/* * linux/arch/m68k/mm/kmap.c * * Copyright (C) 1997 Roman Hodek * * 10/01/99 cleaned up the code and changing to the same interface * used by other architectures /Roman Zippel */ #include <linux/module.h> #include <linux/mm.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <asm/setup.h> #include <asm/segment.h> #include <asm/page.h> #include <asm/pgalloc.h> #include <asm/io.h> #include <asm/system.h> #undef DEBUG #define PTRTREESIZE (256*1024) /* * For 040/060 we can use the virtual memory area like other architectures, * but for 020/030 we want to use early termination page descriptor and we * can't mix this with normal page descriptors, so we have to copy that code * (mm/vmalloc.c) and return appriorate aligned addresses. */ #ifdef CPU_M68040_OR_M68060_ONLY #define IO_SIZE PAGE_SIZE static inline struct vm_struct *get_io_area(unsigned long size) { return get_vm_area(size, VM_IOREMAP); } static inline void free_io_area(void *addr) { vfree((void *)(PAGE_MASK & (unsigned long)addr)); } #else #define IO_SIZE (256*1024) static struct vm_struct *iolist; static struct vm_struct *get_io_area(unsigned long size) { unsigned long addr; struct vm_struct **p, *tmp, *area; area = kmalloc(sizeof(*area), GFP_KERNEL); if (!area) return NULL; addr = KMAP_START; for (p = &iolist; (tmp = *p) ; p = &tmp->next) { if (size + addr < (unsigned long)tmp->addr) break; if (addr > KMAP_END-size) return NULL; addr = tmp->size + (unsigned long)tmp->addr; } area->addr = (void *)addr; area->size = size + IO_SIZE; area->next = *p; *p = area; return area; } static inline void free_io_area(void *addr) { struct vm_struct **p, *tmp; if (!addr) return; addr = (void *)((unsigned long)addr & -IO_SIZE); for (p = &iolist ; (tmp = *p) ; p = &tmp->next) { if (tmp->addr == addr) { *p = tmp->next; __iounmap(tmp->addr, tmp->size); kfree(tmp); return; } } } #endif /* * Map some physical address range into the kernel address space. The * code is copied and adapted from map_chunk(). */ /* Rewritten by Andreas Schwab to remove all races. */ void __iomem *__ioremap(unsigned long physaddr, unsigned long size, int cacheflag) { struct vm_struct *area; unsigned long virtaddr, retaddr; long offset; pgd_t *pgd_dir; pmd_t *pmd_dir; pte_t *pte_dir; /* * Don't allow mappings that wrap.. */ if (!size || size > physaddr + size) return NULL; #ifdef CONFIG_AMIGA if (MACH_IS_AMIGA) { if ((physaddr >= 0x40000000) && (physaddr + size < 0x60000000) && (cacheflag == IOMAP_NOCACHE_SER)) return (void __iomem *)physaddr; } #endif #ifdef DEBUG printk("ioremap: 0x%lx,0x%lx(%d) - ", physaddr, size, cacheflag); #endif /* * Mappings have to be aligned */ offset = physaddr & (IO_SIZE - 1); physaddr &= -IO_SIZE; size = (size + offset + IO_SIZE - 1) & -IO_SIZE; /* * Ok, go for it.. */ area = get_io_area(size); if (!area) return NULL; virtaddr = (unsigned long)area->addr; retaddr = virtaddr + offset; #ifdef DEBUG printk("0x%lx,0x%lx,0x%lx", physaddr, virtaddr, retaddr); #endif /* * add cache and table flags to physical address */ if (CPU_IS_040_OR_060) { physaddr |= (_PAGE_PRESENT | _PAGE_GLOBAL040 | _PAGE_ACCESSED | _PAGE_DIRTY); switch (cacheflag) { case IOMAP_FULL_CACHING: physaddr |= _PAGE_CACHE040; break; case IOMAP_NOCACHE_SER: default: physaddr |= _PAGE_NOCACHE_S; break; case IOMAP_NOCACHE_NONSER: physaddr |= _PAGE_NOCACHE; break; case IOMAP_WRITETHROUGH: physaddr |= _PAGE_CACHE040W; break; } } else { physaddr |= (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_DIRTY); switch (cacheflag) { case IOMAP_NOCACHE_SER: case IOMAP_NOCACHE_NONSER: default: physaddr |= _PAGE_NOCACHE030; break; case IOMAP_FULL_CACHING: case IOMAP_WRITETHROUGH: break; } } while ((long)size > 0) { #ifdef DEBUG if (!