/* * linux/arch/arm/kernel/ecard.c * * Copyright 1995-2001 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Find all installed expansion cards, and handle interrupts from them. * * Created from information from Acorns RiscOS3 PRMs * * 08-Dec-1996 RMK Added code for the 9'th expansion card - the ether * podule slot. * 06-May-1997 RMK Added blacklist for cards whose loader doesn't work. * 12-Sep-1997 RMK Created new handling of interrupt enables/disables * - cards can now register their own routine to control * interrupts (recommended). * 29-Sep-1997 RMK Expansion card interrupt hardware not being re-enabled * on reset from Linux. (Caused cards not to respond * under RiscOS without hard reset). * 15-Feb-1998 RMK Added DMA support * 12-Sep-1998 RMK Added EASI support * 10-Jan-1999 RMK Run loaders in a simulated RISC OS environment. * 17-Apr-1999 RMK Support for EASI Type C cycles. */ #define ECARD_C #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/reboot.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/device.h> #include <linux/init.h> #include <linux/mutex.h> #include <linux/kthread.h> #include <linux/io.h> #include <asm/dma.h> #include <asm/ecard.h> #include <asm/hardware.h> #include <asm/irq.h> #include <asm/mmu_context.h> #include <asm/mach/irq.h> #include <asm/tlbflush.h> #include "ecard.h" #ifndef CONFIG_ARCH_RPC #define HAVE_EXPMASK #endif struct ecard_request { void (*fn)(struct ecard_request *); ecard_t *ec; unsigned int address; unsigned int length; unsigned int use_loader; void *buffer; struct completion *complete; }; struct expcard_blacklist { unsigned short manufacturer; unsigned short product; const char *type; }; static ecard_t *cards; static ecard_t *slot_to_expcard[MAX_ECARDS]; static unsigned int ectcr; #ifdef HAS_EXPMASK static unsigned int have_expmask; #endif /* List of descriptions of cards which don't have an extended * identification, or chunk directories containing a description. */ static struct expcard_blacklist __initdata blacklist[] = { { MANU_ACORN, PROD_ACORN_ETHER1, "Acorn Ether1" } }; asmlinkage extern int ecard_loader_reset(unsigned long base, loader_t loader); asmlinkage extern int ecard_loader_read(int off, unsigned long base, loader_t loader); static inline unsigned short ecard_getu16(unsigned char *v) { return v[0] | v[1] << 8; } static inline signed long ecard_gets24(unsigned char *v) { return v[0] | v[1] << 8 | v[2] << 16 | ((v[2] & 0x80) ? 0xff000000 : 0); } static inline ecard_t *slot_to_ecard(unsigned int slot) { return slot < MAX_ECARDS ? slot_to_expcard[slot] : NULL; } /* ===================== Expansion card daemon ======================== */ /* * Since the loader programs on the expansion cards need to be run * in a specific environment, create a separate task with this * environment up, and pass requests to this task as and when we * need to. * * This should allow 99% of loaders to be called from Linux. * * From a security standpoint, we trust the card vendors. This * may be a misplaced trust. */ static void ecard_task_reset(struct ecard_request *req) { struct expansion_card *ec = req->ec; struct resource *res; res = ec->slot_no == 8 ? &ec->resource[ECARD_RES_MEMC] : ec->easi ? &ec->resource[ECARD_RES_EASI] : &ec->resource[ECARD_RES_IOCSYNC]; ecard_loader_reset(res->start, ec->loader); } static