diff options
Diffstat (limited to 'drivers/net/wireless/ath9k/rc.c')
-rw-r--r-- | drivers/net/wireless/ath9k/rc.c | 2126 |
1 files changed, 2126 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath9k/rc.c b/drivers/net/wireless/ath9k/rc.c new file mode 100644 index 0000000..73c460a --- /dev/null +++ b/drivers/net/wireless/ath9k/rc.c @@ -0,0 +1,2126 @@ +/* + * Copyright (c) 2004 Video54 Technologies, Inc. + * Copyright (c) 2004-2008 Atheros Communications, Inc. + * + * Permission to use, copy, modify, and/or distribute this software for any + * purpose with or without fee is hereby granted, provided that the above + * copyright notice and this permission notice appear in all copies. + * + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. + */ + +/* + * Atheros rate control algorithm + */ + +#include "core.h" +#include "../net/mac80211/rate.h" + +static u32 tx_triglevel_max; + +static struct ath_rate_table ar5416_11na_ratetable = { + 42, + { + { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ + 5400, 0x0b, 0x00, 12, + 0, 2, 1, 0, 0, 0, 0, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ + 7800, 0x0f, 0x00, 18, + 0, 3, 1, 1, 1, 1, 1, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ + 10000, 0x0a, 0x00, 24, + 2, 4, 2, 2, 2, 2, 2, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ + 13900, 0x0e, 0x00, 36, + 2, 6, 2, 3, 3, 3, 3, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ + 17300, 0x09, 0x00, 48, + 4, 10, 3, 4, 4, 4, 4, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ + 23000, 0x0d, 0x00, 72, + 4, 14, 3, 5, 5, 5, 5, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ + 27400, 0x08, 0x00, 96, + 4, 20, 3, 6, 6, 6, 6, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ + 29300, 0x0c, 0x00, 108, + 4, 23, 3, 7, 7, 7, 7, 0 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ + 6400, 0x80, 0x00, 0, + 0, 2, 3, 8, 24, 8, 24, 3216 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ + 12700, 0x81, 0x00, 1, + 2, 4, 3, 9, 25, 9, 25, 6434 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ + 18800, 0x82, 0x00, 2, + 2, 6, 3, 10, 26, 10, 26, 9650 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ + 25000, 0x83, 0x00, 3, + 4, 10, 3, 11, 27, 11, 27, 12868 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ + 36700, 0x84, 0x00, 4, + 4, 14, 3, 12, 28, 12, 28, 19304 }, + { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ + 48100, 0x85, 0x00, 5, + 4, 20, 3, 13, 29, 13, 29, 25740 }, + { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ + 53500, 0x86, 0x00, 6, + 4, 23, 3, 14, 30, 14, 30, 28956 }, + { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ + 59000, 0x87, 0x00, 7, + 4, 25, 3, 15, 31, 15, 32, 32180 }, + { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ + 12700, 0x88, 0x00, + 8, 0, 2, 3, 16, 33, 16, 33, 6430 }, + { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ + 24800, 0x89, 0x00, 9, + 2, 4, 3, 17, 34, 17, 34, 12860 }, + { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ + 36600, 0x8a, 0x00, 10, + 2, 6, 3, 18, 35, 18, 35, 19300 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ + 48100, 0x8b, 0x00, 11, + 4, 10, 3, 19, 36, 19, 36, 25736 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ + 69500, 0x8c, 0x00, 12, + 4, 14, 3, 20, 37, 20, 37, 38600 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ + 89500, 0x8d, 0x00, 13, + 4, 20, 3, 21, 38, 21, 38, 51472 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ + 98900, 0x8e, 0x00, 14, + 4, 23, 3, 22, 39, 22, 39, 57890 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ + 108300, 0x8f, 0x00, 15, + 4, 25, 3, 23, 40, 23, 41, 64320 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ + 13200, 0x80, 0x00, 0, + 0, 2, 3, 8, 24, 24, 24, 6684 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ + 25900, 0x81, 0x00, 1, + 2, 4, 3, 9, 25, 25, 25, 13368 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ + 38600, 0x82, 0x00, 2, + 2, 6, 3, 10, 26, 26, 26, 20052 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ + 49800, 0x83, 0x00, 3, + 4, 10, 3, 11, 27, 27, 27, 26738 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ + 72200, 0x84, 0x00, 4, + 4, 14, 3, 12, 28, 28, 28, 40104 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ + 92900, 0x85, 0x00, 5, + 4, 20, 3, 13, 29, 29, 29, 53476 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ + 102700, 0x86, 0x00, 6, + 4, 23, 3, 14, 30, 30, 30, 60156 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ + 112000, 0x87, 0x00, 7, + 4, 25, 3, 15, 31, 32, 32, 66840 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ + 122000, 0x87, 0x00, 7, + 4, 25, 3, 15, 31, 32, 32, 74200 }, + { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ + 25800, 0x88, 0x00, 8, + 0, 2, 3, 16, 33, 33, 33, 13360 }, + { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ + 49800, 0x89, 0x00, 9, + 2, 4, 3, 17, 34, 34, 34, 26720 }, + { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ + 71900, 0x8a, 0x00, 10, + 2, 6, 3, 18, 35, 35, 35, 40080 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ + 92500, 0x8b, 0x00, 11, + 4, 10, 3, 19, 36, 36, 36, 53440 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ + 130300, 0x8c, 0x00, 12, + 4, 14, 3, 20, 37, 37, 37, 80160 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ + 162800, 0x8d, 0x00, 13, + 4, 20, 3, 21, 38, 38, 38, 106880 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ + 178200, 0x8e, 0x00, 14, + 4, 23, 3, 22, 39, 39, 39, 120240 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ + 192100, 0x8f, 0x00, 15, + 4, 25, 3, 23, 40, 41, 41, 133600 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ + 207000, 0x8f, 0x00, 15, + 4, 25, 3, 23, 40, 41, 41, 148400 }, + }, + 50, /* probe interval */ + 50, /* rssi reduce interval */ + WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ +}; + +/* TRUE_ALL - valid for 20/40/Legacy, + * TRUE - Legacy only, + * TRUE_20 - HT 20 only, + * TRUE_40 - HT 40 only */ + +/* 4ms frame limit not used for NG mode. The values filled + * for HT are the 64K max aggregate limit */ + +static struct ath_rate_table ar5416_11ng_ratetable = { + 46, + { + { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */ + 900, 0x1b, 0x00, 2, + 0, 0, 1, 0, 0, 0, 0, 0 }, + { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */ + 1900, 0x1a, 0x04, 4, + 1, 1, 1, 1, 1, 1, 1, 0 }, + { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ + 4900, 0x19, 0x04, 11, + 2, 2, 2, 2, 2, 2, 2, 0 }, + { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */ + 8100, 0x18, 0x04, 22, + 3, 3, 2, 3, 3, 3, 3, 0 }, + { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ + 5400, 0x0b, 0x00, 12, + 4, 2, 1, 4, 4, 4, 4, 0 }, + { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ + 7800, 0x0f, 0x00, 18, + 4, 3, 1, 5, 5, 5, 5, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ + 10100, 0x0a, 0x00, 24, + 6, 4, 1, 6, 6, 6, 6, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ + 14100, 0x0e, 0x00, 36, + 6, 6, 2, 7, 7, 7, 7, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ + 17700, 0x09, 0x00, 48, + 8, 10, 3, 8, 8, 8, 8, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ + 23700, 0x0d, 0x00, 72, + 8, 14, 3, 9, 9, 9, 9, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ + 27400, 0x08, 0x00, 96, + 8, 20, 3, 10, 10, 10, 10, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ + 30900, 0x0c, 0x00, 108, + 8, 23, 3, 11, 11, 11, 11, 0 }, + { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */ + 6400, 0x80, 0x00, 0, + 4, 2, 3, 12, 28, 12, 28, 3216 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */ + 12700, 0x81, 0x00, 1, + 6, 4, 