, { "AIF1DAC2R", NULL, "AIF1DAC Mux" }, { "AIF1DAC Mux", "AIF1DACDAT", "AIF1DACDAT" }, { "AIF1DAC Mux", "AIF3DACDAT", "AIF3DACDAT" }, { "AIF2DAC Mux", "AIF2DACDAT", "AIF2DACDAT" }, { "AIF2DAC Mux", "AIF3DACDAT", "AIF3DACDAT" }, { "AIF2ADC Mux", "AIF2ADCDAT", "AIF2ADCL" }, { "AIF2ADC Mux", "AIF2ADCDAT", "AIF2ADCR" }, { "AIF2ADC Mux", "AIF3DACDAT", "AIF3ADCDAT" }, /* DAC1 inputs */ { "DAC1L Mixer", "AIF2 Switch", "AIF2DACL" }, { "DAC1L Mixer", "AIF1.2 Switch", "AIF1DAC2L" }, { "DAC1L Mixer", "AIF1.1 Switch", "AIF1DAC1L" }, { "DAC1L Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "DAC1L Mixer", "Right Sidetone Switch", "Right Sidetone" }, { "DAC1R Mixer", "AIF2 Switch", "AIF2DACR" }, { "DAC1R Mixer", "AIF1.2 Switch", "AIF1DAC2R" }, { "DAC1R Mixer", "AIF1.1 Switch", "AIF1DAC1R" }, { "DAC1R Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "DAC1R Mixer", "Right Sidetone Switch", "Right Sidetone" }, /* DAC2/AIF2 outputs */ { "AIF2ADCL", NULL, "AIF2DAC2L Mixer" }, { "AIF2DAC2L Mixer", "AIF2 Switch", "AIF2DACL" }, { "AIF2DAC2L Mixer", "AIF1.2 Switch", "AIF1DAC2L" }, { "AIF2DAC2L Mixer", "AIF1.1 Switch", "AIF1DAC1L" }, { "AIF2DAC2L Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "AIF2DAC2L Mixer", "Right Sidetone Switch", "Right Sidetone" }, { "AIF2ADCR", NULL, "AIF2DAC2R Mixer" }, { "AIF2DAC2R Mixer", "AIF2 Switch", "AIF2DACR" }, { "AIF2DAC2R Mixer", "AIF1.2 Switch", "AIF1DAC2R" }, { "AIF2DAC2R Mixer", "AIF1.1 Switch", "AIF1DAC1R" }, { "AIF2DAC2R Mixer", "Left Sidetone Switch", "Left Sidetone" }, { "AIF2DAC2R Mixer", "Right Sidetone Switch", "Right Sidetone" }, { "AIF1ADCDAT", NULL, "AIF1ADC1L" }, { "AIF1ADCDAT", NULL, "AIF1ADC1R" }, { "AIF1ADCDAT", NULL, "AIF1ADC2L" }, { "AIF1ADCDAT", NULL, "AIF1ADC2R" }, { "AIF2ADCDAT", NULL, "AIF2ADC Mux" }, /* AIF3 output */ { "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC1L" }, { "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC1R" }, { "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC2L" }, { "AIF3ADCDAT", "AIF1ADCDAT", "AIF1ADC2R" }, { "AIF3ADCDAT", "AIF2ADCDAT", "AIF2ADCL" }, { "AIF3ADCDAT", "AIF2ADCDAT", "AIF2ADCR" }, { "AIF3ADCDAT", "AIF2DACDAT", "AIF2DACL" }, { "AIF3ADCDAT", "AIF2DACDAT", "AIF2DACR" }, /* Sidetone */ { "Left Sidetone", "ADC/DMIC1", "ADCL Mux" }, { "Left Sidetone", "DMIC2", "DMIC2L" }, { "Right Sidetone", "ADC/DMIC1", "ADCR Mux" }, { "Right Sidetone", "DMIC2", "DMIC2R" }, /* Output stages */ { "Left Output Mixer", "DAC Switch", "DAC1L" }, { "Right Output Mixer", "DAC Switch", "DAC1R" }, { "SPKL", "DAC1 Switch", "DAC1L" }, { "SPKL", "DAC2 Switch", "DAC2L" }, { "SPKR", "DAC1 Switch", "DAC1R" }, { "SPKR", "DAC2 Switch", "DAC2R" }, { "Left Headphone Mux", "DAC", "DAC1L" }, { "Right Headphone Mux", "DAC", "DAC1R" }, }; static const struct snd_soc_dapm_route wm8994_lateclk_revd_intercon[] = { { "DAC1L", NULL, "Late DAC1L Enable PGA" }, { "Late DAC1L Enable PGA", NULL, "DAC1L Mixer" }, { "DAC1R", NULL, "Late DAC1R Enable PGA" }, { "Late DAC1R Enable PGA", NULL, "DAC1R Mixer" }, { "DAC2L", NULL, "Late DAC2L Enable PGA" }, { "Late DAC2L Enable PGA", NULL, "AIF2DAC2L Mixer" }, { "DAC2R", NULL, "Late DAC2R Enable PGA" }, { "Late DAC2R Enable PGA", NULL, "AIF2DAC2R Mixer" } }; static const struct snd_soc_dapm_route wm8994_lateclk_intercon[] = { { "DAC1L", NULL, "DAC1L Mixer" }, { "DAC1R", NULL, "DAC1R Mixer" }, { "DAC2L", NULL, "AIF2DAC2L Mixer" }, { "DAC2R", NULL, "AIF2DAC2R Mixer" }, }; static const struct snd_soc_dapm_route wm8994_revd_intercon[] = { { "AIF1DACDAT", NULL, "AIF2DACDAT" }, { "AIF2DACDAT", NULL, "AIF1DACDAT" }, { "AIF1ADCDAT", NULL, "AIF2ADCDAT" }, { "AIF2ADCDAT", NULL, "AIF1ADCDAT" }, { "MICBIAS1", NULL, "CLK_SYS" }, { "MICBIAS1", NULL, "MICBIAS Supply" }, { "MICBIAS2", NULL, "CLK_SYS" }, { "MICBIAS2", NULL, "MICBIAS Supply" }, }; static const struct snd_soc_dapm_route wm8994_intercon[] = { { "AIF2DACL", NULL, "AIF2DAC Mux" }, { "AIF2DACR", NULL, "AIF2DAC Mux" }, { "MICBIAS1", NULL, "VMID" }, { "MICBIAS2", NULL, "VMID" }, }; static const struct snd_soc_dapm_route wm8958_intercon[] = { { "AIF2DACL", NULL, "AIF2DACL Mux" }, { "AIF2DACR", NULL, "AIF2DACR Mux" }, { "AIF2DACL Mux", "AIF2", "AIF2DAC Mux" }, { "AIF2DACL Mux", "AIF3", "AIF3DACDAT" }, { "AIF2DACR Mux", "AIF2", "AIF2DAC Mux" }, { "AIF2DACR Mux", "AIF3", "AIF3DACDAT" }, { "Mono PCM Out Mux", "AIF2ADCL", "AIF2ADCL" }, { "Mono PCM Out Mux", "AIF2ADCR", "AIF2ADCR" }, { "AIF3ADC Mux", "Mono PCM", "Mono PCM Out Mux" }, }; /* The size in bits of the FLL divide multiplied by 10 * to allow rounding later */ #define FIXED_FLL_SIZE ((1 << 16) * 10) struct fll_div { u16 outdiv; u16 n; u16 k; u16 clk_ref_div; u16 fll_fratio; }; static int wm8994_get_fll_config(struct fll_div *fll, int freq_in, int freq_out) { u64 Kpart; unsigned int K, Ndiv, Nmod; pr_debug("FLL input=%dHz, output=%dHz\n", freq_in, freq_out); /* Scale the input frequency down to <= 13.5MHz */ fll->clk_ref_div = 0; while (freq_in > 13500000) { fll->clk_ref_div++; freq_in /= 2; if (fll->clk_ref_div > 3) return -EINVAL; } pr_debug("CLK_REF_DIV=%d, Fref=%dHz\n", fll->clk_ref_div, freq_in); /* Scale the output to give 90MHz<=Fvco<=100MHz */ fll->outdiv = 3; while (freq_out * (fll->outdiv + 1) < 90000000) { fll->outdiv++; if (fll->outdiv > 63) return -EINVAL; } freq_out *= fll->outdiv + 1; pr_debug("OUTDIV=%d, Fvco=%dHz\n", fll->outdiv, freq_out); if (freq_in > 1000000) { fll->fll_fratio = 0; } else if (freq_in > 256000) { fll->fll_fratio = 1; freq_in *= 2; } else if (freq_in > 128000) { fll->fll_fratio = 2; freq_in *= 4; } else if (freq_in > 64000) { fll->fll_fratio = 3; freq_in *= 8; } else { fll->fll_fratio = 4; freq_in *= 16; } pr_debug("FLL_FRATIO=%d, Fref=%dHz\n", fll->fll_fratio, freq_in); /* Now, calculate N.K */ Ndiv = freq_out / freq_in; fll->n = Ndiv; Nmod = freq_out % freq_in; pr_debug("Nmod=%d\n", Nmod); /* Calculate fractional part - scale up so we can round. */ Kpart = FIXED_FLL_SIZE * (long long)Nmod; do_div(Kpart, freq_in); K = Kpart & 0xFFFFFFFF; if ((K % 10) >= 5) K += 5; /* Move down to proper range now rounding is done */ fll->k = K / 10; pr_debug("N=%x K=%x\n", fll->n, fll->k); return 0; } static int _wm8994_set_fll(struct snd_soc_codec *codec, int id, int src, unsigned int freq_in, unsigned int freq_out) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int reg_offset, ret; struct fll_div fll; u16 reg, aif1, aif2; aif1 = snd_soc_read(codec, WM8994_AIF1_CLOCKING_1) & WM8994_AIF1CLK_ENA; aif2 = snd_soc_read(codec, WM8994_AIF2_CLOCKING_1) & WM8994_AIF2CLK_ENA; switch (id) { case WM8994_FLL1: reg_offset = 0; id = 0; break; case WM8994_FLL2: reg_offset = 0x20; id = 1; break; default: return -EINVAL; } switch (src) { case 0: /* Allow no source specification when stopping */ if (freq_out) return -EINVAL; src = wm8994->fll[id].src; break; case WM8994_FLL_SRC_MCLK1: case WM8994_FLL_SRC_MCLK2: case WM8994_FLL_SRC_LRCLK: case WM8994_FLL_SRC_BCLK: break; default: return -EINVAL; } /* Are we changing anything? */ if (wm8994->fll[id].src == src && wm8994->fll[id].in == freq_in && wm8994->fll[id].out == freq_out) return 0; /* If we're stopping the FLL redo the old config - no * registers will actually be written but we avoid GCC flow * analysis bugs spewing warnings. */ if (freq_out) ret = wm8994_get_fll_config(&fll, freq_in, freq_out); else ret = wm8994_get_fll_config(&fll, wm8994->fll[id].in, wm8994->fll[id].out); if (ret < 0) return ret; /* Gate the AIF clocks while we reclock */ snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1, WM8994_AIF1CLK_ENA, 0); snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1, WM8994_AIF2CLK_ENA, 0); /* We always need to disable the FLL while reconfiguring */ snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_1 + reg_offset, WM8994_FLL1_ENA, 0); reg = (fll.outdiv << WM8994_FLL1_OUTDIV_SHIFT) | (fll.fll_fratio << WM8994_FLL1_FRATIO_SHIFT); snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_2 + reg_offset, WM8994_FLL1_OUTDIV_MASK | WM8994_FLL1_FRATIO_MASK, reg); snd_soc_write(codec, WM8994_FLL1_CONTROL_3 + reg_offset, fll.k); snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_4 + reg_offset, WM8994_FLL1_N_MASK, fll.n << WM8994_FLL1_N_SHIFT); snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_5 + reg_offset, WM8994_FLL1_REFCLK_DIV_MASK | WM8994_FLL1_REFCLK_SRC_MASK, (fll.clk_ref_div << WM8994_FLL1_REFCLK_DIV_SHIFT) | (src - 1)); /* Enable (with fractional mode if required) */ if (freq_out) { if (fll.k) reg = WM8994_FLL1_ENA | WM8994_FLL1_FRAC; else reg = WM8994_FLL1_ENA; snd_soc_update_bits(codec, WM8994_FLL1_CONTROL_1 + reg_offset, WM8994_FLL1_ENA | WM8994_FLL1_FRAC, reg); msleep(5); } wm8994->fll[id].in = freq_in; wm8994->fll[id].out = freq_out; wm8994->fll[id].src = src; /* Enable any gated AIF clocks */ snd_soc_update_bits(codec, WM8994_AIF1_CLOCKING_1, WM8994_AIF1CLK_ENA, aif1); snd_soc_update_bits(codec, WM8994_AIF2_CLOCKING_1, WM8994_AIF2CLK_ENA, aif2); configure_clock(codec); return 0; } static int opclk_divs[] = { 10, 20, 30, 40, 55, 60, 80, 120, 160 }; static int wm8994_set_fll(struct snd_soc_dai *dai, int id, int src, unsigned int freq_in, unsigned int freq_out) { return _wm8994_set_fll(dai->codec, id, src, freq_in, freq_out); } static int wm8994_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = dai->codec; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int i; switch (dai->id) { case 1: case 2: break; default: /* AIF3 shares clocking with AIF1/2 */ return -EINVAL; } switch (clk_id) { case WM8994_SYSCLK_MCLK1: wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_MCLK1; wm8994->mclk[0] = freq; dev_dbg(dai->dev, "AIF%d using MCLK1 at %uHz\n", dai->id, freq); break; case WM8994_SYSCLK_MCLK2: /* TODO: Set GPIO AF */ wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_MCLK2; wm8994->mclk[1] = freq; dev_dbg(dai->dev, "AIF%d using MCLK2 at %uHz\n", dai->id, freq); break; case WM8994_SYSCLK_FLL1: wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_FLL1; dev_dbg(dai->dev, "AIF%d using FLL1\n", dai->id); break; case WM8994_SYSCLK_FLL2: wm8994->sysclk[dai->id - 1] = WM8994_SYSCLK_FLL2; dev_dbg(dai->dev, "AIF%d using FLL2\n", dai->id); break; case WM8994_SYSCLK_OPCLK: /* Special case - a division (times 10) is given and * no effect on main clocking. */ if (freq) { for (i = 0; i < ARRAY_SIZE(opclk_divs); i++) if (opclk_divs[i] == freq) break; if (i == ARRAY_SIZE(opclk_divs)) return -EINVAL; snd_soc_update_bits(codec, WM8994_CLOCKING_2, WM8994_OPCLK_DIV_MASK, i); snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_2, WM8994_OPCLK_ENA, WM8994_OPCLK_ENA); } else { snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_2, WM8994_OPCLK_ENA, 0); } default: return -EINVAL; } configure_clock(codec); return 0; } static int wm8994_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { struct wm8994 *control = codec->control_data; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); switch (level) { case SND_SOC_BIAS_ON: break; case SND_SOC_BIAS_PREPARE: /* VMID=2x40k */ snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1, WM8994_VMID_SEL_MASK, 0x2); break; case SND_SOC_BIAS_STANDBY: if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) { pm_runtime_get_sync(codec->dev); switch (control->type) { case WM8994: if (wm8994->revision < 4) { /* Tweak DC servo and DSP * configuration for improved * performance. */ snd_soc_write(codec, 0x102, 0x3); snd_soc_write(codec, 0x56, 0x3); snd_soc_write(codec, 0x817, 0); snd_soc_write(codec, 0x102, 0); } break; case WM8958: if (wm8994->revision == 0) { /* Optimise performance for rev A */ snd_soc_write(codec, 0x102, 0x3); snd_soc_write(codec, 0xcb, 0x81); snd_soc_write(codec, 0x817, 0); snd_soc_write(codec, 0x102, 0); snd_soc_update_bits(codec, WM8958_CHARGE_PUMP_2, WM8958_CP_DISCH, WM8958_CP_DISCH); } break; } /* Discharge LINEOUT1 & 2 */ snd_soc_update_bits(codec, WM8994_ANTIPOP_1, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH); /* Startup bias, VMID ramp & buffer */ snd_soc_update_bits(codec, WM8994_ANTIPOP_2, WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | WM8994_VMID_RAMP_MASK, WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | (0x11 << WM8994_VMID_RAMP_SHIFT)); /* Main bias enable, VMID=2x40k */ snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1, WM8994_BIAS_ENA | WM8994_VMID_SEL_MASK, WM8994_BIAS_ENA | 0x2); msleep(20); } /* VMID=2x500k */ snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1, WM8994_VMID_SEL_MASK, 0x4); break; case SND_SOC_BIAS_OFF: if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY) { /* Switch over to startup biases */ snd_soc_update_bits(codec, WM8994_ANTIPOP_2, WM8994_BIAS_SRC | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | WM8994_VMID_RAMP_MASK, WM8994_BIAS_SRC | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | (1 << WM8994_VMID_RAMP_SHIFT)); /* Disable main biases */ snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_1, WM8994_BIAS_ENA | WM8994_VMID_SEL_MASK, 0); /* Discharge line */ snd_soc_update_bits(codec, WM8994_ANTIPOP_1, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH, WM8994_LINEOUT1_DISCH | WM8994_LINEOUT2_DISCH); msleep(5); /* Switch off startup biases */ snd_soc_update_bits(codec, WM8994_ANTIPOP_2, WM8994_BIAS_SRC | WM8994_STARTUP_BIAS_ENA | WM8994_VMID_BUF_ENA | WM8994_VMID_RAMP_MASK, 0); wm8994->cur_fw = NULL; pm_runtime_put(codec->dev); } break; } codec->dapm.bias_level = level; return 0; } static int wm8994_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_codec *codec = dai->codec; struct wm8994 *control = codec->control_data; int ms_reg; int aif1_reg; int ms = 0; int aif1 = 0; switch (dai->id) { case 1: ms_reg = WM8994_AIF1_MASTER_SLAVE; aif1_reg = WM8994_AIF1_CONTROL_1; break; case 2: ms_reg = WM8994_AIF2_MASTER_SLAVE; aif1_reg = WM8994_AIF2_CONTROL_1; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBM_CFM: ms = WM8994_AIF1_MSTR; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_B: aif1 |= WM8994_AIF1_LRCLK_INV; case SND_SOC_DAIFMT_DSP_A: aif1 |= 0x18; break; case SND_SOC_DAIFMT_I2S: aif1 |= 0x10; break; case SND_SOC_DAIFMT_RIGHT_J: break; case SND_SOC_DAIFMT_LEFT_J: aif1 |= 0x8; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: /* frame inversion not valid for DSP modes */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: aif1 |= WM8994_AIF1_BCLK_INV; break; default: return -EINVAL; } break; case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_IF: aif1 |= WM8994_AIF1_BCLK_INV | WM8994_AIF1_LRCLK_INV; break; case SND_SOC_DAIFMT_IB_NF: aif1 |= WM8994_AIF1_BCLK_INV; break; case SND_SOC_DAIFMT_NB_IF: aif1 |= WM8994_AIF1_LRCLK_INV; break; default: return -EINVAL; } break; default: return -EINVAL; } /* The AIF2 format configuration needs to be mirrored to AIF3 * on WM8958 if it's in use so just do it all the time. */ if (control->type == WM8958 && dai->id == 2) snd_soc_update_bits(codec, WM8958_AIF3_CONTROL_1, WM8994_AIF1_LRCLK_INV | WM8958_AIF3_FMT_MASK, aif1); snd_soc_update_bits(codec, aif1_reg, WM8994_AIF1_BCLK_INV | WM8994_AIF1_LRCLK_INV | WM8994_AIF1_FMT_MASK, aif1); snd_soc_update_bits(codec, ms_reg, WM8994_AIF1_MSTR, ms); return 0; } static struct { int val, rate; } srs[] = { { 0, 8000 }, { 1, 11025 }, { 2, 12000 }, { 3, 16000 }, { 4, 22050 }, { 5, 24000 }, { 6, 32000 }, { 7, 44100 }, { 8, 48000 }, { 9, 88200 }, { 10, 96000 }, }; static int fs_ratios[] = { 64, 128, 192, 256, 348, 512, 768, 1024, 1408, 1536 }; static int bclk_divs[] = { 10, 15, 20, 30, 40, 50, 60, 80, 110, 120, 160, 220, 240, 320, 440, 480, 640, 880, 960, 1280, 1760, 1920 }; static int wm8994_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct wm8994 *control = codec->control_data; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int aif1_reg; int aif2_reg; int bclk_reg; int lrclk_reg; int rate_reg; int aif1 = 0; int aif2 = 0; int bclk = 0; int lrclk = 0; int rate_val = 0; int id = dai->id - 1; int i, cur_val, best_val, bclk_rate, best; switch (dai->id) { case 1: aif1_reg = WM8994_AIF1_CONTROL_1; aif2_reg = WM8994_AIF1_CONTROL_2; bclk_reg = WM8994_AIF1_BCLK; rate_reg = WM8994_AIF1_RATE; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || wm8994->lrclk_shared[0]) { lrclk_reg = WM8994_AIF1DAC_LRCLK; } else { lrclk_reg = WM8994_AIF1ADC_LRCLK; dev_dbg(codec->dev, "AIF1 using split LRCLK\n"); } break; case 2: aif1_reg = WM8994_AIF2_CONTROL_1; aif2_reg = WM8994_AIF2_CONTROL_2; bclk_reg = WM8994_AIF2_BCLK; rate_reg = WM8994_AIF2_RATE; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || wm8994->lrclk_shared[1]) { lrclk_reg = WM8994_AIF2DAC_LRCLK; } else { lrclk_reg = WM8994_AIF2ADC_LRCLK; dev_dbg(codec->dev, "AIF2 using split LRCLK\n"); } break; case 3: switch (control->type) { case WM8958: aif1_reg = WM8958_AIF3_CONTROL_1; break; default: return 0; } default: return -EINVAL; } bclk_rate = params_rate(params) * 4; switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: bclk_rate *= 16; break; case SNDRV_PCM_FORMAT_S20_3LE: bclk_rate *= 20; aif1 |= 0x20; break; case SNDRV_PCM_FORMAT_S24_LE: bclk_rate *= 24; aif1 |= 0x40; break; case SNDRV_PCM_FORMAT_S32_LE: bclk_rate *= 32; aif1 |= 0x60; break; default: return -EINVAL; } /* Try to find an appropriate sample rate; look for an exact match. */ for (i = 0; i < ARRAY_SIZE(srs); i++) if (srs[i].rate == params_rate(params)) break; if (i == ARRAY_SIZE(srs)) return -EINVAL; rate_val |= srs[i].val << WM8994_AIF1_SR_SHIFT; dev_dbg(dai->dev, "Sample rate is %dHz\n", srs[i].rate); dev_dbg(dai->dev, "AIF%dCLK is %dHz, target BCLK %dHz\n", dai->id, wm8994->aifclk[id], bclk_rate); if (params_channels(params) == 1 && (snd_soc_read(codec, aif1_reg) & 0x18) == 0x18) aif2 |= WM8994_AIF1_MONO; if (wm8994->aifclk[id] == 0) { dev_err(dai->dev, "AIF%dCLK not configured\n", dai->id); return -EINVAL; } /* AIFCLK/fs ratio; look for a close match in either direction */ best = 0; best_val = abs((fs_ratios[0] * params_rate(params)) - wm8994->aifclk[id]); for (i = 1; i < ARRAY_SIZE(fs_ratios); i++) { cur_val = abs((fs_ratios[i] * params_rate(params)) - wm8994->aifclk[id]); if (cur_val >= best_val) continue; best = i; best_val = cur_val; } dev_dbg(dai->dev, "Selected AIF%dCLK/fs = %d\n", dai->id, fs_ratios[best]); rate_val |= best; /* We may not get quite the right frequency if using * approximate clocks so look for the closest match that is * higher than the target (we need to ensure that there enough * BCLKs to clock out the samples). */ best = 0; for (i = 0; i < ARRAY_SIZE(bclk_divs); i++) { cur_val = (wm8994->aifclk[id] * 10 / bclk_divs[i]) - bclk_rate; if (cur_val < 0) /* BCLK table is sorted */ break; best = i; } bclk_rate = wm8994->aifclk[id] * 10 / bclk_divs[best]; dev_dbg(dai->dev, "Using BCLK_DIV %d for actual BCLK %dHz\n", bclk_divs[best], bclk_rate); bclk |= best << WM8994_AIF1_BCLK_DIV_SHIFT; lrclk = bclk_rate / params_rate(params); dev_dbg(dai->dev, "Using LRCLK rate %d for actual LRCLK %dHz\n", lrclk, bclk_rate / lrclk); snd_soc_update_bits(codec, aif1_reg, WM8994_AIF1_WL_MASK, aif1); snd_soc_update_bits(codec, aif2_reg, WM8994_AIF1_MONO, aif2); snd_soc_update_bits(codec, bclk_reg, WM8994_AIF1_BCLK_DIV_MASK, bclk); snd_soc_update_bits(codec, lrclk_reg, WM8994_AIF1DAC_RATE_MASK, lrclk); snd_soc_update_bits(codec, rate_reg, WM8994_AIF1_SR_MASK | WM8994_AIF1CLK_RATE_MASK, rate_val); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { switch (dai->id) { case 1: wm8994->dac_rates[0] = params_rate(params); wm8994_set_retune_mobile(codec, 0); wm8994_set_retune_mobile(codec, 1); break; case 2: wm8994->dac_rates[1] = params_rate(params); wm8994_set_retune_mobile(codec, 2); break; } } return 0; } static int wm8994_aif3_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct wm8994 *control = codec->control_data; int aif1_reg; int aif1 = 0; switch (dai->id) { case 3: switch (control->type) { case WM8958: aif1_reg = WM8958_AIF3_CONTROL_1; break; default: return 0; } break; default: return 0; } switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: break; case SNDRV_PCM_FORMAT_S20_3LE: aif1 |= 0x20; break; case SNDRV_PCM_FORMAT_S24_LE: aif1 |= 0x40; break; case SNDRV_PCM_FORMAT_S32_LE: aif1 |= 0x60; break; default: return -EINVAL; } return snd_soc_update_bits(codec, aif1_reg, WM8994_AIF1_WL_MASK, aif1); } static int wm8994_aif_mute(struct snd_soc_dai *codec_dai, int mute) { struct snd_soc_codec *codec = codec_dai->codec; int mute_reg; int reg; switch (codec_dai->id) { case 1: mute_reg = WM8994_AIF1_DAC1_FILTERS_1; break; case 2: mute_reg = WM8994_AIF2_DAC_FILTERS_1; break; default: return -EINVAL; } if (mute) reg = WM8994_AIF1DAC1_MUTE; else reg = 0; snd_soc_update_bits(codec, mute_reg, WM8994_AIF1DAC1_MUTE, reg); return 0; } static int wm8994_set_tristate(struct snd_soc_dai *codec_dai, int tristate) { struct snd_soc_codec *codec = codec_dai->codec; int reg, val, mask; switch (codec_dai->id) { case 1: reg = WM8994_AIF1_MASTER_SLAVE; mask = WM8994_AIF1_TRI; break; case 2: reg = WM8994_AIF2_MASTER_SLAVE; mask = WM8994_AIF2_TRI; break; case 3: reg = WM8994_POWER_MANAGEMENT_6; mask = WM8994_AIF3_TRI; break; default: return -EINVAL; } if (tristate) val = mask; else val = 0; return snd_soc_update_bits(codec, reg, mask, val); } #define WM8994_RATES SNDRV_PCM_RATE_8000_96000 #define WM8994_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE |\ SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_ops wm8994_aif1_dai_ops = { .set_sysclk = wm8994_set_dai_sysclk, .set_fmt = wm8994_set_dai_fmt, .hw_params = wm8994_hw_params, .digital_mute = wm8994_aif_mute, .set_pll = wm8994_set_fll, .set_tristate = wm8994_set_tristate, }; static struct snd_soc_dai_ops wm8994_aif2_dai_ops = { .set_sysclk = wm8994_set_dai_sysclk, .set_fmt = wm8994_set_dai_fmt, .hw_params = wm8994_hw_params, .digital_mute = wm8994_aif_mute, .set_pll = wm8994_set_fll, .set_tristate = wm8994_set_tristate, }; static struct snd_soc_dai_ops wm8994_aif3_dai_ops = { .hw_params = wm8994_aif3_hw_params, .set_tristate = wm8994_set_tristate, }; static struct snd_soc_dai_driver wm8994_dai[] = { { .name = "wm8994-aif1", .id = 1, .playback = { .stream_name = "AIF1 Playback", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, }, .capture = { .stream_name = "AIF1 Capture", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, }, .ops = &wm8994_aif1_dai_ops, }, { .name = "wm8994-aif2", .id = 2, .playback = { .stream_name = "AIF2 Playback", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, }, .capture = { .