void ecard_task_readbytes(struct ecard_request *req) { struct expansion_card *ec = req->ec; unsigned char *buf = req->buffer; unsigned int len = req->length; unsigned int off = req->address; if (ec->slot_no == 8) { void __iomem *base = (void __iomem *) ec->resource[ECARD_RES_MEMC].start; /* * The card maintains an index which increments the address * into a 4096-byte page on each access. We need to keep * track of the counter. */ static unsigned int index; unsigned int page; page = (off >> 12) * 4; if (page > 256 * 4) return; off &= 4095; /* * If we are reading offset 0, or our current index is * greater than the offset, reset the hardware index counter. */ if (off == 0 || index > off) { writeb(0, base); index = 0; } /* * Increment the hardware index counter until we get to the * required offset. The read bytes are discarded. */ while (index < off) { readb(base + page); index += 1; } while (len--) { *buf++ = readb(base + page); index += 1; } } else { unsigned long base = (ec->easi ? &ec->resource[ECARD_RES_EASI] : &ec->resource[ECARD_RES_IOCSYNC])->start; void __iomem *pbase = (void __iomem *)base; if (!req->use_loader || !ec->loader) { off *= 4; while (len--) { *buf++ = readb(pbase + off); off += 4; } } else { while(len--) { /* * The following is required by some * expansion card loader programs. */ *(unsigned long *)0x108 = 0; *buf++ = ecard_loader_read(off++, base, ec->loader); } } } } static DECLARE_WAIT_QUEUE_HEAD(ecard_wait); static struct ecard_request *ecard_req; static DEFINE_MUTEX(ecard_mutex); /* * Set up the expansion card daemon's page tables. */ static void ecard_init_pgtables(struct mm_struct *mm) { struct vm_area_struct vma; /* We want to set up the page tables for the following mapping: * Virtual Physical * 0x03000000 0x03000000 * 0x03010000 unmapped * 0x03210000 0x03210000 * 0x03400000 unmapped * 0x08000000 0x08000000 * 0x10000000 unmapped * * FIXME: we don't follow this 100% yet. */ pgd_t *src_pgd, *dst_pgd; src_pgd = pgd_offset(mm, (unsigned long)IO_BASE); dst_pgd = pgd_offset(mm, IO_START); memcpy(dst_pgd, src_pgd, sizeof(pgd_t) * (IO_SIZE / PGDIR_SIZE)); src_pgd = pgd_offset(mm, EASI_BASE); dst_pgd = pgd_offset(mm, EASI_START); memcpy(dst_pgd, src_pgd, sizeof(pgd_t) * (EASI_SIZE / PGDIR_SIZE)); vma.vm_mm = mm; flush_tlb_range(&vma, IO_START, IO_START + IO_SIZE); flush_tlb_range(&vma, EASI_START, EASI_START + EASI_SIZE); } static int ecard_init_mm(void) { struct mm_struct * mm = mm_alloc(); struct mm_struct *active_mm = current->active_mm; if (!mm) return -ENOMEM; current->mm = mm; current->active_mm = mm; activate_mm(active_mm, mm); mmdrop(active_mm); ecard_init_pgtables(mm); return 0; } static int ecard_task(void * unused) { /* * Allocate a mm. We're not a lazy-TLB kernel task since we need * to set page table entries where the user space would be. Note * that this also creates the page tables. Failure is not an * option here. */ if (ecard_init_mm()) panic("kecardd: unable to alloc mm\n"); while (1) { struct ecard_request *req; wait_event_interruptible(ecard_wait, ecard_req != NULL); req = xchg(&ecard_req, NULL); if (req != NULL) { req->fn(req); complete(req->complete); } } } /* * Wake the expansion card daemon to action our request. * * FIXME: The test here is