3, 13, 29, 13, 29, 6434 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */ + 18800, 0x82, 0x00, 2, + 6, 6, 3, 14, 30, 14, 30, 9650 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */ + 25000, 0x83, 0x00, 3, + 8, 10, 3, 15, 31, 15, 31, 12868 }, + { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */ + 36700, 0x84, 0x00, 4, + 8, 14, 3, 16, 32, 16, 32, 19304 }, + { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */ + 48100, 0x85, 0x00, 5, + 8, 20, 3, 17, 33, 17, 33, 25740 }, + { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */ + 53500, 0x86, 0x00, 6, + 8, 23, 3, 18, 34, 18, 34, 28956 }, + { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */ + 59000, 0x87, 0x00, 7, + 8, 25, 3, 19, 35, 19, 36, 32180 }, + { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */ + 12700, 0x88, 0x00, 8, + 4, 2, 3, 20, 37, 20, 37, 6430 }, + { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */ + 24800, 0x89, 0x00, 9, + 6, 4, 3, 21, 38, 21, 38, 12860 }, + { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */ + 36600, 0x8a, 0x00, 10, + 6, 6, 3, 22, 39, 22, 39, 19300 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */ + 48100, 0x8b, 0x00, 11, + 8, 10, 3, 23, 40, 23, 40, 25736 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */ + 69500, 0x8c, 0x00, 12, + 8, 14, 3, 24, 41, 24, 41, 38600 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */ + 89500, 0x8d, 0x00, 13, + 8, 20, 3, 25, 42, 25, 42, 51472 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */ + 98900, 0x8e, 0x00, 14, + 8, 23, 3, 26, 43, 26, 44, 57890 }, + { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */ + 108300, 0x8f, 0x00, 15, + 8, 25, 3, 27, 44, 27, 45, 64320 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */ + 13200, 0x80, 0x00, 0, + 8, 2, 3, 12, 28, 28, 28, 6684 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */ + 25900, 0x81, 0x00, 1, + 8, 4, 3, 13, 29, 29, 29, 13368 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */ + 38600, 0x82, 0x00, 2, + 8, 6, 3, 14, 30, 30, 30, 20052 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */ + 49800, 0x83, 0x00, 3, + 8, 10, 3, 15, 31, 31, 31, 26738 }, + { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */ + 72200, 0x84, 0x00, 4, + 8, 14, 3, 16, 32, 32, 32, 40104 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */ + 92900, 0x85, 0x00, 5, + 8, 20, 3, 17, 33, 33, 33, 53476 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */ + 102700, 0x86, 0x00, 6, + 8, 23, 3, 18, 34, 34, 34, 60156 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */ + 112000, 0x87, 0x00, 7, + 8, 23, 3, 19, 35, 36, 36, 66840 }, + { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */ + 122000, 0x87, 0x00, 7, + 8, 25, 3, 19, 35, 36, 36, 74200 }, + { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */ + 25800, 0x88, 0x00, 8, + 8, 2, 3, 20, 37, 37, 37, 13360 }, + { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */ + 49800, 0x89, 0x00, 9, + 8, 4, 3, 21, 38, 38, 38, 26720 }, + { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */ + 71900, 0x8a, 0x00, 10, + 8, 6, 3, 22, 39, 39, 39, 40080 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */ + 92500, 0x8b, 0x00, 11, + 8, 10, 3, 23, 40, 40, 40, 53440 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */ + 130300, 0x8c, 0x00, 12, + 8, 14, 3, 24, 41, 41, 41, 80160 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */ + 162800, 0x8d, 0x00, 13, + 8, 20, 3, 25, 42, 42, 42, 106880 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */ + 178200, 0x8e, 0x00, 14, + 8, 23, 3, 26, 43, 43, 43, 120240 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */ + 192100, 0x8f, 0x00, 15, + 8, 23, 3, 27, 44, 45, 45, 133600 }, + { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */ + 207000, 0x8f, 0x00, 15, + 8, 25, 3, 27, 44, 45, 45, 148400 }, + }, + 50, /* probe interval */ + 50, /* rssi reduce interval */ + WLAN_RC_HT_FLAG, /* Phy rates allowed initially */ +}; + +static struct ath_rate_table ar5416_11a_ratetable = { + 8, + { + { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ + 5400, 0x0b, 0x00, (0x80|12), + 0, 2, 1, 0, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ + 7800, 0x0f, 0x00, 18, + 0, 3, 1, 1, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ + 10000, 0x0a, 0x00, (0x80|24), + 2, 4, 2, 2, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ + 13900, 0x0e, 0x00, 36, + 2, 6, 2, 3, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ + 17300, 0x09, 0x00, (0x80|48), + 4, 10, 3, 4, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ + 23000, 0x0d, 0x00, 72, + 4, 14, 3, 5, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ + 27400, 0x08, 0x00, 96, + 4, 19, 3, 6, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ + 29300, 0x0c, 0x00, 108, + 4, 23, 3, 7, 0 }, + }, + 50, /* probe interval */ + 50, /* rssi reduce interval */ + 0, /* Phy rates allowed initially */ +}; + +static struct ath_rate_table ar5416_11a_ratetable_Half = { + 8, + { + { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */ + 2700, 0x0b, 0x00, (0x80|6), + 0, 2, 1, 0, 0}, + { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */ + 3900, 0x0f, 0x00, 9, + 0, 3, 1, 1, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */ + 5000, 0x0a, 0x00, (0x80|12), + 2, 4, 2, 2, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */ + 6950, 0x0e, 0x00, 18, + 2, 6, 2, 3, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */ + 8650, 0x09, 0x00, (0x80|24), + 4, 10, 3, 4, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */ + 11500, 0x0d, 0x00, 36, + 4, 14, 3, 5, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */ + 13700, 0x08, 0x00, 48, + 4, 19, 3, 6, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */ + 14650, 0x0c, 0x00, 54, + 4, 23, 3, 7, 0 }, + }, + 50, /* probe interval */ + 50, /* rssi reduce interval */ + 0, /* Phy rates allowed initially */ +}; + +static struct ath_rate_table ar5416_11a_ratetable_Quarter = { + 8, + { + { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */ + 1350, 0x0b, 0x00, (0x80|3), + 0, 2, 1, 0, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */ + 1950, 0x0f, 0x00, 4, + 0, 3, 1, 1, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */ + 2500, 0x0a, 0x00, (0x80|6), + 2, 4, 2, 2, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */ + 3475, 0x0e, 0x00, 9, + 2, 6, 2, 3, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */ + 4325, 0x09, 0x00, (0x80|12), + 4, 10, 3, 4, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */ + 5750, 0x0d, 0x00, 18, + 4, 14, 3, 5, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */ + 6850, 0x08, 0x00, 24, + 4, 19, 3, 6, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */ + 7325, 0x0c, 0x00, 27, + 4, 23, 3, 7, 0 }, + }, + 50, /* probe interval */ + 50, /* rssi reduce interval */ + 0, /* Phy rates allowed initially */ +}; + +static struct ath_rate_table ar5416_11g_ratetable = { + 12, + { + { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ + 900, 0x1b, 0x00, 2, + 0, 0, 1, 0, 0 }, + { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ + 1900, 0x1a, 0x04, 4, + 1, 1, 1, 1, 0 }, + { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ + 4900, 0x19, 0x04, 11, + 2, 2, 2, 2, 0 }, + { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ + 8100, 0x18, 0x04, 22, + 3, 3, 2, 3, 0 }, + { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */ + 5400, 0x0b, 0x00, 12, + 4, 2, 1, 4, 0 }, + { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */ + 7800, 0x0f, 0x00, 18, + 4, 3, 1, 5, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */ + 10000, 0x0a, 0x00, 24, + 6, 4, 1, 6, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */ + 13900, 0x0e, 0x00, 36, + 6, 6, 2, 7, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */ + 17300, 0x09, 0x00, 48, + 8, 10, 3, 8, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */ + 23000, 0x0d, 0x00, 72, + 8, 14, 3, 9, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */ + 27400, 0x08, 0x00, 96, + 8, 19, 3, 10, 0 }, + { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */ + 29300, 0x0c, 0x00, 108, + 8, 23, 3, 11, 0 }, + }, + 50, /* probe interval */ + 50, /* rssi reduce interval */ + 0, /* Phy rates allowed initially */ +}; + +static struct ath_rate_table ar5416_11b_ratetable = { + 4, + { + { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */ + 900, 0x1b, 0x00, (0x80|2), + 0, 0, 1, 0, 0 }, + { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */ + 1800, 0x1a, 0x04, (0x80|4), + 1, 1, 1, 1, 0 }, + { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */ + 4300, 0x19, 0x04, (0x80|11), + 1, 2, 2, 2, 0 }, + { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */ + 7100, 0x18, 0x04, (0x80|22), + 1, 4, 100, 3, 0 }, + }, + 100, /* probe interval */ + 100, /* rssi reduce interval */ + 0, /* Phy rates allowed initially */ +}; + +static void ar5416_attach_ratetables(struct ath_rate_softc *sc) +{ + /* + * Attach rate tables. + */ + sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable; + sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; + sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable; + + sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable; + sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable; + sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] = + &ar5416_11na_ratetable; + sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] = + &ar5416_11na_ratetable; + sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] = + &ar5416_11ng_ratetable; + sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] = + &ar5416_11ng_ratetable; +} + +static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc) +{ + sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter; + return; +} + +static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc) +{ + sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half; + return; +} + +static void ar5416_setfull_ratetable(struct ath_rate_softc *sc) +{ + sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable; + return; +} + +/* + * Return the median of three numbers + */ +static inline int8_t median(int8_t a, int8_t b, int8_t c) +{ + if (a >= b) { + if (b >= c) + return b; + else if (a > c) + return c; + else + return a; + } else { + if (a >= c) + return a; + else if (b >= c) + return c; + else + return b; + } +} + +static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table, + struct ath_tx_ratectrl *rate_ctrl) +{ + u8 i, j, idx, idx_next; + + for (i = rate_ctrl->max_valid_rate - 1; i > 0; i--) { + for (j = 0; j <= i-1; j++) { + idx = rate_ctrl->valid_rate_index[j]; + idx_next = rate_ctrl->valid_rate_index[j+1]; + + if (rate_table->info[idx].ratekbps > + rate_table->info[idx_next].ratekbps) { + rate_ctrl->valid_rate_index[j] = idx_next; + rate_ctrl->valid_rate_index[j+1] = idx; + } + } + } +} + +/* Access functions for valid_txrate_mask */ + +static void ath_rc_init_valid_txmask(struct ath_tx_ratectrl *rate_ctrl) +{ + u8 i; + + for (i = 0; i < rate_ctrl->rate_table_size; i++) + rate_ctrl->valid_rate_index[i] = FALSE; +} + +static inline void ath_rc_set_valid_txmask(struct ath_tx_ratectrl *rate_ctrl, + u8 index, int valid_tx_rate) +{ + ASSERT(index <= rate_ctrl->rate_table_size); + rate_ctrl->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE; +} + +static inline int ath_rc_isvalid_txmask(struct ath_tx_ratectrl *rate_ctrl, + u8 index) +{ + ASSERT(index <= rate_ctrl->rate_table_size); + return rate_ctrl->valid_rate_index[index]; +} + +/* Iterators for valid_txrate_mask */ +static inline int +ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table, + struct ath_tx_ratectrl *rate_ctrl, + u8 cur_valid_txrate, + u8 *next_idx) +{ + u8 i; + + for (i = 0; i < rate_ctrl->max_valid_rate - 1; i++) { + if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { + *next_idx = rate_ctrl->valid_rate_index[i+1]; + return TRUE; + } + } + + /* No more valid rates */ + *next_idx = 0; + return FALSE; +} + +/* Return true only for single stream */ + +static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw) +{ + if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG)) + return FALSE; + if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG)) + return FALSE; + if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG)) + return FALSE; + if (!ignore_cw && WLAN_RC_PHY_HT(phy)) + if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG)) + return FALSE; + if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG)) + return FALSE; + return TRUE; +} + +static inline int +ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table, + struct ath_tx_ratectrl *rate_ctrl, + u8 cur_valid_txrate, u8 *next_idx) +{ + int8_t i; + + for (i = 1; i < rate_ctrl->max_valid_rate ; i++) { + if (rate_ctrl->valid_rate_index[i] == cur_valid_txrate) { + *next_idx = rate_ctrl->valid_rate_index[i-1]; + return TRUE; + } + } + return FALSE; +} + +/* + * Initialize the Valid Rate Index from valid entries in Rate Table + */ +static u8 +ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv, + const struct ath_rate_table *rate_table, + u32 capflag) +{ + struct ath_tx_ratectrl *rate_ctrl; + u8 i, hi = 0; + u32 valid; + + rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); + for (i = 0; i < rate_table->rate_cnt; i++) { + valid = (ath_rc_priv->single_stream ? + rate_table->info[i].valid_single_stream : + rate_table->info[i].valid); + if (valid == TRUE) { + u32 phy = rate_table->info[i].phy; + u8 valid_rate_count = 0; + + if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) + continue; + + valid_rate_count = rate_ctrl->valid_phy_ratecnt[phy]; + + rate_ctrl->valid_phy_rateidx[phy][valid_rate_count] = i; + rate_ctrl->valid_phy_ratecnt[phy] += 1; + ath_rc_set_valid_txmask(rate_ctrl, i, TRUE); + hi = A_MAX(hi, i); + } + } + return hi; +} + +/* + * Initialize the Valid Rate Index from Rate Set + */ +static u8 +ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv, + const struct ath_rate_table *rate_table, + struct ath_rateset *rateset, + u32 capflag) +{ + /* XXX: Clean me up and make identation friendly */ + u8 i, j, hi = 0; + struct ath_tx_ratectrl *rate_ctrl = + (struct ath_tx_ratectrl *)(ath_rc_priv); + + /* Use intersection of working rates and valid rates */ + for (i = 0; i < rateset->rs_nrates; i++) { + for (j = 0; j < rate_table->rate_cnt; j++) { + u32 phy = rate_table->info[j].phy; + u32 valid = (ath_rc_priv->single_stream ? + rate_table->info[j].valid_single_stream : + rate_table->info[j].valid); + + /* We allow a rate only if its valid and the + * capflag matches one of the validity + * (TRUE/TRUE_20/TRUE_40) flags */ + + /* XXX: catch the negative of this branch + * first and then continue */ + if (((rateset->rs_rates[i] & 0x7F) == + (rate_table->info[j].dot11rate & 0x7F)) && + ((valid & WLAN_RC_CAP_MODE(capflag)) == + WLAN_RC_CAP_MODE(capflag)) && + !WLAN_RC_PHY_HT(phy)) { + + u8 valid_rate_count = 0; + + if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) + continue; + + valid_rate_count = + rate_ctrl->valid_phy_ratecnt[phy]; + + rate_ctrl->valid_phy_rateidx[phy] + [valid_rate_count] = j; + rate_ctrl->valid_phy_ratecnt[phy] += 1; + ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); + hi = A_MAX(hi, j); + } + } + } + return