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, }, .ops = &wm8994_aif2_dai_ops, }, { .name = "wm8994-aif3", .id = 3, .playback = { .stream_name = "AIF3 Playback", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, }, .capture = { .stream_name = "AIF3 Capture", .channels_min = 1, .channels_max = 2, .rates = WM8994_RATES, .formats = WM8994_FORMATS, }, .ops = &wm8994_aif3_dai_ops, } }; #ifdef CONFIG_PM static int wm8994_suspend(struct snd_soc_codec *codec, pm_message_t state) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994 *control = codec->control_data; int i, ret; switch (control->type) { case WM8994: snd_soc_update_bits(codec, WM8994_MICBIAS, WM8994_MICD_ENA, 0); break; case WM8958: snd_soc_update_bits(codec, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, 0); break; } for (i = 0; i < ARRAY_SIZE(wm8994->fll); i++) { memcpy(&wm8994->fll_suspend[i], &wm8994->fll[i], sizeof(struct wm8994_fll_config)); ret = _wm8994_set_fll(codec, i + 1, 0, 0, 0); if (ret < 0) dev_warn(codec->dev, "Failed to stop FLL%d: %d\n", i + 1, ret); } wm8994_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static int wm8994_resume(struct snd_soc_codec *codec) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994 *control = codec->control_data; int i, ret; unsigned int val, mask; if (wm8994->revision < 4) { /* force a HW read */ val = wm8994_reg_read(codec->control_data, WM8994_POWER_MANAGEMENT_5); /* modify the cache only */ codec->cache_only = 1; mask = WM8994_DAC1R_ENA | WM8994_DAC1L_ENA | WM8994_DAC2R_ENA | WM8994_DAC2L_ENA; val &= mask; snd_soc_update_bits(codec, WM8994_POWER_MANAGEMENT_5, mask, val); codec->cache_only = 0; } /* Restore the registers */ ret = snd_soc_cache_sync(codec); if (ret != 0) dev_err(codec->dev, "Failed to sync cache: %d\n", ret); wm8994_set_bias_level(codec, SND_SOC_BIAS_STANDBY); for (i = 0; i < ARRAY_SIZE(wm8994->fll); i++) { if (!wm8994->fll_suspend[i].out) continue; ret = _wm8994_set_fll(codec, i + 1, wm8994->fll_suspend[i].src, wm8994->fll_suspend[i].in, wm8994->fll_suspend[i].out); if (ret < 0) dev_warn(codec->dev, "Failed to restore FLL%d: %d\n", i + 1, ret); } switch (control->type) { case WM8994: if (wm8994->micdet[0].jack || wm8994->micdet[1].jack) snd_soc_update_bits(codec, WM8994_MICBIAS, WM8994_MICD_ENA, WM8994_MICD_ENA); break; case WM8958: if (wm8994->jack_cb) snd_soc_update_bits(codec, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, WM8958_MICD_ENA); break; } return 0; } #else #define wm8994_suspend NULL #define wm8994_resume NULL #endif static void wm8994_handle_retune_mobile_pdata(struct wm8994_priv *wm8994) { struct snd_soc_codec *codec = wm8994->codec; struct wm8994_pdata *pdata = wm8994->pdata; struct snd_kcontrol_new controls[] = { SOC_ENUM_EXT("AIF1.1 EQ Mode", wm8994->retune_mobile_enum, wm8994_get_retune_mobile_enum, wm8994_put_retune_mobile_enum), SOC_ENUM_EXT("AIF1.2 EQ Mode", wm8994->retune_mobile_enum, wm8994_get_retune_mobile_enum, wm8994_put_retune_mobile_enum), SOC_ENUM_EXT("AIF2 EQ Mode", wm8994->retune_mobile_enum, wm8994_get_retune_mobile_enum, wm8994_put_retune_mobile_enum), }; int ret, i, j; const char **t; /* We need an array of texts for the enum API but the number * of texts is likely to be less than the number of * configurations due to the sample rate dependency of the * configurations. */ wm8994->num_retune_mobile_texts = 0; wm8994->retune_mobile_texts = NULL; for (i = 0; i < pdata->num_retune_mobile_cfgs; i++) { for (j = 0; j < wm8994->num_retune_mobile_texts; j++) { if (strcmp(pdata->retune_mobile_cfgs[i].name, wm8994->retune_mobile_texts[j]) == 0) break; } if (j != wm8994->num_retune_mobile_texts) continue; /* Expand the array... */ t = krealloc(wm8994->retune_mobile_texts, sizeof(char *) * (wm8994->num_retune_mobile_texts + 1), GFP_KERNEL); if (t == NULL) continue; /* ...store the new entry... */ t[wm8994->num_retune_mobile_texts] = pdata->retune_mobile_cfgs[i].name; /* ...and remember the new version. */ wm8994->num_retune_mobile_texts++; wm8994->retune_mobile_texts = t; } dev_dbg(codec->dev, "Allocated %d unique ReTune Mobile names\n", wm8994->num_retune_mobile_texts); wm8994->retune_mobile_enum.max = wm8994->num_retune_mobile_texts; wm8994->retune_mobile_enum.texts = wm8994->retune_mobile_texts; ret = snd_soc_add_controls(wm8994->codec, controls, ARRAY_SIZE(controls)); if (ret != 0) dev_err(wm8994->codec->dev, "Failed to add ReTune Mobile controls: %d\n", ret); } static void wm8994_handle_pdata(struct wm8994_priv *wm8994) { struct snd_soc_codec *codec = wm8994->codec; struct wm8994_pdata *pdata = wm8994->pdata; int ret, i; if (!pdata) return; wm_hubs_handle_analogue_pdata(codec, pdata->lineout1_diff, pdata->lineout2_diff, pdata->lineout1fb, pdata->lineout2fb, pdata->jd_scthr, pdata->jd_thr, pdata->micbias1_lvl, pdata->micbias2_lvl); dev_dbg(codec->dev, "%d DRC configurations\n", pdata->num_drc_cfgs); if (pdata->num_drc_cfgs) { struct snd_kcontrol_new controls[] = { SOC_ENUM_EXT("AIF1DRC1 Mode", wm8994->drc_enum, wm8994_get_drc_enum, wm8994_put_drc_enum), SOC_ENUM_EXT("AIF1DRC2 Mode", wm8994->drc_enum, wm8994_get_drc_enum, wm8994_put_drc_enum), SOC_ENUM_EXT("AIF2DRC Mode", wm8994->drc_enum, wm8994_get_drc_enum, wm8994_put_drc_enum), }; /* We need an array of texts for the enum API */ wm8994->drc_texts = kmalloc(sizeof(char *) * pdata->num_drc_cfgs, GFP_KERNEL); if (!wm8994->drc_texts) { dev_err(wm8994->codec->dev, "Failed to allocate %d DRC config texts\n", pdata->num_drc_cfgs); return; } for (i = 0; i < pdata->num_drc_cfgs; i++) wm8994->drc_texts[i] = pdata->drc_cfgs[i].name; wm8994->drc_enum.max = pdata->num_drc_cfgs; wm8994->drc_enum.texts = wm8994->drc_texts; ret = snd_soc_add_controls(wm8994->codec, controls, ARRAY_SIZE(controls)); if (ret != 0) dev_err(wm8994->codec->dev, "Failed to add DRC mode controls: %d\n", ret); for (i = 0; i < WM8994_NUM_DRC; i++) wm8994_set_drc(codec, i); } dev_dbg(codec->dev, "%d ReTune Mobile configurations\n", pdata->num_retune_mobile_cfgs); if (pdata->num_retune_mobile_cfgs) wm8994_handle_retune_mobile_pdata(wm8994); else snd_soc_add_controls(wm8994->codec, wm8994_eq_controls, ARRAY_SIZE(wm8994_eq_controls)); for (i = 0; i < ARRAY_SIZE(pdata->micbias); i++) { if (pdata->micbias[i]) { snd_soc_write(codec, WM8958_MICBIAS1 + i, pdata->micbias[i] & 0xffff); } } } /** * wm8994_mic_detect - Enable microphone detection via the WM8994 IRQ * * @codec: WM8994 codec * @jack: jack to report detection events on * @micbias: microphone bias to detect on * @det: value to report for presence detection * @shrt: value to report for short detection * * Enable microphone detection via IRQ on the WM8994. If GPIOs are * being used to bring out signals to the processor then only platform * data configuration is needed for WM8994 and processor GPIOs should * be configured using snd_soc_jack_add_gpios() instead. * * Configuration of detection levels is available via the micbias1_lvl * and micbias2_lvl platform data members. */ int wm8994_mic_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack, int micbias, int det, int shrt) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994_micdet *micdet; struct wm8994 *control = codec->control_data; int reg; if (control->type != WM8994) return -EINVAL; switch (micbias) { case 1: micdet = &wm8994->micdet[0]; break; case 2: micdet = &wm8994->micdet[1]; break; default: return -EINVAL; } dev_dbg(codec->dev, "Configuring microphone detection on %d: %x %x\n", micbias, det, shrt); /* Store the configuration */ micdet->jack = jack; micdet->det = det; micdet->shrt = shrt; /* If either of the jacks is set up then enable detection */ if (wm8994->micdet[0].jack || wm8994->micdet[1].jack) reg = WM8994_MICD_ENA; else reg = 0; snd_soc_update_bits(codec, WM8994_MICBIAS, WM8994_MICD_ENA, reg); return 0; } EXPORT_SYMBOL_GPL(wm8994_mic_detect); static irqreturn_t wm8994_mic_irq(int irq, void *data) { struct wm8994_priv *priv = data; struct snd_soc_codec *codec = priv->codec; int reg; int report; #ifndef CONFIG_SND_SOC_WM8994_MODULE trace_snd_soc_jack_irq(dev_name(codec->dev)); #endif reg = snd_soc_read(codec, WM8994_INTERRUPT_RAW_STATUS_2); if (reg < 0) { dev_err(codec->dev, "Failed to read microphone status: %d\n", reg); return IRQ_HANDLED; } dev_dbg(codec->dev, "Microphone status: %x\n", reg); report = 0; if (reg & WM8994_MIC1_DET_STS) report |= priv->micdet[0].det; if (reg & WM8994_MIC1_SHRT_STS) report |= priv->micdet[0].shrt; snd_soc_jack_report(priv->micdet[0].jack, report, priv->micdet[0].det | priv->micdet[0].shrt); report = 0; if (reg & WM8994_MIC2_DET_STS) report |= priv->micdet[1].det; if (reg & WM8994_MIC2_SHRT_STS) report |= priv->micdet[1].shrt; snd_soc_jack_report(priv->micdet[1].jack, report, priv->micdet[1].det | priv->micdet[1].shrt); return IRQ_HANDLED; } /* Default microphone detection handler for WM8958 - the user can * override this if they wish. */ static void wm8958_default_micdet(u16 status, void *data) { struct snd_soc_codec *codec = data; struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); int report = 0; /* If nothing present then clear our statuses */ if (!(status & WM8958_MICD_STS)) goto done; report = SND_JACK_MICROPHONE; /* Everything else is buttons; just assign slots */ if (status & 0x1c) report |= SND_JACK_BTN_0; done: snd_soc_jack_report(wm8994->micdet[0].jack, report, SND_JACK_BTN_0 | SND_JACK_MICROPHONE); } /** * wm8958_mic_detect - Enable microphone detection via the WM8958 IRQ * * @codec: WM8958 codec * @jack: jack to report detection events on * * Enable microphone detection functionality for the WM8958. By * default simple detection which supports the detection of up to 6 * buttons plus video and microphone functionality is supported. * * The WM8958 has an advanced jack detection facility which is able to * support complex accessory detection, especially when used in * conjunction with external circuitry. In order to provide maximum * flexiblity a callback is provided which allows a completely custom * detection algorithm. */ int wm8958_mic_detect(struct snd_soc_codec *codec, struct snd_soc_jack *jack, wm8958_micdet_cb cb, void *cb_data) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994 *control = codec->control_data; if (control->type != WM8958) return -EINVAL; if (jack) { if (!cb) { dev_dbg(codec->dev, "Using default micdet callback\n"); cb = wm8958_default_micdet; cb_data = codec; } wm8994->micdet[0].jack = jack; wm8994->jack_cb = cb; wm8994->jack_cb_data = cb_data; snd_soc_update_bits(codec, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, WM8958_MICD_ENA); } else { snd_soc_update_bits(codec, WM8958_MIC_DETECT_1, WM8958_MICD_ENA, 0); } return 0; } EXPORT_SYMBOL_GPL(wm8958_mic_detect); static irqreturn_t wm8958_mic_irq(int irq, void *data) { struct wm8994_priv *wm8994 = data; struct snd_soc_codec *codec = wm8994->codec; int reg; reg = snd_soc_read(codec, WM8958_MIC_DETECT_3); if (reg < 0) { dev_err(codec->dev, "Failed to read mic detect status: %d\n", reg); return IRQ_NONE; } if (!