not sufficient to detect if the * kcardd is running. */ static void ecard_call(struct ecard_request *req) { DECLARE_COMPLETION_ONSTACK(completion); req->complete = &completion; mutex_lock(&ecard_mutex); ecard_req = req; wake_up(&ecard_wait); /* * Now wait for kecardd to run. */ wait_for_completion(&completion); mutex_unlock(&ecard_mutex); } /* ======================= Mid-level card control ===================== */ static void ecard_readbytes(void *addr, ecard_t *ec, int off, int len, int useld) { struct ecard_request req; req.fn = ecard_task_readbytes; req.ec = ec; req.address = off; req.length = len; req.use_loader = useld; req.buffer = addr; ecard_call(&req); } int ecard_readchunk(struct in_chunk_dir *cd, ecard_t *ec, int id, int num) { struct ex_chunk_dir excd; int index = 16; int useld = 0; if (!ec->cid.cd) return 0; while(1) { ecard_readbytes(&excd, ec, index, 8, useld); index += 8; if (c_id(&excd) == 0) { if (!useld && ec->loader) { useld = 1; index = 0; continue; } return 0; } if (c_id(&excd) == 0xf0) { /* link */ index = c_start(&excd); continue; } if (c_id(&excd) == 0x80) { /* loader */ if (!ec->loader) { ec->loader = kmalloc(c_len(&excd), GFP_KERNEL); if (ec->loader) ecard_readbytes(ec->loader, ec, (int)c_start(&excd), c_len(&excd), useld); else return 0; } continue; } if (c_id(&excd) == id && num-- == 0) break; } if (c_id(&excd) & 0x80) { switch (c_id(&excd) & 0x70) { case 0x70: ecard_readbytes((unsigned char *)excd.d.string, ec, (int)c_start(&excd), c_len(&excd), useld); break; case 0x00: break; } } cd->start_offset = c_start(&excd); memcpy(cd->d.string, excd.d.string, 256); return 1; } /* ======================= Interrupt control ============================ */ static void ecard_def_irq_enable(ecard_t *ec, int irqnr) { #ifdef HAS_EXPMASK if (irqnr < 4 && have_expmask) { have_expmask |= 1 << irqnr; __raw_writeb(have_expmask, EXPMASK_ENABLE); } #endif } static void ecard_def_irq_disable(ecard_t *ec, int irqnr) { #ifdef HAS_EXPMASK if (irqnr < 4 && have_expmask) { have_expmask &= ~(1 << irqnr); __raw_writeb(have_expmask, EXPMASK_ENABLE); } #endif } static int ecard_def_irq_pending(ecard_t *ec) { return !ec->irqmask || readb(ec->irqaddr) & ec->irqmask; } static void ecard_def_fiq_enable(ecard_t *ec, int fiqnr) { panic("ecard_def_fiq_enable called - impossible"); } static void ecard_def_fiq_disable(ecard_t *ec, int fiqnr) { panic("ecard_def_fiq_disable called - impossible"); } static int ecard_def_fiq_pending(ecard_t *ec) { return !ec->fiqmask || readb(ec->fiqaddr) & ec->fiqmask; } static expansioncard_ops_t ecard_default_ops = { ecard_def_irq_enable, ecard_def_irq_disable, ecard_def_irq_pending, ecard_def_fiq_enable, ecard_def_fiq_disable, ecard_def_fiq_pending }; /* * Enable and disable interrupts from expansion cards. * (interrupts are disabled for these functions). * * They are not meant to be called directly, but via enable/disable_irq. */ static void ecard_irq_unmask(unsigned int irqnr) { ecard_t *ec = slot_to_ecard(irqnr - 32); if (ec) { if (!ec->ops) ec->ops = &ecard_default_ops; if (ec->claimed && ec->ops->irqenable) ec->ops->irqenable(ec, irqnr); else printk(KERN_ERR "ecard: rejecting request to " "enable IRQs for %d\n", irqnr); } } static void ecard_irq_mask(unsigned int irqnr) { ecard_t *ec = slot_to_ecard(irqnr - 32); if (ec) { if (!ec->ops) ec->ops = &ecard_default_ops; if (ec->ops && ec->ops->irqdisable) ec->ops->irqdisable(ec, irqnr); } } static struct irq_chip ecard_chip = { .name = "ECARD", .ack = ecard_irq_mask, .mask = ecard_irq_mask, .unmask = ecard_irq_unmask, }; void ecard_enablefiq(unsigned int fiqnr) { ecard_t *ec = slot_to_ecard(fiqnr); if (ec) { if (!ec->ops) ec->ops = &ecard_default_ops; if (ec->claimed && ec->ops->fiqenable) ec->ops->fiqenable(ec, fiqnr); else printk(KERN_ERR "ecard: rejecting request to " "enable FIQs for %d\n", fiqnr); } } void ecard_disablefiq(unsigned int fiqnr) { ecard_t *ec = slot_to_ecard(fiqnr); if (ec) { if (!ec->ops) ec->ops = &ecard_default_ops; if (ec->ops->fiqdisable) ec->ops->fiqdisable(ec, fiqnr); } } static void ecard_dump_irq_state(void) { ecard_t *ec; printk("Expansion card IRQ state:\n"); for (ec = cards; ec; ec = ec->next) { if (ec->slot_no == 8) continue; printk(" %d: %sclaimed, ", ec->slot_no, ec->claimed ? "" : "not "); if (ec->ops && ec->ops->irqpending && ec->ops != &ecard_default_ops) printk("irq %spending\n", ec->ops->irqpending(ec) ? "" : "not "); else printk("irqaddr %p, mask = %02X, status = %02X\n", ec->irqaddr, ec->irqmask, readb(ec->irqaddr)); } } static void ecard_check_lockup(struct irq_desc *desc) { static unsigned long last; static int lockup; /* * If the timer interrupt has not run since the last million * unrecognised expansion card interrupts, then there is * something seriously wrong. Disable the expansion card * interrupts so at least we can continue. * * Maybe we ought to start a timer to re-enable them some time * later? */ if (last == jiffies) { lockup += 1; if (lockup > 1000000) { printk(KERN_ERR "\nInterrupt lockup detected - " "disabling all expansion card interrupts\n"); desc->chip->mask(IRQ_EXPANSIONCARD); ecard_dump_irq_state(); } } else lockup = 0; /* * If we did not recognise the source of this interrupt, * warn the user, but don't flood the user with these messages. */ if (!last || time_after(jiffies, last + 5*HZ)) { last = jiffies; printk(KERN_WARNING "Unrecognised interrupt from backplane\n"); ecard_dump_irq_state(); } } static void ecard_irq_handler(unsigned int irq, struct irq_desc *desc) { ecard_t *ec; int called = 0; desc->chip->mask(irq); for (ec = cards; ec; ec = ec->next) { int pending; if (!ec->claimed || ec->irq == NO_IRQ || ec->slot_no == 8) continue; if (ec->ops && ec->ops->irqpending) pending = ec->ops->irqpending(ec); else pending = ecard_default_ops.irqpending(ec); if (pending) { struct irq_desc *d = irq_desc + ec->irq; desc_handle_irq(ec->irq, d); called ++; } } desc->chip->unmask(irq); if (called == 0) ecard_check_lockup(desc); } #ifdef HAS_EXPMASK static unsigned char priority_masks[] = { 0xf0, 0xf1, 0xf3, 0xf7, 0xff, 0xff, 0xff, 0xff }; static unsigned char first_set[] = { 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00, 0x03, 0x00, 0x01, 0x00, 0x02, 0x00, 0x01, 0x00 }; static void ecard_irqexp_handler(unsigned int irq, struct irq_desc *desc) { const unsigned int statusmask = 15; unsigned int status; status = __raw_readb(EXPMASK_STATUS) & statusmask; if (status) { unsigned int slot = first_set[status]; ecard_t *ec = slot_to_ecard(slot); if (ec->claimed) { struct irq_desc *d = irq_desc + ec->irq; /* * this ugly code is so that we can operate a * prioritorising system: * * Card 0 highest priority * Card 1 * Card 2 * Card 3 lowest priority * * Serial cards should go in 0/1, ethernet/scsi in 2/3 * otherwise you will lose serial data at high speeds! */ desc_handle_irq(ec->irq, d); } else { printk(KERN_WARNING "card%d: interrupt from unclaimed " "card???