hi; +} + +static u8 +ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv, + const struct ath_rate_table *rate_table, + u8 *mcs_set, u32 capflag) +{ + u8 i, j, hi = 0; + struct ath_tx_ratectrl *rate_ctrl = + (struct ath_tx_ratectrl *)(ath_rc_priv); + + /* Use intersection of working rates and valid rates */ + for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) { + for (j = 0; j < rate_table->rate_cnt; j++) { + u32 phy = rate_table->info[j].phy; + u32 valid = (ath_rc_priv->single_stream ? + rate_table->info[j].valid_single_stream : + rate_table->info[j].valid); + + if (((((struct ath_rateset *) + mcs_set)->rs_rates[i] & 0x7F) != + (rate_table->info[j].dot11rate & 0x7F)) || + !WLAN_RC_PHY_HT(phy) || + !WLAN_RC_PHY_HT_VALID(valid, capflag)) + continue; + + if (!ath_rc_valid_phyrate(phy, capflag, FALSE)) + continue; + + rate_ctrl->valid_phy_rateidx[phy] + [rate_ctrl->valid_phy_ratecnt[phy]] = j; + rate_ctrl->valid_phy_ratecnt[phy] += 1; + ath_rc_set_valid_txmask(rate_ctrl, j, TRUE); + hi = A_MAX(hi, j); + } + } + return hi; +} + +/* + * Attach to a device instance. Setup the public definition + * of how much per-node space we need and setup the private + * phy tables that have rate control parameters. + */ +struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah) +{ + struct ath_rate_softc *asc; + + /* we are only in user context so we can sleep for memory */ + asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL); + if (asc == NULL) + return NULL; + + ar5416_attach_ratetables(asc); + + /* Save Maximum TX Trigger Level (used for 11n) */ + tx_triglevel_max = ah->ah_caps.tx_triglevel_max; + /* return alias for ath_rate_softc * */ + return asc; +} + +static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp, + struct ath_rate_softc *rsc, + gfp_t gfp) +{ + struct ath_rate_node *anode; + + anode = kzalloc(sizeof(struct ath_rate_node), gfp); + if (anode == NULL) + return NULL; + + anode->avp = avp; + anode->asc = rsc; + avp->rc_node = anode; + + return anode; +} + +static void ath_rate_node_free(struct ath_rate_node *anode) +{ + if (anode != NULL) + kfree(anode); +} + +void ath_rate_detach(struct ath_rate_softc *asc) +{ + if (asc != NULL) + kfree(asc); +} + +u8 ath_rate_findrateix(struct ath_softc *sc, + u8 dot11rate) +{ + const struct ath_rate_table *ratetable; + struct ath_rate_softc *rsc = sc->sc_rc; + int i; + + ratetable = rsc->hw_rate_table[sc->sc_curmode]; + + if (WARN_ON(!ratetable)) + return 0; + + for (i = 0; i < ratetable->rate_cnt; i++) { + if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f)) + return i; + } + + return 0; +} + +/* + * Update rate-control state on a device state change. When + * operating as a station this includes associate/reassociate + * with an AP. Otherwise this gets called, for example, when + * the we transition to run state when operating as an AP. + */ +void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp) +{ + struct ath_rate_softc *asc = sc->sc_rc; + + /* For half and quarter rate channles use different + * rate tables + */ + if (sc->sc_curchan.channelFlags & CHANNEL_HALF) + ar5416_sethalf_ratetable(asc); + else if (sc->sc_curchan.channelFlags & CHANNEL_QUARTER) + ar5416_setquarter_ratetable(asc); + else /* full rate */ + ar5416_setfull_ratetable(asc); + + if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) { + asc->fixedrix = + sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff]; + /* NB: check the fixed rate exists */ + if (asc->fixedrix == 0xff) + asc->fixedrix = IEEE80211_FIXED_RATE_NONE; + } else { + asc->fixedrix = IEEE80211_FIXED_RATE_NONE; + } +} + +static u8 ath_rc_ratefind_ht(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + const struct ath_rate_table *rate_table, + int probe_allowed, int *is_probing, + int is_retry) +{ + u32 dt, best_thruput, this_thruput, now_msec; + u8 rate, next_rate, best_rate, maxindex, minindex; + int8_t rssi_last, rssi_reduce = 0, index = 0; + struct ath_tx_ratectrl *rate_ctrl = NULL; + + rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv ? + (ath_rc_priv) : NULL); + + *is_probing = FALSE; + + rssi_last = median(rate_ctrl->rssi_last, + rate_ctrl->rssi_last_prev, + rate_ctrl->rssi_last_prev2); + + /* + * Age (reduce) last ack rssi based on how old it is. + * The bizarre numbers are so the delta is 160msec, + * meaning we divide by 16. + * 0msec <= dt <= 25msec: don't derate + * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB + * 185msec <= dt: derate by 10dB + */ + + now_msec = jiffies_to_msecs(jiffies); + dt = now_msec - rate_ctrl->rssi_time; + + if (dt >= 185) + rssi_reduce = 10; + else if (dt >= 25) + rssi_reduce = (u8)((dt - 25) >> 4); + + /* Now reduce rssi_last by rssi_reduce */ + if (rssi_last < rssi_reduce) + rssi_last = 0; + else + rssi_last -= rssi_reduce; + + /* + * Now look up the rate in the rssi table and return it. + * If no rates match then we return 0 (lowest rate) + */ + + best_thruput = 0; + maxindex = rate_ctrl->max_valid_rate-1; + + minindex = 0; + best_rate = minindex; + + /* + * Try the higher rate first. It will reduce memory moving time + * if we have very good channel characteristics. + */ + for (index = maxindex; index >= minindex ; index--) { + u8 per_thres; + + rate = rate_ctrl->valid_rate_index[index]; + if (rate > rate_ctrl->rate_max_phy) + continue; + + /* + * For TCP the average collision rate is around 11%, + * so we ignore PERs less than this. This is to + * prevent the rate we are currently using (whose + * PER might be in the 10-15 range because of TCP + * collisions) looking worse than the next lower + * rate whose PER has decayed close to 0. If we + * used to next lower rate, its PER would grow to + * 10-15 and we would be worse off then staying + * at the current rate. + */ + per_thres = rate_ctrl->state[rate].per; + if (per_thres < 12) + per_thres = 12; + + this_thruput = rate_table->info[rate].user_ratekbps * + (100 - per_thres); + + if (best_thruput <= this_thruput) { + best_thruput = this_thruput; + best_rate = rate; + } + } + + rate = best_rate; + + /* if we are retrying for more than half the number + * of max retries, use the min rate for the next retry + */ + if (is_retry) + rate = rate_ctrl->valid_rate_index[minindex]; + + rate_ctrl->rssi_last_lookup = rssi_last; + + /* + * Must check the actual rate (ratekbps) to account for + * non-monoticity of 11g's rate table + */ + + if (rate >= rate_ctrl->rate_max_phy && probe_allowed) { + rate = rate_ctrl->rate_max_phy; + + /* Probe the next allowed phy state */ + /* FIXME:XXXX Check to make sure ratMax is checked properly */ + if (ath_rc_get_nextvalid_txrate(rate_table, + rate_ctrl, rate, &next_rate) && + (now_msec - rate_ctrl->probe_time > + rate_table->probe_interval) && + (rate_ctrl->hw_maxretry_pktcnt >= 1)) { + rate = next_rate; + rate_ctrl->probe_rate = rate; + rate_ctrl->probe_time = now_msec; + rate_ctrl->hw_maxretry_pktcnt = 0; + *is_probing = TRUE; + } + } + + /* + * Make sure rate is not higher than the allowed maximum. + * We should also enforce the min, but I suspect the min is + * normally 1 rather than 0 because of the rate 9 vs 6 issue + * in the old code. + */ + if (rate > (rate_ctrl->rate_table_size - 1)) + rate = rate_ctrl->rate_table_size - 1; + + ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) || + (rate_table->info[rate].valid_single_stream && + ath_rc_priv->single_stream)); + + return rate; +} + +static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table , + struct ath_rc_series *series, + u8 tries, + u8 rix, + int rtsctsenable) +{ + series->tries = tries; + series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) | + (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ? + ATH_RC_DS_FLAG : 0) | + (WLAN_RC_PHY_40(rate_table->info[rix].phy) ? + ATH_RC_CW40_FLAG : 0) | + (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ? + ATH_RC_SGI_FLAG : 0); + + series->rix = rate_table->info[rix].base_index; + series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen; +} + +static u8 ath_rc_rate_getidx(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + const struct ath_rate_table *rate_table, + u8 rix, u16 stepdown, + u16 min_rate) +{ + u32 j; + u8 nextindex; + struct ath_tx_ratectrl *rate_ctrl = + (struct ath_tx_ratectrl *)(ath_rc_priv); + + if (min_rate) { + for (j = RATE_TABLE_SIZE; j > 0; j--) { + if (ath_rc_get_nextlowervalid_txrate(rate_table, + rate_ctrl, rix, &nextindex)) + rix = nextindex; + else + break; + } + } else { + for (j = stepdown; j > 0; j--) { + if (ath_rc_get_nextlowervalid_txrate(rate_table, + rate_ctrl, rix, &nextindex)) + rix = nextindex; + else + break; + } + } + return rix; +} + +static void ath_rc_ratefind(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + int num_tries, int num_rates, unsigned int rcflag, + struct ath_rc_series series[], int *is_probe, + int is_retry) +{ + u8 try_per_rate = 0, i = 0, rix, nrix; + struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; + struct ath_rate_table *rate_table; + + rate_table = + (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; + rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, + (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0, + is_probe, is_retry); + nrix = rix; + + if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) { + /* set one try for probe rates. For the + * probes don't enable rts */ + ath_rc_rate_set_series(rate_table, + &series[i++], 1, nrix, FALSE); + + try_per_rate = (num_tries/num_rates); + /* Get the next tried/allowed rate. No RTS for the next series + * after the probe rate + */ + nrix = ath_rc_rate_getidx(sc, + ath_rc_priv, rate_table, nrix, 1, FALSE); + ath_rc_rate_set_series(rate_table, + &series[i++], try_per_rate, nrix, 0); + } else { + try_per_rate = (num_tries/num_rates); + /* Set the choosen rate. No RTS for first series entry. */ + ath_rc_rate_set_series(rate_table, + &series[i++], try_per_rate, nrix, FALSE); + } + + /* Fill in the other rates for multirate retry */ + for ( ; i < num_rates; i++) { + u8 try_num; + u8 min_rate; + + try_num = ((i + 1) == num_rates) ? + num_tries - (try_per_rate * i) : try_per_rate ; + min_rate = (((i + 1) == num_rates) && + (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0; + + nrix = ath_rc_rate_getidx(sc, ath_rc_priv, + rate_table, nrix, 1, min_rate); + /* All other rates in the series have RTS enabled */ + ath_rc_rate_set_series(rate_table, + &series[i], try_num, nrix, TRUE); + } + + /* + * NB:Change rate series to enable aggregation when operating + * at lower MCS rates. When first rate in series is MCS2 + * in HT40 @ 2.4GHz, series should look like: + * + * {MCS2, MCS1, MCS0, MCS0}. + * + * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should + * look like: + * + * {MCS3, MCS2, MCS1, MCS1} + * + * So, set fourth rate in series to be same as third one for + * above conditions. + */ + if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) || + (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) || + (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) { + u8 dot11rate = rate_table->info[rix].dot11rate; + u8 phy = rate_table->info[rix].phy; + if (i == 4 && + ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) || + (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) { + series[3].rix = series[2].rix; + series[3].flags = series[2].flags; + series[3].max_4ms_framelen = series[2].max_4ms_framelen; + } + } +} + +/* + * Return the Tx rate series. + */ +void ath_rate_findrate(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + int num_tries, + int num_rates, + unsigned int rcflag, + struct ath_rc_series series[], + int *is_probe, + int is_retry) +{ + struct ath_vap *avp = ath_rc_priv->avp; + + DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); + if (!num_rates || !num_tries) + return; + + if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) { + ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates, + rcflag, series, is_probe, is_retry); + } else { + /* Fixed rate */ + int idx; + u8 flags; + u32 rix; + struct ath_rate_softc *asc = ath_rc_priv->asc; + struct ath_rate_table *rate_table; + + rate_table = (struct ath_rate_table *) + asc->hw_rate_table[sc->sc_curmode]; + + for (idx = 0; idx < 4; idx++) { + unsigned int mcs; + u8 series_rix = 0; + + series[idx].tries = + IEEE80211_RATE_IDX_ENTRY( + avp->av_config.av_fixed_retryset, idx); + + mcs = IEEE80211_RATE_IDX_ENTRY( + avp->av_config.av_fixed_rateset, idx); + + if (idx == 3 && (mcs & 0xf0) == 0x70) + mcs = (mcs & ~0xf0)|0x80; + + if (!(mcs & 0x80)) + flags = 0; + else + flags = ((ath_rc_priv->ht_cap & + WLAN_RC_DS_FLAG) ? + ATH_RC_DS_FLAG : 0) | + ((ath_rc_priv->ht_cap & + WLAN_RC_40_FLAG) ? + ATH_RC_CW40_FLAG : 0) | + ((ath_rc_priv->ht_cap & + WLAN_RC_SGI_FLAG) ? + ((ath_rc_priv->ht_cap & + WLAN_RC_40_FLAG) ? + ATH_RC_SGI_FLAG : 0) : 0); + + series[idx].rix = sc->sc_rixmap[mcs]; + series_rix = series[idx].rix; + + /* XXX: Give me some cleanup love */ + if ((flags & ATH_RC_CW40_FLAG) && + (flags & ATH_RC_SGI_FLAG)) + rix = rate_table->info[series_rix].ht_index; + else if (flags & ATH_RC_SGI_FLAG) + rix = rate_table->info[series_rix].sgi_index; + else if (flags & ATH_RC_CW40_FLAG) + rix = rate_table->info[series_rix].cw40index; + else + rix = rate_table->info[series_rix].base_index; + series[idx].max_4ms_framelen = + rate_table->info[rix].max_4ms_framelen; + series[idx].flags = flags; + } + } +} + +static void ath_rc_update_ht(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + struct ath_tx_info_priv *info_priv, + int tx_rate, int xretries, int retries) +{ + struct ath_tx_ratectrl *rate_ctrl; + u32 now_msec = jiffies_to_msecs(jiffies); + int state_change = FALSE, rate, count; + u8 last_per; + struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; + struct ath_rate_table *rate_table = + (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode]; + + static u32 nretry_to_per_lookup[10] = { + 100 * 0 / 1, + 100 * 1 / 4, + 100 * 1 / 2, + 100 * 3 / 4, + 100 * 4 / 5, + 100 * 5 / 6, + 100 * 6 / 7, + 100 * 7 / 8, + 100 * 8 / 9, + 100 * 9 / 10 + }; + + if (!ath_rc_priv) + return; + + rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); + + ASSERT(tx_rate >= 0); + if (tx_rate < 0) + return; + + /* To compensate for some imbalance between ctrl and ext. channel */ + + if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy)) + info_priv->tx.ts_rssi = + info_priv->tx.ts_rssi < 3 ? 