(reg & WM8958_MICD_VALID)) { dev_dbg(codec->dev, "Mic detect data not valid\n"); goto out; } #ifndef CONFIG_SND_SOC_WM8994_MODULE trace_snd_soc_jack_irq(dev_name(codec->dev)); #endif if (wm8994->jack_cb) wm8994->jack_cb(reg, wm8994->jack_cb_data); else dev_warn(codec->dev, "Accessory detection with no callback\n"); out: return IRQ_HANDLED; } static int wm8994_codec_probe(struct snd_soc_codec *codec) { struct wm8994 *control; struct wm8994_priv *wm8994; struct snd_soc_dapm_context *dapm = &codec->dapm; int ret, i; codec->control_data = dev_get_drvdata(codec->dev->parent); control = codec->control_data; wm8994 = kzalloc(sizeof(struct wm8994_priv), GFP_KERNEL); if (wm8994 == NULL) return -ENOMEM; snd_soc_codec_set_drvdata(codec, wm8994); wm8994->pdata = dev_get_platdata(codec->dev->parent); wm8994->codec = codec; if (wm8994->pdata && wm8994->pdata->micdet_irq) wm8994->micdet_irq = wm8994->pdata->micdet_irq; else if (wm8994->pdata && wm8994->pdata->irq_base) wm8994->micdet_irq = wm8994->pdata->irq_base + WM8994_IRQ_MIC1_DET; pm_runtime_enable(codec->dev); pm_runtime_resume(codec->dev); /* Read our current status back from the chip - we don't want to * reset as this may interfere with the GPIO or LDO operation. */ for (i = 0; i < WM8994_CACHE_SIZE; i++) { if (!wm8994_readable(codec, i) || wm8994_volatile(codec, i)) continue; ret = wm8994_reg_read(codec->control_data, i); if (ret <= 0) continue; ret = snd_soc_cache_write(codec, i, ret); if (ret != 0) { dev_err(codec->dev, "Failed to initialise cache for 0x%x: %d\n", i, ret); goto err; } } /* Set revision-specific configuration */ wm8994->revision = snd_soc_read(codec, WM8994_CHIP_REVISION); switch (control->type) { case WM8994: switch (wm8994->revision) { case 2: case 3: wm8994->hubs.dcs_codes_l = -5; wm8994->hubs.dcs_codes_r = -5; wm8994->hubs.hp_startup_mode = 1; wm8994->hubs.dcs_readback_mode = 1; wm8994->hubs.series_startup = 1; break; default: wm8994->hubs.dcs_readback_mode = 2; break; } break; case WM8958: wm8994->hubs.dcs_readback_mode = 1; break; default: break; } switch (control->type) { case WM8994: if (wm8994->micdet_irq) { ret = request_threaded_irq(wm8994->micdet_irq, NULL, wm8994_mic_irq, IRQF_TRIGGER_RISING, "Mic1 detect", wm8994); if (ret != 0) dev_warn(codec->dev, "Failed to request Mic1 detect IRQ: %d\n", ret); } ret = wm8994_request_irq(codec->control_data, WM8994_IRQ_MIC1_SHRT, wm8994_mic_irq, "Mic 1 short", wm8994); if (ret != 0) dev_warn(codec->dev, "Failed to request Mic1 short IRQ: %d\n", ret); ret = wm8994_request_irq(codec->control_data, WM8994_IRQ_MIC2_DET, wm8994_mic_irq, "Mic 2 detect", wm8994); if (ret != 0) dev_warn(codec->dev, "Failed to request Mic2 detect IRQ: %d\n", ret); ret = wm8994_request_irq(codec->control_data, WM8994_IRQ_MIC2_SHRT, wm8994_mic_irq, "Mic 2 short", wm8994); if (ret != 0) dev_warn(codec->dev, "Failed to request Mic2 short IRQ: %d\n", ret); break; case WM8958: if (wm8994->micdet_irq) { ret = request_threaded_irq(wm8994->micdet_irq, NULL, wm8958_mic_irq, IRQF_TRIGGER_RISING, "Mic detect", wm8994); if (ret != 0) dev_warn(codec->dev, "Failed to request Mic detect IRQ: %d\n", ret); } } /* Remember if AIFnLRCLK is configured as a GPIO. This should be * configured on init - if a system wants to do this dynamically * at runtime we can deal with that then. */ ret = wm8994_reg_read(codec->control_data, WM8994_GPIO_1); if (ret < 0) { dev_err(codec->dev, "Failed to read GPIO1 state: %d\n", ret); goto err_irq; } if ((ret & WM8994_GPN_FN_MASK) != WM8994_GP_FN_PIN_SPECIFIC) { wm8994->lrclk_shared[0] = 1; wm8994_dai[0].symmetric_rates = 1; } else { wm8994->lrclk_shared[0] = 0; } ret = wm8994_reg_read(codec->control_data, WM8994_GPIO_6); if (ret < 0) { dev_err(codec->dev, "Failed to read GPIO6 state: %d\n", ret); goto err_irq; } if ((ret & WM8994_GPN_FN_MASK) != WM8994_GP_FN_PIN_SPECIFIC) { wm8994->lrclk_shared[1] = 1; wm8994_dai[1].symmetric_rates = 1; } else { wm8994->lrclk_shared[1] = 0; } wm8994_set_bias_level(codec, SND_SOC_BIAS_STANDBY); /* Latch volume updates (right only; we always do left then right). */ snd_soc_update_bits(codec, WM8994_AIF1_DAC1_LEFT_VOLUME, WM8994_AIF1DAC1_VU, WM8994_AIF1DAC1_VU); snd_soc_update_bits(codec, WM8994_AIF1_DAC1_RIGHT_VOLUME, WM8994_AIF1DAC1_VU, WM8994_AIF1DAC1_VU); snd_soc_update_bits(codec, WM8994_AIF1_DAC2_LEFT_VOLUME, WM8994_AIF1DAC2_VU, WM8994_AIF1DAC2_VU); snd_soc_update_bits(codec, WM8994_AIF1_DAC2_RIGHT_VOLUME, WM8994_AIF1DAC2_VU, WM8994_AIF1DAC2_VU); snd_soc_update_bits(codec, WM8994_AIF2_DAC_LEFT_VOLUME, WM8994_AIF2DAC_VU, WM8994_AIF2DAC_VU); snd_soc_update_bits(codec, WM8994_AIF2_DAC_RIGHT_VOLUME, WM8994_AIF2DAC_VU, WM8994_AIF2DAC_VU); snd_soc_update_bits(codec, WM8994_AIF1_ADC1_LEFT_VOLUME, WM8994_AIF1ADC1_VU, WM8994_AIF1ADC1_VU); snd_soc_update_bits(codec, WM8994_AIF1_ADC1_RIGHT_VOLUME, WM8994_AIF1ADC1_VU, WM8994_AIF1ADC1_VU); snd_soc_update_bits(codec, WM8994_AIF1_ADC2_LEFT_VOLUME, WM8994_AIF1ADC2_VU, WM8994_AIF1ADC2_VU); snd_soc_update_bits(codec, WM8994_AIF1_ADC2_RIGHT_VOLUME, WM8994_AIF1ADC2_VU, WM8994_AIF1ADC2_VU); snd_soc_update_bits(codec, WM8994_AIF2_ADC_LEFT_VOLUME, WM8994_AIF2ADC_VU, WM8994_AIF1ADC2_VU); snd_soc_update_bits(codec, WM8994_AIF2_ADC_RIGHT_VOLUME, WM8994_AIF2ADC_VU, WM8994_AIF1ADC2_VU); snd_soc_update_bits(codec, WM8994_DAC1_LEFT_VOLUME, WM8994_DAC1_VU, WM8994_DAC1_VU); snd_soc_update_bits(codec, WM8994_DAC1_RIGHT_VOLUME, WM8994_DAC1_VU, WM8994_DAC1_VU); snd_soc_update_bits(codec, WM8994_DAC2_LEFT_VOLUME, WM8994_DAC2_VU, WM8994_DAC2_VU); snd_soc_update_bits(codec, WM8994_DAC2_RIGHT_VOLUME, WM8994_DAC2_VU, WM8994_DAC2_VU); /* Set the low bit of the 3D stereo depth so TLV matches */ snd_soc_update_bits(codec, WM8994_AIF1_DAC1_FILTERS_2, 1 << WM8994_AIF1DAC1_3D_GAIN_SHIFT, 1 << WM8994_AIF1DAC1_3D_GAIN_SHIFT); snd_soc_update_bits(codec, WM8994_AIF1_DAC2_FILTERS_2, 1 << WM8994_AIF1DAC2_3D_GAIN_SHIFT, 1 << WM8994_AIF1DAC2_3D_GAIN_SHIFT); snd_soc_update_bits(codec, WM8994_AIF2_DAC_FILTERS_2, 