\n", slot); have_expmask &= ~(1 << slot); __raw_writeb(have_expmask, EXPMASK_ENABLE); } } else printk(KERN_WARNING "Wild interrupt from backplane (masks)\n"); } static int __init ecard_probeirqhw(void) { ecard_t *ec; int found; __raw_writeb(0x00, EXPMASK_ENABLE); __raw_writeb(0xff, EXPMASK_STATUS); found = (__raw_readb(EXPMASK_STATUS) & 15) == 0; __raw_writeb(0xff, EXPMASK_ENABLE); if (found) { printk(KERN_DEBUG "Expansion card interrupt " "management hardware found\n"); /* for each card present, set a bit to '1' */ have_expmask = 0x80000000; for (ec = cards; ec; ec = ec->next) have_expmask |= 1 << ec->slot_no; __raw_writeb(have_expmask, EXPMASK_ENABLE); } return found; } #else #define ecard_irqexp_handler NULL #define ecard_probeirqhw() (0) #endif #ifndef IO_EC_MEMC8_BASE #define IO_EC_MEMC8_BASE 0 #endif static unsigned int __ecard_address(ecard_t *ec, card_type_t type, card_speed_t speed) { unsigned long address = 0; int slot = ec->slot_no; if (ec->slot_no == 8) return IO_EC_MEMC8_BASE; ectcr &= ~(1 << slot); switch (type) { case ECARD_MEMC: if (slot < 4) address = IO_EC_MEMC_BASE + (slot << 12); break; case ECARD_IOC: if (slot < 4) address = IO_EC_IOC_BASE + (slot << 12); #ifdef IO_EC_IOC4_BASE else address = IO_EC_IOC4_BASE + ((slot - 4) << 12); #endif if (address) address += speed << 17; break; #ifdef IO_EC_EASI_BASE case ECARD_EASI: address = IO_EC_EASI_BASE + (slot << 22); if (speed == ECARD_FAST) ectcr |= 1 << slot; break; #endif default: break; } #ifdef IOMD_ECTCR iomd_writeb(ectcr, IOMD_ECTCR); #endif return address; } static int ecard_prints(struct seq_file *m, ecard_t *ec) { seq_printf(m, " %d: %s ", ec->slot_no, ec->easi ? "EASI" : " "); if (ec->cid.id == 0) { struct in_chunk_dir incd; seq_printf(m, "[%04X:%04X] ", ec->cid.manufacturer, ec->cid.product); if (!ec->card_desc && ec->cid.cd && ecard_readchunk(&incd, ec, 0xf5, 0)) { ec->card_desc = kmalloc(strlen(incd.d.string)+1, GFP_KERNEL); if (ec->card_desc) strcpy((char *)ec->card_desc, incd.d.string); } seq_printf(m, "%s\n", ec->card_desc ? ec->card_desc : "*unknown*"); } else seq_printf(m, "Simple card %d\n", ec->cid.id); return 0; } static int ecard_devices_proc_show(struct seq_file *m, void *v) { ecard_t *ec = cards; while (ec) { ecard_prints(m, ec); ec = ec->next; } return 0; } static int ecard_devices_proc_open(struct inode *inode, struct file *file) { return single_open(file, ecard_devices_proc_show, NULL); } static const struct file_operations bus_ecard_proc_fops = { .owner = THIS_MODULE, .open = ecard_devices_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static struct proc_dir_entry *proc_bus_ecard_dir = NULL; static void ecard_proc_init(void) { proc_bus_ecard_dir = proc_mkdir("bus/ecard", NULL); proc_create("devices", 0, proc_bus_ecard_dir, &bus_ecard_proc_fops); } #define ec_set_resource(ec,nr,st,sz) \ do { \ (ec)->resource[nr].name = dev_name(&ec->dev); \ (ec)->resource[nr].start = st; \ (ec)->resource[nr].end = (st) + (sz) - 1; \ (ec)->resource[nr].flags = IORESOURCE_MEM; \ } while (0) static void __init ecard_free_card(struct expansion_card *ec) { int i; for (i = 0; i < ECARD_NUM_RESOURCES; i++) if (ec->resource[i].flags) release_resource(&ec->resource[i]); kfree(ec); } static struct expansion_card *__init ecard_alloc_card(int type, int slot) { struct expansion_card *ec; unsigned long base; int i; ec = kzalloc(sizeof(ecard_t), GFP_KERNEL); if (!ec) { ec = ERR_PTR(-ENOMEM); goto nomem; } ec->slot_no = slot; ec->easi = type == ECARD_EASI; ec->irq = NO_IRQ; ec->fiq = NO_IRQ; ec->dma = NO_DMA; ec->ops = &ecard_default_ops; snprintf(ec->dev.bus_id, sizeof(ec->dev.bus_id), "ecard%d", slot); ec->dev.parent = NULL; ec->dev.bus = &ecard_bus_type; ec->dev.dma_mask = &ec->dma_mask; ec->dma_mask = (u64)0xffffffff; ec->dev.coherent_dma_mask = ec->dma_mask; if (slot < 4) { ec_set_resource(ec, ECARD_RES_MEMC, PODSLOT_MEMC_BASE + (slot << 14), PODSLOT_MEMC_SIZE); base = PODSLOT_IOC0_BASE + (slot << 14); } else base = PODSLOT_IOC4_BASE + ((slot - 4) << 14); #ifdef CONFIG_ARCH_RPC if (slot < 8) { ec_set_resource(ec, ECARD_RES_EASI, PODSLOT_EASI_BASE + (slot << 24), PODSLOT_EASI_SIZE); } if (slot == 8) { ec_set_resource(ec, ECARD_RES_MEMC, NETSLOT_BASE, NETSLOT_SIZE); } else #endif for (i = 0; i <= ECARD_RES_IOCSYNC - ECARD_RES_IOCSLOW; i++) ec_set_resource(ec, i + ECARD_RES_IOCSLOW, base + (i << 19), PODSLOT_IOC_SIZE); for (i = 0; i < ECARD_NUM_RESOURCES; i++) { if (ec->resource[i].flags && request_resource(&iomem_resource, &ec->resource[i])) { dev_err(&ec->dev, "resource(s) not available\n"); ec->resource[i].end -= ec->resource[i].start; ec->resource[i].start = 0; ec->resource[i].flags = 0; } } nomem: return ec; } static ssize_t ecard_show_irq(struct device *dev, struct device_attribute *attr, char *buf) { struct expansion_card *ec = ECARD_DEV(dev); return sprintf(buf, "%u\n", ec->irq); } static ssize_t ecard_show_dma(struct device *dev, struct device_attribute *attr, char *buf) { struct expansion_card *ec = ECARD_DEV(dev); return sprintf(buf, "%u\n", ec->dma); } static ssize_t ecard_show_resources(struct device *dev, struct device_attribute *attr, char *buf) { struct expansion_card *ec = ECARD_DEV(dev); char *str = buf; int i; for (i = 0; i < ECARD_NUM_RESOURCES; i++) str += sprintf(str, "%08x %08x %08lx\n", ec->resource[i].start, ec->resource[i].end, ec->resource[i].flags); return str - buf; } static ssize_t ecard_show_vendor(struct device *dev, struct device_attribute *attr, char *buf) { struct expansion_card *ec = ECARD_DEV(dev); return sprintf(buf, "%u\n", ec->cid.manufacturer); } static ssize_t ecard_show_device(struct device *dev, struct device_attribute *attr, char *buf) { struct expansion_card *ec = ECARD_DEV(dev); return sprintf(buf, "%u\n", ec->cid.product); } static ssize_t ecard_show_type(struct device *dev, struct device_attribute *attr, char *buf) { struct expansion_card *ec = ECARD_DEV(dev); return sprintf(buf, "%s\n", ec->easi ? "EASI" : "IOC"); } static struct device_attribute ecard_dev_attrs[] = { __ATTR(device, S_IRUGO, ecard_show_device, NULL), __ATTR(dma, S_IRUGO, ecard_show_dma, NULL), __ATTR(irq, S_IRUGO, ecard_show_irq, NULL), __ATTR(resource, S_IRUGO, ecard_show_resources, NULL), __ATTR(type, S_IRUGO, ecard_show_type, NULL), __ATTR(vendor, S_IRUGO, ecard_show_vendor, NULL), __ATTR_NULL, }; int