aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/rtc/interface.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/rtc/interface.c')
-rw-r--r--drivers/rtc/interface.c180
1 files changed, 180 insertions, 0 deletions
diff --git a/drivers/rtc/interface.c b/drivers/rtc/interface.c
index cb2f072..8ec6b06 100644
--- a/drivers/rtc/interface.c
+++ b/drivers/rtc/interface.c
@@ -116,6 +116,186 @@ int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
}
EXPORT_SYMBOL_GPL(rtc_set_mmss);
+static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+
+ err = mutex_lock_interruptible(&rtc->ops_lock);
+ if (err)
+ return err;
+
+ if (rtc->ops == NULL)
+ err = -ENODEV;
+ else if (!rtc->ops->read_alarm)
+ err = -EINVAL;
+ else {
+ memset(alarm, 0, sizeof(struct rtc_wkalrm));
+ err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
+ }
+
+ mutex_unlock(&rtc->ops_lock);
+ return err;
+}
+
+int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
+{
+ int err;
+ struct rtc_time before, now;
+ int first_time = 1;
+ unsigned long t_now, t_alm;
+ enum { none, day, month, year } missing = none;
+ unsigned days;
+
+ /* The lower level RTC driver may return -1 in some fields,
+ * creating invalid alarm->time values, for reasons like:
+ *
+ * - The hardware may not be capable of filling them in;
+ * many alarms match only on time-of-day fields, not
+ * day/month/year calendar data.
+ *
+ * - Some hardware uses illegal values as "wildcard" match
+ * values, which non-Linux firmware (like a BIOS) may try
+ * to set up as e.g. "alarm 15 minutes after each hour".
+ * Linux uses only oneshot alarms.
+ *
+ * When we see that here, we deal with it by using values from
+ * a current RTC timestamp for any missing (-1) values. The
+ * RTC driver prevents "periodic alarm" modes.
+ *
+ * But this can be racey, because some fields of the RTC timestamp
+ * may have wrapped in the interval since we read the RTC alarm,
+ * which would lead to us inserting inconsistent values in place
+ * of the -1 fields.
+ *
+ * Reading the alarm and timestamp in the reverse sequence
+ * would have the same race condition, and not solve the issue.
+ *
+ * So, we must first read the RTC timestamp,
+ * then read the RTC alarm value,
+ * and then read a second RTC timestamp.
+ *
+ * If any fields of the second timestamp have changed
+ * when compared with the first timestamp, then we know
+ * our timestamp may be inconsistent with that used by
+ * the low-level rtc_read_alarm_internal() function.
+ *
+ * So, when the two timestamps disagree, we just loop and do
+ * the process again to get a fully consistent set of values.
+ *
+ * This could all instead be done in the lower level driver,
+ * but since more than one lower level RTC implementation needs it,
+ * then it's probably best best to do it here instead of there..
+ */
+
+ /* Get the "before" timestamp */
+ err = rtc_read_time(rtc, &before);
+ if (err < 0)
+ return err;
+ do {
+ if (!first_time)
+ memcpy(&before, &now, sizeof(struct rtc_time));
+ first_time = 0;
+
+ /* get the RTC alarm values, which may be incomplete */
+ err = rtc_read_alarm_internal(rtc, alarm);
+ if (err)
+ return err;
+
+ /* full-function RTCs won't have such missing fields */
+ if (rtc_valid_tm(&alarm->time) == 0)
+ return 0;
+
+ /* get the "after" timestamp, to detect wrapped fields */
+ err = rtc_read_time(rtc, &now);
+ if (err < 0)
+ return err;
+
+ /* note that tm_sec is a "don't care" value here: */
+ } while ( before.tm_min != now.tm_min
+ || before.tm_hour != now.tm_hour
+ || before.tm_mon != now.tm_mon
+ || before.tm_year != now.tm_year);
+
+ /* Fill in the missing alarm fields using the timestamp; we
+ * know there's at least one since alarm->time is invalid.
+ */
+ if (alarm->time.tm_sec == -1)
+ alarm->time.tm_sec = now.tm_sec;
+ if (alarm->time.tm_min == -1)
+ alarm->time.tm_min = now.tm_min;
+ if (alarm->time.tm_hour == -1)
+ alarm->time.tm_hour = now.tm_hour;
+
+ /* For simplicity, only support date rollover for now */
+ if (alarm->time.tm_mday == -1) {
+ alarm->time.tm_mday = now.tm_mday;
+ missing = day;
+ }
+ if (alarm->time.tm_mon == -1) {
+ alarm->time.tm_mon = now.tm_mon;
+ if (missing == none)
+ missing = month;
+ }
+ if (alarm->time.tm_year == -1) {
+ alarm->time.tm_year = now.tm_year;
+ if (missing == none)
+ missing = year;
+ }
+
+ /* with luck, no rollover is needed */
+ rtc_tm_to_time(&now, &t_now);
+ rtc_tm_to_time(&alarm->time, &t_alm);
+ if (t_now < t_alm)
+ goto done;
+
+ switch (missing) {
+
+ /* 24 hour rollover ... if it's now 10am Monday, an alarm that
+ * that will trigger at 5am will do so at 5am Tuesday, which
+ * could also be in the next month or year. This is a common
+ * case, especially for PCs.
+ */
+ case day:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
+ t_alm += 24 * 60 * 60;
+ rtc_time_to_tm(t_alm, &alarm->time);
+ break;
+
+ /* Month rollover ... if it's the 31th, an alarm on the 3rd will
+ * be next month. An alarm matching on the 30th, 29th, or 28th
+ * may end up in the month after that! Many newer PCs support
+ * this type of alarm.
+ */
+ case month:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
+ do {
+ if (alarm->time.tm_mon < 11)
+ alarm->time.tm_mon++;
+ else {
+ alarm->time.tm_mon = 0;
+ alarm->time.tm_year++;
+ }
+ days = rtc_month_days(alarm->time.tm_mon,
+ alarm->time.tm_year);
+ } while (days < alarm->time.tm_mday);
+ break;
+
+ /* Year rollover ... easy except for leap years! */
+ case year:
+ dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
+ do {
+ alarm->time.tm_year++;
+ } while (rtc_valid_tm(&alarm->time) != 0);
+ break;
+
+ default:
+ dev_warn(&rtc->dev, "alarm rollover not handled\n");
+ }
+
+done:
+ return 0;
+}
+
int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
int err;