/* * IBM PPC4xx DMA engine core library * * Copyright 2000-2004 MontaVista Software Inc. * * Cleaned up and converted to new DCR access * Matt Porter <mporter@kernel.crashing.org> * * Original code by Armin Kuster <akuster@mvista.com> * and Pete Popov <ppopov@mvista.com> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/kernel.h> #include <linux/mm.h> #include <linux/miscdevice.h> #include <linux/init.h> #include <linux/module.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/ppc4xx_dma.h> ppc_dma_ch_t dma_channels[MAX_PPC4xx_DMA_CHANNELS]; int ppc4xx_get_dma_status(void) { return (mfdcr(DCRN_DMASR)); } void ppc4xx_set_src_addr(int dmanr, phys_addr_t src_addr) { if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("set_src_addr: bad channel: %d\n", dmanr); return; } #ifdef PPC4xx_DMA_64BIT mtdcr(DCRN_DMASAH0 + dmanr*2, (u32)(src_addr >> 32)); #else mtdcr(DCRN_DMASA0 + dmanr*2, (u32)src_addr); #endif } void ppc4xx_set_dst_addr(int dmanr, phys_addr_t dst_addr) { if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("set_dst_addr: bad channel: %d\n", dmanr); return; } #ifdef PPC4xx_DMA_64BIT mtdcr(DCRN_DMADAH0 + dmanr*2, (u32)(dst_addr >> 32)); #else mtdcr(DCRN_DMADA0 + dmanr*2, (u32)dst_addr); #endif } void ppc4xx_enable_dma(unsigned int dmanr) { unsigned int control; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; unsigned int status_bits[] = { DMA_CS0 | DMA_TS0 | DMA_CH0_ERR, DMA_CS1 | DMA_TS1 | DMA_CH1_ERR, DMA_CS2 | DMA_TS2 | DMA_CH2_ERR, DMA_CS3 | DMA_TS3 | DMA_CH3_ERR}; if (p_dma_ch->in_use) { printk("enable_dma: channel %d in use\n", dmanr); return; } if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("enable_dma: bad channel: %d\n", dmanr); return; } if (p_dma_ch->mode == DMA_MODE_READ) { /* peripheral to memory */ ppc4xx_set_src_addr(dmanr, 0); ppc4xx_set_dst_addr(dmanr, p_dma_ch->addr); } else if (p_dma_ch->mode == DMA_MODE_WRITE) { /* memory to peripheral */ ppc4xx_set_src_addr(dmanr, p_dma_ch->addr); ppc4xx_set_dst_addr(dmanr, 0); } /* for other xfer modes, the addresses are already set */ control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); control &= ~(DMA_TM_MASK | DMA_TD); /* clear all mode bits */ if (p_dma_ch->mode == DMA_MODE_MM) { /* software initiated memory to memory */ control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE; } mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); /* * Clear the CS, TS, RI bits for the channel from DMASR. This * has been observed to happen correctly only after the mode and * ETD/DCE bits in DMACRx are set above. Must do this before * enabling the channel. */ mtdcr(DCRN_DMASR, status_bits[dmanr]); /* * For device-paced transfers, Terminal Count Enable apparently * must be on, and this must be turned on after the mode, etc. * bits are cleared above (at least on Redwood-6). */ if ((p_dma_ch->mode == DMA_MODE_MM_DEVATDST) || (p_dma_ch->mode == DMA_MODE_MM_DEVATSRC)) control |= DMA_TCE_ENABLE; /* * Now enable the channel. */ control |= (p_dma_ch->mode | DMA_CE_ENABLE); mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); p_dma_ch->in_use = 1; } void ppc4xx_disable_dma(unsigned int dmanr) { unsigned int control; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; if (!p_dma_ch->in_use) { printk("disable_dma: channel %d not in use\n", dmanr); return; } if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("disable_dma: bad channel: %d\n", dmanr); return; } control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); control &= ~DMA_CE_ENABLE; mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); p_dma_ch->in_use = 0; } /* * Sets the dma mode for single DMA transfers only. * For scatter/gather transfers, the mode is passed to the * alloc_dma_handle() function as one of the parameters. * * The mode is simply saved and used later. This allows * the driver to call set_dma_mode() and set_dma_addr() in * any order. * * Valid mode values are: * * DMA_MODE_READ peripheral to memory * DMA_MODE_WRITE memory to peripheral * DMA_MODE_MM memory to memory * DMA_MODE_MM_DEVATSRC device-paced memory to memory, device at src * DMA_MODE_MM_DEVATDST device-paced memory to memory, device at dst */ int ppc4xx_set_dma_mode(unsigned int dmanr, unsigned int mode) { ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("set_dma_mode: bad channel 