1 << WM8994_AIF2DAC_3D_GAIN_SHIFT, 1 << WM8994_AIF2DAC_3D_GAIN_SHIFT); /* Unconditionally enable AIF1 ADC TDM mode; it only affects * behaviour on idle TDM clock cycles. */ snd_soc_update_bits(codec, WM8994_AIF1_CONTROL_1, WM8994_AIF1ADC_TDM, WM8994_AIF1ADC_TDM); wm8994_update_class_w(codec); wm8994_handle_pdata(wm8994); wm_hubs_add_analogue_controls(codec); snd_soc_add_controls(codec, wm8994_snd_controls, ARRAY_SIZE(wm8994_snd_controls)); snd_soc_dapm_new_controls(dapm, wm8994_dapm_widgets, ARRAY_SIZE(wm8994_dapm_widgets)); switch (control->type) { case WM8994: snd_soc_dapm_new_controls(dapm, wm8994_specific_dapm_widgets, ARRAY_SIZE(wm8994_specific_dapm_widgets)); if (wm8994->revision < 4) { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_revd_widgets, ARRAY_SIZE(wm8994_lateclk_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_revd_widgets, ARRAY_SIZE(wm8994_adc_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_revd_widgets, ARRAY_SIZE(wm8994_dac_revd_widgets)); } else { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets, ARRAY_SIZE(wm8994_lateclk_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets, ARRAY_SIZE(wm8994_adc_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets, ARRAY_SIZE(wm8994_dac_widgets)); } break; case WM8958: snd_soc_add_controls(codec, wm8958_snd_controls, ARRAY_SIZE(wm8958_snd_controls)); snd_soc_dapm_new_controls(dapm, wm8958_dapm_widgets, ARRAY_SIZE(wm8958_dapm_widgets)); if (wm8994->revision < 1) { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_revd_widgets, ARRAY_SIZE(wm8994_lateclk_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_revd_widgets, ARRAY_SIZE(wm8994_adc_revd_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_revd_widgets, ARRAY_SIZE(wm8994_dac_revd_widgets)); } else { snd_soc_dapm_new_controls(dapm, wm8994_lateclk_widgets, ARRAY_SIZE(wm8994_lateclk_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_adc_widgets, ARRAY_SIZE(wm8994_adc_widgets)); snd_soc_dapm_new_controls(dapm, wm8994_dac_widgets, ARRAY_SIZE(wm8994_dac_widgets)); } break; } wm_hubs_add_analogue_routes(codec, 0, 0); snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon)); switch (control->type) { case WM8994: snd_soc_dapm_add_routes(dapm, wm8994_intercon, ARRAY_SIZE(wm8994_intercon)); if (wm8994->revision < 4) { snd_soc_dapm_add_routes(dapm, wm8994_revd_intercon, ARRAY_SIZE(wm8994_revd_intercon)); snd_soc_dapm_add_routes(dapm, wm8994_lateclk_revd_intercon, ARRAY_SIZE(wm8994_lateclk_revd_intercon)); } else { snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon, ARRAY_SIZE(wm8994_lateclk_intercon)); } break; case WM8958: if (wm8994->revision < 1) { snd_soc_dapm_add_routes(dapm, wm8994_revd_intercon, ARRAY_SIZE(wm8994_revd_intercon)); snd_soc_dapm_add_routes(dapm, wm8994_lateclk_revd_intercon, ARRAY_SIZE(wm8994_lateclk_revd_intercon)); } else { snd_soc_dapm_add_routes(dapm, wm8994_lateclk_intercon, ARRAY_SIZE(wm8994_lateclk_intercon)); snd_soc_dapm_add_routes(dapm, wm8958_intercon, ARRAY_SIZE(wm8958_intercon)); } wm8958_dsp2_init(codec); break; } return 0; err_irq: wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC2_SHRT, wm8994); wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC2_DET, wm8994); wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC1_SHRT, wm8994); if (wm8994->micdet_irq) free_irq(wm8994->micdet_irq, wm8994); err: kfree(wm8994); return ret; } static int wm8994_codec_remove(struct snd_soc_codec *codec) { struct wm8994_priv *wm8994 = snd_soc_codec_get_drvdata(codec); struct wm8994 *control = codec->control_data; wm8994_set_bias_level(codec, SND_SOC_BIAS_OFF); pm_runtime_disable(codec->dev); switch (control->type) { case WM8994: if (wm8994->micdet_irq) free_irq(wm8994->micdet_irq, wm8994); wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC2_DET, wm8994); wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC1_SHRT, wm8994); wm8994_free_irq(codec->control_data, WM8994_IRQ_MIC1_DET, wm8994); break; case WM8958: if (wm8994->micdet_irq) free_irq(wm8994->micdet_irq, wm8994); break; } if (wm8994->mbc) release_firmware(wm8994->mbc); if (wm8994->mbc_vss) release_firmware(wm8994->mbc_vss); if (wm8994->enh_eq) release_firmware(wm8994->enh_eq); kfree(wm8994->retune_mobile_texts); kfree(wm8994->drc_texts); kfree(wm8994); return 0; } static struct snd_soc_codec_driver soc_codec_dev_wm8994 = { .probe = wm8994_codec_probe, .remove = wm8994_codec_remove, .suspend = wm8994_suspend, .resume = wm8994_resume, .read = wm8994_read, .write = wm8994_write, .readable_register = wm8994_readable, .volatile_register = wm8994_volatile, .set_bias_level = wm8994_set_bias_level, .reg_cache_size = WM8994_CACHE_SIZE, .reg_cache_default = wm8994_reg_defaults, .reg_word_size = 2, .compress_type = SND_SOC_RBTREE_COMPRESSION, }; static int __devinit wm8994_probe(struct platform_device *pdev) { return snd_soc_register_codec(&pdev->dev, &soc_codec_dev_wm8994, wm8994_dai, ARRAY_SIZE(wm8994_dai)); } static int __devexit wm8994_remove(struct platform_device *pdev) { snd_soc_unregister_codec(&pdev->dev); return 0; } static struct platform_driver wm8994_codec_driver = { .driver = { .name = "wm8994-codec", .owner = THIS_MODULE, }, .probe = wm8994_probe, .remove = __devexit_p(wm8994_remove), }; static __init int wm8994_init(void) { return platform_driver_register(&wm8994_codec_driver); } module_init(wm8994_init); static __exit void wm8994_exit(void) { platform_driver_unregister(&wm8994_codec_driver); } module_exit(wm8994_exit); MODULE_DESCRIPTION("ASoC WM8994 driver"); MODULE_AUTHOR("Mark Brown "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:wm8994-codec");