ecard_request_resources(struct expansion_card *ec) { int i, err = 0; for (i = 0; i < ECARD_NUM_RESOURCES; i++) { if (ecard_resource_end(ec, i) && !request_mem_region(ecard_resource_start(ec, i), ecard_resource_len(ec, i), ec->dev.driver->name)) { err = -EBUSY; break; } } if (err) { while (i--) if (ecard_resource_end(ec, i)) release_mem_region(ecard_resource_start(ec, i), ecard_resource_len(ec, i)); } return err; } EXPORT_SYMBOL(ecard_request_resources); void ecard_release_resources(struct expansion_card *ec) { int i; for (i = 0; i < ECARD_NUM_RESOURCES; i++) if (ecard_resource_end(ec, i)) release_mem_region(ecard_resource_start(ec, i), ecard_resource_len(ec, i)); } EXPORT_SYMBOL(ecard_release_resources); void ecard_setirq(struct expansion_card *ec, const struct expansion_card_ops *ops, void *irq_data) { ec->irq_data = irq_data; barrier(); ec->ops = ops; } EXPORT_SYMBOL(ecard_setirq); void __iomem *ecardm_iomap(struct expansion_card *ec, unsigned int res, unsigned long offset, unsigned long maxsize) { unsigned long start = ecard_resource_start(ec, res); unsigned long end = ecard_resource_end(ec, res); if (offset > (end - start)) return NULL; start += offset; if (maxsize && end - start > maxsize) end = start + maxsize; return devm_ioremap(&ec->dev, start, end - start); } EXPORT_SYMBOL(ecardm_iomap); /* * Probe for an expansion card. * * If bit 1 of the first byte of the card is set, then the * card does not exist. */ static int __init ecard_probe(int slot, card_type_t type) { ecard_t **ecp; ecard_t *ec; struct ex_ecid cid; int i, rc; ec = ecard_alloc_card(type, slot); if (IS_ERR(ec)) { rc = PTR_ERR(ec); goto nomem; } rc = -ENODEV; if ((ec->podaddr = __ecard_address(ec, type, ECARD_SYNC)) == 0) goto nodev; cid.r_zero = 1; ecard_readbytes(&cid, ec, 0, 16, 0); if (cid.r_zero) goto nodev; ec->cid.id = cid.r_id; ec->cid.cd = cid.r_cd; ec->cid.is = cid.r_is; ec->cid.w = cid.r_w; ec->cid.manufacturer = ecard_getu16(cid.r_manu); ec->cid.product = ecard_getu16(cid.r_prod); ec->cid.country = cid.r_country; ec->cid.irqmask = cid.r_irqmask; ec->cid.irqoff = ecard_gets24(cid.r_irqoff); ec->cid.fiqmask = cid.r_fiqmask; ec->cid.fiqoff = ecard_gets24(cid.r_fiqoff); ec->fiqaddr = ec->irqaddr = (void __iomem *)ioaddr(ec->podaddr); if (ec->cid.is) { ec->irqmask = ec->cid.irqmask; ec->irqaddr += ec->cid.irqoff; ec->fiqmask = ec->cid.fiqmask; ec->fiqaddr += ec->cid.fiqoff; } else { ec->irqmask = 1; ec->fiqmask = 4; } for (i = 0; i < ARRAY_SIZE(blacklist); i++) if (blacklist[i].manufacturer == ec->cid.manufacturer && blacklist[i].product == ec->cid.product) { ec->card_desc = blacklist[i].type; break; } /* * hook the interrupt handlers */ if (slot < 8) { ec->irq = 32 + slot; set_irq_chip(ec->irq, &ecard_chip); set_irq_handler(ec->irq, handle_level_irq); set_irq_flags(ec->irq, IRQF_VALID); } #ifdef IO_EC_MEMC8_BASE if (slot == 8) ec->irq = 11; #endif #ifdef CONFIG_ARCH_RPC /* On RiscPC, only first two slots have DMA capability */ if (slot < 2) ec->dma = 2 + slot; #endif for (ecp = &cards; *ecp; ecp = &(*ecp)->next); *ecp = ec; slot_to_expcard[slot] = ec; device_register(&ec->dev); return 0; nodev: ecard_free_card(ec); nomem: return