0x%x\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } p_dma_ch->mode = mode; return DMA_STATUS_GOOD; } /* * Sets the DMA Count register. Note that 'count' is in bytes. * However, the DMA Count register counts the number of "transfers", * where each transfer is equal to the bus width. Thus, count * MUST be a multiple of the bus width. */ void ppc4xx_set_dma_count(unsigned int dmanr, unsigned int count) { ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; #ifdef DEBUG_4xxDMA { int error = 0; switch (p_dma_ch->pwidth) { case PW_8: break; case PW_16: if (count & 0x1) error = 1; break; case PW_32: if (count & 0x3) error = 1; break; case PW_64: if (count & 0x7) error = 1; break; default: printk("set_dma_count: invalid bus width: 0x%x\n", p_dma_ch->pwidth); return; } if (error) printk ("Warning: set_dma_count count 0x%x bus width %d\n", count, p_dma_ch->pwidth); } #endif count = count >> p_dma_ch->shift; mtdcr(DCRN_DMACT0 + (dmanr * 0x8), count); } /* * Returns the number of bytes left to be transferred. * After a DMA transfer, this should return zero. * Reading this while a DMA transfer is still in progress will return * unpredictable results. */ int ppc4xx_get_dma_residue(unsigned int dmanr) { unsigned int count; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_get_dma_residue: bad channel 0x%x\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } count = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)); return (count << p_dma_ch->shift); } /* * Sets the DMA address for a memory to peripheral or peripheral * to memory transfer. The address is just saved in the channel * structure for now and used later in enable_dma(). */ void ppc4xx_set_dma_addr(unsigned int dmanr, phys_addr_t addr) { ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_set_dma_addr: bad channel: %d\n", dmanr); return; } #ifdef DEBUG_4xxDMA { int error = 0; switch (p_dma_ch->pwidth) { case PW_8: break; case PW_16: if ((unsigned) addr & 0x1) error = 1; break; case PW_32: if ((unsigned) addr & 0x3) error = 1; break; case PW_64: if ((unsigned) addr & 0x7) error = 1; break; default: printk("ppc4xx_set_dma_addr: invalid bus width: 0x%x\n", p_dma_ch->pwidth); return; } if (error) printk("Warning: ppc4xx_set_dma_addr addr 0x%x bus width %d\n", addr, p_dma_ch->pwidth); } #endif /* save dma address and program it later after we know the xfer mode */ p_dma_ch->addr = addr; } /* * Sets both DMA addresses for a memory to memory transfer. * For memory to peripheral or peripheral to memory transfers * the function set_dma_addr() should be used instead. */ void ppc4xx_set_dma_addr2(unsigned int dmanr, phys_addr_t src_dma_addr, phys_addr_t dst_dma_addr) { if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_set_dma_addr2: bad channel: %d\n", dmanr); return; } #ifdef DEBUG_4xxDMA { ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; int error = 0; switch (p_dma_ch->pwidth) { case PW_8: break; case PW_16: if (((unsigned) src_dma_addr & 0x1) || ((unsigned) dst_dma_addr & 0x1) ) error = 1; break; case PW_32: if (((unsigned) src_dma_addr & 0x3) || ((unsigned) dst_dma_addr & 0x3) ) error = 1; break; case PW_64: if (((unsigned) src_dma_addr & 0x7) || ((unsigned) dst_dma_addr & 0x7) ) error = 1; break; default: printk("ppc4xx_set_dma_addr2: invalid bus width: 0x%x\n", p_dma_ch->pwidth); return; } if (error) printk ("Warning: ppc4xx_set_dma_addr2 src 0x%x dst 0x%x bus width %d\n", src_dma_addr, dst_dma_addr, p_dma_ch->pwidth); } #endif ppc4xx_set_src_addr(dmanr, src_dma_addr); ppc4xx_set_dst_addr(dmanr, dst_dma_addr); } /* * Enables the channel interrupt. * * If performing a scatter/gatter transfer, this function * MUST be called before calling alloc_dma_handle() and building * the sgl list. Otherwise, interrupts will not be enabled, if * they were previously disabled. */ int ppc4xx_enable_dma_interrupt(unsigned int dmanr) { unsigned int control; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_enable_dma_interrupt: bad channel: %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } p_dma_ch->int_enable = 1; control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); control |= DMA_CIE_ENABLE; /* Channel Interrupt Enable */ mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); return DMA_STATUS_GOOD; } /* * Disables the channel interrupt. * * If performing