0 : + info_priv->tx.ts_rssi - 3; + + last_per = rate_ctrl->state[tx_rate].per; + + if (xretries) { + /* Update the PER. */ + if (xretries == 1) { + rate_ctrl->state[tx_rate].per += 30; + if (rate_ctrl->state[tx_rate].per > 100) + rate_ctrl->state[tx_rate].per = 100; + } else { + /* xretries == 2 */ + count = sizeof(nretry_to_per_lookup) / + sizeof(nretry_to_per_lookup[0]); + if (retries >= count) + retries = count - 1; + /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ + rate_ctrl->state[tx_rate].per = + (u8)(rate_ctrl->state[tx_rate].per - + (rate_ctrl->state[tx_rate].per >> 3) + + ((100) >> 3)); + } + + /* xretries == 1 or 2 */ + + if (rate_ctrl->probe_rate == tx_rate) + rate_ctrl->probe_rate = 0; + + } else { /* xretries == 0 */ + /* Update the PER. */ + /* Make sure it doesn't index out of array's bounds. */ + count = sizeof(nretry_to_per_lookup) / + sizeof(nretry_to_per_lookup[0]); + if (retries >= count) + retries = count - 1; + if (info_priv->n_bad_frames) { + /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ + /* + * Assuming that n_frames is not 0. The current PER + * from the retries is 100 * retries / (retries+1), + * since the first retries attempts failed, and the + * next one worked. For the one that worked, + * n_bad_frames subframes out of n_frames wored, + * so the PER for that part is + * 100 * n_bad_frames / n_frames, and it contributes + * 100 * n_bad_frames / (n_frames * (retries+1)) to + * the above PER. The expression below is a + * simplified version of the sum of these two terms. + */ + if (info_priv->n_frames > 0) + rate_ctrl->state[tx_rate].per + = (u8) + (rate_ctrl->state[tx_rate].per - + (rate_ctrl->state[tx_rate].per >> 3) + + ((100*(retries*info_priv->n_frames + + info_priv->n_bad_frames) / + (info_priv->n_frames * + (retries+1))) >> 3)); + } else { + /* new_PER = 7/8*old_PER + 1/8*(currentPER) */ + + rate_ctrl->state[tx_rate].per = (u8) + (rate_ctrl->state[tx_rate].per - + (rate_ctrl->state[tx_rate].per >> 3) + + (nretry_to_per_lookup[retries] >> 3)); + } + + rate_ctrl->rssi_last_prev2 = rate_ctrl->rssi_last_prev; + rate_ctrl->rssi_last_prev = rate_ctrl->rssi_last; + rate_ctrl->rssi_last = info_priv->tx.ts_rssi; + rate_ctrl->rssi_time = now_msec; + + /* + * If we got at most one retry then increase the max rate if + * this was a probe. Otherwise, ignore the probe. + */ + + if (rate_ctrl->probe_rate && rate_ctrl->probe_rate == tx_rate) { + if (retries > 0 || 2 * info_priv->n_bad_frames > + info_priv->n_frames) { + /* + * Since we probed with just a single attempt, + * any retries means the probe failed. Also, + * if the attempt worked, but more than half + * the subframes were bad then also consider + * the probe a failure. + */ + rate_ctrl->probe_rate = 0; + } else { + u8 probe_rate = 0; + + rate_ctrl->rate_max_phy = rate_ctrl->probe_rate; + probe_rate = rate_ctrl->probe_rate; + + if (rate_ctrl->state[probe_rate].per > 30) + rate_ctrl->state[probe_rate].per = 20; + + rate_ctrl->probe_rate = 0; + + /* + * Since this probe succeeded, we allow the next + * probe twice as soon. This allows the maxRate + * to move up faster if the probes are + * succesful. + */ + rate_ctrl->probe_time = now_msec - + rate_table->probe_interval / 2; + } + } + + if (retries > 0) { + /* + * Don't update anything. We don't know if + * this was because of collisions or poor signal. + * + * Later: if rssi_ack is close to + * rate_ctrl->state[txRate].rssi_thres and we see lots + * of retries, then we could increase + * rate_ctrl->state[txRate].rssi_thres. + */ + rate_ctrl->hw_maxretry_pktcnt = 0; + } else { + /* + * It worked with no retries. First ignore bogus (small) + * rssi_ack values. + */ + if (tx_rate == rate_ctrl->rate_max_phy && + rate_ctrl->hw_maxretry_pktcnt < 255) { + rate_ctrl->hw_maxretry_pktcnt++; + } + + if (info_priv->tx.ts_rssi >= + rate_table->info[tx_rate].rssi_ack_validmin) { + /* Average the rssi */ + if (tx_rate != rate_ctrl->rssi_sum_rate) { + rate_ctrl->rssi_sum_rate = tx_rate; + rate_ctrl->rssi_sum = + rate_ctrl->rssi_sum_cnt = 0; + } + + rate_ctrl->rssi_sum += info_priv->tx.ts_rssi; + rate_ctrl->rssi_sum_cnt++; + + if (rate_ctrl->rssi_sum_cnt > 4) { + int32_t rssi_ackAvg = + (rate_ctrl->rssi_sum + 2) / 4; + int8_t rssi_thres = + rate_ctrl->state[tx_rate]. + rssi_thres; + int8_t rssi_ack_vmin = + rate_table->info[tx_rate]. + rssi_ack_validmin; + + rate_ctrl->rssi_sum = + rate_ctrl->rssi_sum_cnt = 0; + + /* Now reduce the current + * rssi threshold. */ + if ((rssi_ackAvg < rssi_thres + 2) && + (rssi_thres > rssi_ack_vmin)) { + rate_ctrl->state[tx_rate]. + rssi_thres--; + } + + state_change = TRUE; + } + } + } + } + + /* For all cases */ + + /* + * If this rate looks bad (high PER) then stop using it for + * a while (except if we are probing). + */ + if (rate_ctrl->state[tx_rate].per >= 55 && tx_rate > 0 && + rate_table->info[tx_rate].ratekbps <= + rate_table->info[rate_ctrl->rate_max_phy].ratekbps) { + ath_rc_get_nextlowervalid_txrate(rate_table, rate_ctrl, + (u8) tx_rate, &rate_ctrl->rate_max_phy); + + /* Don't probe for a little while. */ + rate_ctrl->probe_time = now_msec; + } + + if (state_change) { + /* + * Make sure the rates above this have higher rssi thresholds. + * (Note: Monotonicity is kept within the OFDM rates and + * within the CCK rates. However, no adjustment is + * made to keep the rssi thresholds monotonically + * increasing between the CCK and OFDM rates.) + */ + for (rate = tx_rate; rate < + rate_ctrl->rate_table_size - 1; rate++) { + if (rate_table->info[rate+1].phy != + rate_table->info[tx_rate].phy) + break; + + if (rate_ctrl->state[rate].rssi_thres + + rate_table->info[rate].rssi_ack_deltamin > + rate_ctrl->state[rate+1].rssi_thres) { + rate_ctrl->state[rate+1].rssi_thres = + rate_ctrl->state[rate]. + rssi_thres + + rate_table->info[rate]. + rssi_ack_deltamin; + } + } + + /* Make sure the rates below this have lower rssi thresholds. */ + for (rate = tx_rate - 1; rate >= 0; rate--) { + if (rate_table->info[rate].phy != + rate_table->info[tx_rate].phy) + break; + + if (rate_ctrl->state[rate].rssi_thres + + rate_table->info[rate].rssi_ack_deltamin > + rate_ctrl->state[rate+1].rssi_thres) { + if (rate_ctrl->state[rate+1].rssi_thres < + rate_table->info[rate]. + rssi_ack_deltamin) + rate_ctrl->state[rate].rssi_thres = 0; + else { + rate_ctrl->state[rate].rssi_thres = + rate_ctrl->state[rate+1]. + rssi_thres - + rate_table->info[rate]. + rssi_ack_deltamin; + } + + if (rate_ctrl->state[rate].rssi_thres < + rate_table->info[rate]. + rssi_ack_validmin) { + rate_ctrl->state[rate].rssi_thres = + rate_table->info[rate]. + rssi_ack_validmin; + } + } + } + } + + /* Make sure the rates below this have lower PER */ + /* Monotonicity is kept only for rates below the current rate. */ + if (rate_ctrl->state[tx_rate].per < last_per) { + for (rate = tx_rate - 1; rate >= 0; rate--) { + if (rate_table->info[rate].phy != + rate_table->info[tx_rate].phy) + break; + + if (rate_ctrl->state[rate].per > + rate_ctrl->state[rate+1].per) { + rate_ctrl->state[rate].per = + rate_ctrl->state[rate+1].per; + } + } + } + + /* Maintain monotonicity for rates above the current rate */ + for (rate = tx_rate; rate < rate_ctrl->rate_table_size - 1; rate++) { + if (rate_ctrl->state[rate+1].per < rate_ctrl->state[rate].per) + rate_ctrl->state[rate+1].per = + rate_ctrl->state[rate].per; + } + + /* Every so often, we reduce the thresholds and + * PER (different for CCK and OFDM). */ + if (now_msec - rate_ctrl->rssi_down_time >= + rate_table->rssi_reduce_interval) { + + for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { + if (rate_ctrl->state[rate].rssi_thres > + rate_table->info[rate].rssi_ack_validmin) + rate_ctrl->state[rate].rssi_thres -= 1; + } + rate_ctrl->rssi_down_time = now_msec; + } + + /* Every so often, we reduce the thresholds + * and PER (different for CCK and OFDM). */ + if (now_msec - rate_ctrl->per_down_time >= + rate_table->rssi_reduce_interval) { + for (rate = 0; rate < rate_ctrl->rate_table_size; rate++) { + rate_ctrl->state[rate].per = + 7 * rate_ctrl->state[rate].per / 8; + } + + rate_ctrl->per_down_time = now_msec; + } +} + +/* + * This routine is called in rate control callback tx_status() to give + * the status of previous frames. + */ +static void ath_rc_update(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + struct ath_tx_info_priv *info_priv, int final_ts_idx, + int xretries, int long_retry) +{ + struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; + struct ath_rate_table *rate_table; + struct ath_tx_ratectrl *rate_ctrl; + struct ath_rc_series rcs[4]; + u8 flags; + u32 series = 0, rix; + + memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0])); + rate_table = (struct ath_rate_table *) + asc->hw_rate_table[sc->sc_curmode]; + rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); + ASSERT(rcs[0].tries != 0); + + /* + * If the first rate is not the final index, there + * are intermediate rate failures to be processed. + */ + if (final_ts_idx != 0) { + /* Process intermediate rates that failed.