rc; } /* * Initialise the expansion card system. * Locate all hardware - interrupt management and * actual cards. */ static int __init ecard_init(void) { struct task_struct *task; int slot, irqhw; task = kthread_run(ecard_task, NULL, "kecardd"); if (IS_ERR(task)) { printk(KERN_ERR "Ecard: unable to create kernel thread: %ld\n", PTR_ERR(task)); return PTR_ERR(task); } printk("Probing expansion cards\n"); for (slot = 0; slot < 8; slot ++) { if (ecard_probe(slot, ECARD_EASI) == -ENODEV) ecard_probe(slot, ECARD_IOC); } #ifdef IO_EC_MEMC8_BASE ecard_probe(8, ECARD_IOC); #endif irqhw = ecard_probeirqhw(); set_irq_chained_handler(IRQ_EXPANSIONCARD, irqhw ? ecard_irqexp_handler : ecard_irq_handler); ecard_proc_init(); return 0; } subsys_initcall(ecard_init); /* * ECARD "bus" */ static const struct ecard_id * ecard_match_device(const struct ecard_id *ids, struct expansion_card *ec) { int i; for (i = 0; ids[i].manufacturer != 65535; i++) if (ec->cid.manufacturer == ids[i].manufacturer && ec->cid.product == ids[i].product) return ids + i; return NULL; } static int ecard_drv_probe(struct device *dev) { struct expansion_card *ec = ECARD_DEV(dev); struct ecard_driver *drv = ECARD_DRV(dev->driver); const struct ecard_id *id; int ret; id = ecard_match_device(drv->id_table, ec); ec->claimed = 1; ret = drv->probe(ec, id); if (ret) ec->claimed = 0; return ret; } static int ecard_drv_remove(struct device *dev) { struct expansion_card *ec = ECARD_DEV(dev); struct ecard_driver *drv = ECARD_DRV(dev->driver); drv->remove(ec); ec->claimed = 0; /* * Restore the default operations. We ensure that the * ops are set before we change the data. */ ec->ops = &ecard_default_ops; barrier(); ec->irq_data = NULL; return 0; } /* * Before rebooting, we must make sure that the expansion card is in a * sensible state, so it can be re-detected. This means that the first * page of the ROM must be visible. We call the expansion cards reset * handler, if any. */ static void ecard_drv_shutdown(struct device *dev) { struct expansion_card *ec = ECARD_DEV(dev); struct ecard_driver *drv = ECARD_DRV(dev->driver); struct ecard_request req; if (dev->driver) { if (drv->shutdown) drv->shutdown(ec); ec->claimed = 0; } /* * If this card has a loader, call the reset handler. */ if (ec->loader) { req.fn = ecard_task_reset; req.ec = ec; ecard_call(&req); } } int ecard_register_driver(struct ecard_driver *drv) { drv->drv.bus = &ecard_bus_type; return driver_register(&drv->drv); } void ecard_remove_driver(struct ecard_driver *drv) { driver_unregister(&drv->drv); } static int ecard_match(struct device *_dev, struct device_driver *_drv) { struct expansion_card *ec = ECARD_DEV(_dev); struct ecard_driver *drv = ECARD_DRV(_drv); int ret; if (drv->id_table) { ret = ecard_match_device(drv->id_table, ec) != NULL; } else { ret = ec->cid.id == drv->id; } return ret; } struct bus_type ecard_bus_type = { .name = "ecard", .dev_attrs = ecard_dev_attrs, .match = ecard_match, .probe = ecard_drv_probe, .remove = ecard_drv_remove, .shutdown = ecard_drv_shutdown, }; static int ecard_bus_init(void) { return bus_register(&ecard_bus_type); } postcore_initcall(ecard_bus_init); EXPORT_SYMBOL(ecard_readchunk); EXPORT_SYMBOL(ecard_register_driver); EXPORT_SYMBOL(ecard_remove_driver); EXPORT_SYMBOL(ecard_bus_type);