a scatter/gatter transfer, this function * MUST be called before calling alloc_dma_handle() and building * the sgl list. Otherwise, interrupts will not be disabled, if * they were previously enabled. */ int ppc4xx_disable_dma_interrupt(unsigned int dmanr) { unsigned int control; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_disable_dma_interrupt: bad channel: %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } p_dma_ch->int_enable = 0; control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); control &= ~DMA_CIE_ENABLE; /* Channel Interrupt Enable */ mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); return DMA_STATUS_GOOD; } /* * Configures a DMA channel, including the peripheral bus width, if a * peripheral is attached to the channel, the polarity of the DMAReq and * DMAAck signals, etc. This information should really be setup by the boot * code, since most likely the configuration won't change dynamically. * If the kernel has to call this function, it's recommended that it's * called from platform specific init code. The driver should not need to * call this function. */ int ppc4xx_init_dma_channel(unsigned int dmanr, ppc_dma_ch_t * p_init) { unsigned int polarity; uint32_t control = 0; ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr]; DMA_MODE_READ = (unsigned long) DMA_TD; /* Peripheral to Memory */ DMA_MODE_WRITE = 0; /* Memory to Peripheral */ if (!p_init) { printk("ppc4xx_init_dma_channel: NULL p_init\n"); return DMA_STATUS_NULL_POINTER; } if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_init_dma_channel: bad channel %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } #if DCRN_POL > 0 polarity = mfdcr(DCRN_POL); #else polarity = 0; #endif /* Setup the control register based on the values passed to * us in p_init. Then, over-write the control register with this * new value. */ control |= SET_DMA_CONTROL; /* clear all polarity signals and then "or" in new signal levels */ polarity &= ~GET_DMA_POLARITY(dmanr); polarity |= p_init->polarity; #if DCRN_POL > 0 mtdcr(DCRN_POL, polarity); #endif mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); /* save these values in our dma channel structure */ memcpy(p_dma_ch, p_init, sizeof (ppc_dma_ch_t)); /* * The peripheral width values written in the control register are: * PW_8 0 * PW_16 1 * PW_32 2 * PW_64 3 * * Since the DMA count register takes the number of "transfers", * we need to divide the count sent to us in certain * functions by the appropriate number. It so happens that our * right shift value is equal to the peripheral width value. */ p_dma_ch->shift = p_init->pwidth; /* * Save the control word for easy access. */ p_dma_ch->control = control; mtdcr(DCRN_DMASR, 0xffffffff); /* clear status register */ return DMA_STATUS_GOOD; } /* * This function returns the channel configuration. */ int ppc4xx_get_channel_config(unsigned int dmanr, ppc_dma_ch_t * p_dma_ch) { unsigned int polarity; unsigned int control; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_get_channel_config: bad channel %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } memcpy(p_dma_ch, &dma_channels[dmanr], sizeof (ppc_dma_ch_t)); #if DCRN_POL > 0 polarity = mfdcr(DCRN_POL); #else polarity = 0; #endif p_dma_ch->polarity = polarity & GET_DMA_POLARITY(dmanr); control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); p_dma_ch->cp = GET_DMA_PRIORITY(control); p_dma_ch->pwidth = GET_DMA_PW(control); p_dma_ch->psc = GET_DMA_PSC(control); p_dma_ch->pwc = GET_DMA_PWC(control); p_dma_ch->phc = GET_DMA_PHC(control); p_dma_ch->ce = GET_DMA_CE_ENABLE(control); p_dma_ch->int_enable = GET_DMA_CIE_ENABLE(control); p_dma_ch->shift = GET_DMA_PW(control); #ifdef CONFIG_PPC4xx_EDMA p_dma_ch->pf = GET_DMA_PREFETCH(control); #else p_dma_ch->ch_enable = GET_DMA_CH(control); p_dma_ch->ece_enable = GET_DMA_ECE(control); p_dma_ch->tcd_disable = GET_DMA_TCD(control); #endif return DMA_STATUS_GOOD; } /* * Sets the priority for the DMA channel dmanr. * Since this is setup by the hardware init function, this function * can be used to dynamically change the priority of a channel. * * Acceptable priorities: * * PRIORITY_LOW * PRIORITY_MID_LOW * PRIORITY_MID_HIGH * PRIORITY_HIGH * */ int ppc4xx_set_channel_priority(unsigned int dmanr, unsigned int priority) { unsigned int control; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_set_channel_priority: bad channel %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } if ((priority != PRIORITY_LOW) && (priority != PRIORITY_MID_LOW) && (priority != PRIORITY_MID_HIGH) && (priority != PRIORITY_HIGH)) { printk("ppc4xx_set_channel_priority: bad priority: 0x%x\n", priority); } control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); control |= SET_DMA_PRIORITY(priority); mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control); return DMA_STATUS_GOOD; } /* * Returns the width of the peripheral attached to this channel. This assumes * that someone who knows the hardware configuration, boot code or some other * init code, already set the width. * * The return value is one of: * PW_8 * PW_16 * PW_32 * PW_64 * * The function returns 0 on error. */ unsigned int ppc4xx_get_peripheral_width(unsigned int dmanr) { unsigned int control; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk("ppc4xx_get_peripheral_width: bad channel %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8)); return (GET_DMA_PW(control)); } /* * Clears the channel status bits */ int ppc4xx_clr_dma_status(unsigned int dmanr) { if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk(KERN_ERR "ppc4xx_clr_dma_status: bad channel: %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } mtdcr(DCRN_DMASR, ((u32)DMA_CH0_ERR | (u32)DMA_CS0 | (u32)DMA_TS0) >> dmanr); return DMA_STATUS_GOOD; } #ifdef CONFIG_PPC4xx_EDMA /* * Enables the burst on the channel (BTEN bit in the control/count register) * Note: * For scatter/gather dma, this function MUST be called before the * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the * sgl list and used as each sgl element is added. */ int ppc4xx_enable_burst(unsigned int dmanr) { unsigned int ctc; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk(KERN_ERR "ppc4xx_enable_burst: bad channel: %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) | DMA_CTC_BTEN; mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); return DMA_STATUS_GOOD; } /* * Disables the burst on the channel (BTEN bit in the control/count register) * Note: * For scatter/gather dma, this function MUST be called before the * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the * sgl list and used as each sgl element is added. */ int ppc4xx_disable_burst(unsigned int dmanr) { unsigned int ctc; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk(KERN_ERR "ppc4xx_disable_burst: bad channel: %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) &~ DMA_CTC_BTEN; mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); return DMA_STATUS_GOOD; } /* * Sets the burst size (number of peripheral widths) for the channel * (BSIZ bits in the control/count register)) * must be one of: * DMA_CTC_BSIZ_2 * DMA_CTC_BSIZ_4 * DMA_CTC_BSIZ_8 * DMA_CTC_BSIZ_16 * Note: * For scatter/gather dma, this function MUST be called before the * ppc4xx_alloc_dma_handle() func as the chan count register is copied into the * sgl list and used as each sgl element is added. */ int ppc4xx_set_burst_size(unsigned int dmanr, unsigned int bsize) { unsigned int ctc; if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) { printk(KERN_ERR "ppc4xx_set_burst_size: bad channel: %d\n", dmanr); return DMA_STATUS_BAD_CHANNEL; } ctc = mfdcr(DCRN_DMACT0 + (dmanr * 0x8)) &~ DMA_CTC_BSIZ_MSK; ctc |= (bsize & DMA_CTC_BSIZ_MSK); mtdcr(DCRN_DMACT0 + (dmanr * 0x8), ctc); return DMA_STATUS_GOOD; } EXPORT_SYMBOL(ppc4xx_enable_burst); EXPORT_SYMBOL(ppc4xx_disable_burst); EXPORT_SYMBOL(ppc4xx_set_burst_size); #endif /* CONFIG_PPC4xx_EDMA */ EXPORT_SYMBOL(ppc4xx_init_dma_channel); EXPORT_SYMBOL(ppc4xx_get_channel_config); EXPORT_SYMBOL(ppc4xx_set_channel_priority); EXPORT_SYMBOL(ppc4xx_get_peripheral_width); EXPORT_SYMBOL(dma_channels); EXPORT_SYMBOL(ppc4xx_set_src_addr); EXPORT_SYMBOL(ppc4xx_set_dst_addr); EXPORT_SYMBOL(ppc4xx_set_dma_addr); EXPORT_SYMBOL(ppc4xx_set_dma_addr2); EXPORT_SYMBOL(ppc4xx_enable_dma); EXPORT_SYMBOL(ppc4xx_disable_dma); EXPORT_SYMBOL(ppc4xx_set_dma_mode); EXPORT_SYMBOL(ppc4xx_set_dma_count); EXPORT_SYMBOL(ppc4xx_get_dma_residue); EXPORT_SYMBOL(ppc4xx_enable_dma_interrupt); EXPORT_SYMBOL(ppc4xx_disable_dma_interrupt); EXPORT_SYMBOL(ppc4xx_get_dma_status); EXPORT_SYMBOL(ppc4xx_clr_dma_status);