*/ + for (series = 0; series < final_ts_idx ; series++) { + if (rcs[series].tries != 0) { + flags = rcs[series].flags; + /* If HT40 and we have switched mode from + * 40 to 20 => don't update */ + if ((flags & ATH_RC_CW40_FLAG) && + (rate_ctrl->rc_phy_mode != + (flags & ATH_RC_CW40_FLAG))) + return; + if ((flags & ATH_RC_CW40_FLAG) && + (flags & ATH_RC_SGI_FLAG)) + rix = rate_table->info[ + rcs[series].rix].ht_index; + else if (flags & ATH_RC_SGI_FLAG) + rix = rate_table->info[ + rcs[series].rix].sgi_index; + else if (flags & ATH_RC_CW40_FLAG) + rix = rate_table->info[ + rcs[series].rix].cw40index; + else + rix = rate_table->info[ + rcs[series].rix].base_index; + ath_rc_update_ht(sc, ath_rc_priv, + info_priv, rix, + xretries ? 1 : 2, + rcs[series].tries); + } + } + } else { + /* + * Handle the special case of MIMO PS burst, where the second + * aggregate is sent out with only one rate and one try. + * Treating it as an excessive retry penalizes the rate + * inordinately. + */ + if (rcs[0].tries == 1 && xretries == 1) + xretries = 2; + } + + flags = rcs[series].flags; + /* If HT40 and we have switched mode from 40 to 20 => don't update */ + if ((flags & ATH_RC_CW40_FLAG) && + (rate_ctrl->rc_phy_mode != (flags & ATH_RC_CW40_FLAG))) + return; + + if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG)) + rix = rate_table->info[rcs[series].rix].ht_index; + else if (flags & ATH_RC_SGI_FLAG) + rix = rate_table->info[rcs[series].rix].sgi_index; + else if (flags & ATH_RC_CW40_FLAG) + rix = rate_table->info[rcs[series].rix].cw40index; + else + rix = rate_table->info[rcs[series].rix].base_index; + + ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix, + xretries, long_retry); +} + + +/* + * Process a tx descriptor for a completed transmit (success or failure). + */ +static void ath_rate_tx_complete(struct ath_softc *sc, + struct ath_node *an, + struct ath_rate_node *rc_priv, + struct ath_tx_info_priv *info_priv) +{ + int final_ts_idx = info_priv->tx.ts_rateindex; + int tx_status = 0, is_underrun = 0; + struct ath_vap *avp; + + avp = rc_priv->avp; + if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) + || info_priv->tx.ts_status & ATH9K_TXERR_FILT) + return; + + if (info_priv->tx.ts_rssi > 0) { + ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi, + info_priv->tx.ts_rssi); + } + + /* + * If underrun error is seen assume it as an excessive retry only + * if prefetch trigger level have reached the max (0x3f for 5416) + * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY + * times. This affects how ratectrl updates PER for the failed rate. + */ + if (info_priv->tx.ts_flags & + (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) && + ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) { + tx_status = 1; + is_underrun = 1; + } + + if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) || + (info_priv->tx.ts_status & ATH9K_TXERR_FIFO)) + tx_status = 1; + + ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status, + (is_underrun) ? ATH_11N_TXMAXTRY : + info_priv->tx.ts_longretry); +} + + +/* + * Update the SIB's rate control information + * + * This should be called when the supported rates change + * (e.g. SME operation, wireless mode change) + * + * It will determine which rates are valid for use. + */ +static void ath_rc_sib_update(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + u32 capflag, int keep_state, + struct ath_rateset *negotiated_rates, + struct ath_rateset *negotiated_htrates) +{ + struct ath_rate_table *rate_table = NULL; + struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc; + struct ath_rateset *rateset = negotiated_rates; + u8 *ht_mcs = (u8 *)negotiated_htrates; + struct ath_tx_ratectrl *rate_ctrl = (struct ath_tx_ratectrl *) + (ath_rc_priv); + u8 i, j, k, hi = 0, hthi = 0; + + rate_table = (struct ath_rate_table *) + asc->hw_rate_table[sc->sc_curmode]; + + /* Initial rate table size. Will change depending + * on the working rate set */ + rate_ctrl->rate_table_size = MAX_TX_RATE_TBL; + + /* Initialize thresholds according to the global rate table */ + for (i = 0 ; (i < rate_ctrl->rate_table_size) && (!keep_state); i++) { + rate_ctrl->state[i].rssi_thres = + rate_table->info[i].rssi_ack_validmin; + rate_ctrl->state[i].per = 0; + } + + /* Determine the valid rates */ + ath_rc_init_valid_txmask(rate_ctrl); + + for (i = 0; i < WLAN_RC_PHY_MAX; i++) { + for (j = 0; j < MAX_TX_RATE_PHY; j++) + rate_ctrl->valid_phy_rateidx[i][j] = 0; + rate_ctrl->valid_phy_ratecnt[i] = 0; + } + rate_ctrl->rc_phy_mode = (capflag & WLAN_RC_40_FLAG); + + /* Set stream capability */ + ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1; + + if (!rateset->rs_nrates) { + /* No working rate, just initialize valid rates */ + hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table, + capflag); + } else { + /* Use intersection of working rates and valid rates */ + hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table, + rateset, capflag); + if (capflag & WLAN_RC_HT_FLAG) { + hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv, + rate_table, + ht_mcs, + capflag); + } + hi = A_MAX(hi, hthi); + } + + rate_ctrl->rate_table_size = hi + 1; + rate_ctrl->rate_max_phy = 0; + ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); + + for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) { + for (j = 0; j < rate_ctrl->valid_phy_ratecnt[i]; j++) { + rate_ctrl->valid_rate_index[k++] = + rate_ctrl->valid_phy_rateidx[i][j]; + } + + if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE) + || !rate_ctrl->valid_phy_ratecnt[i]) + continue; + + rate_ctrl->rate_max_phy = rate_ctrl->valid_phy_rateidx[i][j-1]; + } + ASSERT(rate_ctrl->rate_table_size <= MAX_TX_RATE_TBL); + ASSERT(k <= MAX_TX_RATE_TBL); + + rate_ctrl->max_valid_rate = k; + /* + * Some third party vendors don't send the supported rate series in + * order. So sorting to make sure its in order, otherwise our RateFind + * Algo will select wrong rates + */ + ath_rc_sort_validrates(rate_table, rate_ctrl); + rate_ctrl->rate_max_phy = rate_ctrl->valid_rate_index[k-4]; +} + +/* + * Update rate-control state on station associate/reassociate. + */ +static int ath_rate_newassoc(struct ath_softc *sc, + struct ath_rate_node *ath_rc_priv, + unsigned int capflag, + struct ath_rateset *negotiated_rates, + struct ath_rateset *negotiated_htrates) +{ + + + ath_rc_priv->ht_cap = + ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) | + ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) | + ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) | + ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0); + + ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0, + negotiated_rates, negotiated_htrates); + + return 0; +} + +/* + * This routine is called to initialize the rate control