(virtaddr & (PTRTREESIZE-1))) printk ("\npa=%#lx va=%#lx ", physaddr, virtaddr); #endif pgd_dir = pgd_offset_k(virtaddr); pmd_dir = pmd_alloc(&init_mm, pgd_dir, virtaddr); if (!pmd_dir) { printk("ioremap: no mem for pmd_dir\n"); return NULL; } if (CPU_IS_020_OR_030) { pmd_dir->pmd[(virtaddr/PTRTREESIZE) & 15] = physaddr; physaddr += PTRTREESIZE; virtaddr += PTRTREESIZE; size -= PTRTREESIZE; } else { pte_dir = pte_alloc_kernel(pmd_dir, virtaddr); if (!pte_dir) { printk("ioremap: no mem for pte_dir\n"); return NULL; } pte_val(*pte_dir) = physaddr; virtaddr += PAGE_SIZE; physaddr += PAGE_SIZE; size -= PAGE_SIZE; } } #ifdef DEBUG printk("\n"); #endif flush_tlb_all(); return (void __iomem *)retaddr; } EXPORT_SYMBOL(__ioremap); /* * Unmap a ioremap()ed region again */ void iounmap(void __iomem *addr) { #ifdef CONFIG_AMIGA if ((!MACH_IS_AMIGA) || (((unsigned long)addr < 0x40000000) || ((unsigned long)addr > 0x60000000))) free_io_area((__force void *)addr); #else free_io_area((__force void *)addr); #endif } EXPORT_SYMBOL(iounmap); /* * __iounmap unmaps nearly everything, so be careful * it doesn't free currently pointer/page tables anymore but it * wans't used anyway and might be added later. */ void __iounmap(void *addr, unsigned long size) { unsigned long virtaddr = (unsigned long)addr; pgd_t *pgd_dir; pmd_t *pmd_dir; pte_t *pte_dir; while ((long)size > 0) { pgd_dir = pgd_offset_k(virtaddr); if (pgd_bad(*pgd_dir)) { printk("iounmap: bad pgd(%08lx)\n", pgd_val(*pgd_dir)); pgd_clear(pgd_dir); return; } pmd_dir = pmd_offset(pgd_dir, virtaddr); if (CPU_IS_020_OR_030) { int pmd_off = (virtaddr/PTRTREESIZE) & 15; int pmd_type = pmd_dir->pmd[pmd_off] & _DESCTYPE_MASK; if (pmd_type == _PAGE_PRESENT) { pmd_dir->pmd[pmd_off] = 0; virtaddr += PTRTREESIZE; size -= PTRTREESIZE; continue; } else if (pmd_type == 0) continue; } if (pmd_bad(*pmd_dir)) { printk("iounmap: bad pmd (%08lx)\n", pmd_val(*pmd_dir)); pmd_clear(pmd_dir); return; } pte_dir = pte_offset_kernel(pmd_dir, virtaddr); pte_val(*pte_dir) = 0; virtaddr += PAGE_SIZE; size -= PAGE_SIZE; } flush_tlb_all(); } /* * Set new cache mode for some kernel address space. * The caller must push data for that range itself, if such data may already * be in the cache. */ void kernel_set_cachemode(void *addr, unsigned long size, int cmode) { unsigned long virtaddr = (unsigned long)addr; pgd_t *pgd_dir; pmd_t *pmd_dir; pte_t *pte_dir; if (CPU_IS_040_OR_060) { switch (cmode) { case IOMAP_FULL_CACHING: cmode = _PAGE_CACHE040; break; case IOMAP_NOCACHE_SER: default: cmode = _PAGE_NOCACHE_S; break; case IOMAP_NOCACHE_NONSER: cmode = _PAGE_NOCACHE; break; case IOMAP_WRITETHROUGH: cmode = _PAGE_CACHE040W; break; } } else { switch (cmode) { case IOMAP_NOCACHE_SER: case IOMAP_NOCACHE_NONSER: default: cmode = _PAGE_NOCACHE030; break; case IOMAP_FULL_CACHING: case IOMAP_WRITETHROUGH: cmode = 0; } } while ((long)size > 0) { pgd_dir = pgd_offset_k(virtaddr); if (pgd_bad(*pgd_dir)) { printk("iocachemode: bad pgd(%08lx)\n", pgd_val(*pgd_dir)); pgd_clear(pgd_dir); return; } pmd_dir = pmd_offset(pgd_dir, virtaddr); if (CPU_IS_020_OR_030) { int pmd_off = (virtaddr/PTRTREESIZE) & 15; if ((pmd_dir->pmd[pmd_off] & _DESCTYPE_MASK) == _PAGE_PRESENT) { pmd_dir->pmd[pmd_off] = (pmd_dir->pmd[pmd_off] & _CACHEMASK040) | cmode; virtaddr += PTRTREESIZE; size -= PTRTREESIZE; continue; } } if (pmd_bad(*pmd_dir)) { printk("iocachemode: bad pmd (%08lx)\n", pmd_val(*pmd_dir)); pmd_clear(pmd_dir); return; } pte_dir = pte_offset_kernel(pmd_dir, virtaddr); pte_val(*pte_dir) = (pte_val(*pte_dir) & _CACHEMASK040) | cmode; virtaddr += PAGE_SIZE; size -= PAGE_SIZE; } flush_tlb_all(); } EXPORT_SYMBOL(kernel_set_cachemode);