parameters + * in the SIB. It is called initially during system initialization + * or when a station is associated with the AP. + */ +static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv) +{ + struct ath_tx_ratectrl *rate_ctrl; + + rate_ctrl = (struct ath_tx_ratectrl *)(ath_rc_priv); + rate_ctrl->rssi_down_time = jiffies_to_msecs(jiffies); +} + + +static void ath_setup_rates(struct ieee80211_local *local, struct sta_info *sta) + +{ + struct ieee80211_supported_band *sband; + struct ieee80211_hw *hw = local_to_hw(local); + struct ath_softc *sc = hw->priv; + struct ath_rate_node *rc_priv = sta->rate_ctrl_priv; + int i, j = 0; + + DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); + sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; + for (i = 0; i < sband->n_bitrates; i++) { + if (sta->supp_rates[local->hw.conf.channel->band] & BIT(i)) { + rc_priv->neg_rates.rs_rates[j] + = (sband->bitrates[i].bitrate * 2) / 10; + j++; + } + } + rc_priv->neg_rates.rs_nrates = j; +} + +void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv) +{ + struct ath_softc *sc = hw->priv; + u32 capflag = 0; + + if (hw->conf.ht_conf.ht_supported) { + capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG; + if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040) + capflag |= ATH_RC_CW40_FLAG; + } + + ath_rate_newassoc(sc, rc_priv, capflag, + &rc_priv->neg_rates, + &rc_priv->neg_ht_rates); + +} + +/* Rate Control callbacks */ +static void ath_tx_status(void *priv, struct net_device *dev, + struct sk_buff *skb) +{ + struct ath_softc *sc = priv; + struct ath_tx_info_priv *tx_info_priv; + struct ath_node *an; + struct sta_info *sta; + struct ieee80211_local *local; + struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); + struct ieee80211_hdr *hdr; + __le16 fc; + + local = hw_to_local(sc->hw); + hdr = (struct ieee80211_hdr *)skb->data; + fc = hdr->frame_control; + tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; + + spin_lock_bh(&sc->node_lock); + an = ath_node_find(sc, hdr->addr1); + spin_unlock_bh(&sc->node_lock); + + sta = sta_info_get(local, hdr->addr1); + if (!an || !sta || !ieee80211_is_data(fc)) { + if (tx_info->driver_data[0] != NULL) { + kfree(tx_info->driver_data[0]); + tx_info->driver_data[0] = NULL; + } + return; + } + if (tx_info->driver_data[0] != NULL) { + ath_rate_tx_complete(sc, an, sta->rate_ctrl_priv, tx_info_priv); + kfree(tx_info->driver_data[0]); + tx_info->driver_data[0] = NULL; + } +} + +static void ath_tx_aggr_resp(struct ath_softc *sc, + struct sta_info *sta, + struct ath_node *an, + u8 tidno) +{ + struct ieee80211_hw *hw = sc->hw; + struct ieee80211_local *local; + struct ath_atx_tid *txtid; + struct ieee80211_supported_band *sband; + u16 buffersize = 0; + int state; + DECLARE_MAC_BUF(mac); + + if (!sc->sc_txaggr) + return; + + txtid = ATH_AN_2_TID(an, tidno); + if (!txtid->paused) + return; + + local = hw_to_local(sc->hw); + sband = hw->wiphy->bands[hw->conf.channel->band]; + buffersize = IEEE80211_MIN_AMPDU_BUF << + sband->ht_info.ampdu_factor; /* FIXME */ + state = sta->ampdu_mlme.tid_state_tx[tidno]; + + if (state & HT_ADDBA_RECEIVED_MSK) { + txtid->addba_exchangecomplete = 1; + txtid->addba_exchangeinprogress = 0; + txtid->baw_size = buffersize; + + DPRINTF(sc, ATH_DBG_AGGR, + "%s: Resuming tid, buffersize: %d\n", + __func__, + buffersize); + + ath_tx_resume_tid(sc, txtid); + } +} + +static void ath_get_rate(void *priv, struct net_device *dev, + struct ieee80211_supported_band *sband, + struct sk_buff *skb, + struct rate_selection *sel) +{ + struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; + struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); + struct sta_info *sta; + struct ath_softc *sc = (struct ath_softc *)priv; + struct ieee80211_hw *hw = sc->hw; + struct ath_tx_info_priv *tx_info_priv; + struct ath_rate_node *ath_rc_priv; + struct ath_node *an; + struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); + int is_probe, chk, ret; + s8 lowest_idx; + __le16 fc = hdr->frame_control; + u8 *qc, tid; + DECLARE_MAC_BUF(mac); + + DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); + + /* allocate driver private area of tx_info */ + tx_info->driver_data[0] = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC); + ASSERT(tx_info->driver_data[0] != NULL); + tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0]; + + sta = sta_info_get(local, hdr->addr1); + lowest_idx = rate_lowest_index(local, sband, sta); + tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10; + /* lowest rate for management and multicast/broadcast frames */ + if (!ieee80211_is_data(fc) || + is_multicast_ether_addr(hdr->addr1) || !sta) { + sel->rate_idx = lowest_idx; + return; + } + + ath_rc_priv = sta->rate_ctrl_priv; + + /* Find tx rate for unicast frames */ + ath_rate_findrate(sc, ath_rc_priv, + ATH_11N_TXMAXTRY, 4, + ATH_RC_PROBE_ALLOWED, + tx_info_priv->rcs, + &is_probe, + false); + if (is_probe) + sel->probe_idx = ((struct ath_tx_ratectrl *) + sta->rate_ctrl_priv)->probe_rate; + + /* Ratecontrol sometimes returns invalid rate index */ + if (tx_info_priv->rcs[0].rix != 0xff) + ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix; + else + tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix; + + sel->rate_idx = tx_info_priv->rcs[0].rix; + + /* Check if aggregation has to be enabled for this tid */ + + if (hw->conf.ht_conf.ht_supported) { + if (ieee80211_is_data_qos(fc)) { + qc = ieee80211_get_qos_ctl(hdr); + tid = qc[0] & 0xf; + + spin_lock_bh(&sc->node_lock); + an = ath_node_find(sc, hdr->addr1); + spin_unlock_bh(&sc->node_lock); + + if (!an) { + DPRINTF(sc, ATH_DBG_AGGR, + "%s: Node not found to " + "init/chk TX aggr\n", __func__); + return; + } + + chk = ath_tx_aggr_check(sc, an, tid); + if (chk == AGGR_REQUIRED) { + ret = ieee80211_start_tx_ba_session(hw, + hdr->addr1, tid); + if (ret) + DPRINTF(sc, ATH_DBG_AGGR, + "%s: Unable to start tx " + "aggr for: %s\n", + __func__, + print_mac(mac, hdr->addr1)); + else + DPRINTF(sc, ATH_DBG_AGGR, + "%s: Started tx aggr for: %s\n", + __func__, + print_mac(mac, hdr->addr1)); + } else if (chk == AGGR_EXCHANGE_PROGRESS) + ath_tx_aggr_resp(sc, sta, an, tid); + } + } +} + +static void ath_rate_init(void *priv, void *priv_sta, + struct ieee80211_local *local, + struct sta_info *sta) +{ + struct ieee80211_supported_band *sband; + struct ieee80211_hw *hw = local_to_hw(local); + struct ieee80211_conf *conf = &local->hw.conf; + struct ath_softc *sc = hw->priv; + int i, j = 0; + + DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__); + + sband = local->hw.wiphy->bands[local->hw.conf.channel->band]; + sta->txrate_idx = rate_lowest_index(local, sband, sta); + + ath_setup_rates(local, sta); + if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) { + for (i = 0; i < MCS_SET_SIZE; i++) { + if (conf->ht_conf.supp_mcs_set[i/8] & (1<<(i%8))) + ((struct ath_rate_node *) + priv_sta)->neg_ht_rates.rs_rates[j++] = i; + if (j == ATH_RATE_MAX) + break; + } + ((struct ath_rate_node *)priv_sta)->neg_ht_rates.rs_nrates = j; + } + ath_rc_node_update(hw, priv_sta); +} + +static void ath_rate_clear(void *priv) +{ + return; +} + +static void *ath_rate_alloc(struct ieee80211_local *local) +{ + struct ieee80211_hw *hw = local_to_hw(local); + struct ath_softc *sc = hw->priv; + + DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); + return local->hw.priv; +} + +static void ath_rate_free(void *priv) +{ + return; +} + +static void *ath_rate_alloc_sta(void *priv, gfp_t gfp) +{ + struct ath_softc *sc = priv; + struct ath_vap *avp = sc->sc_vaps[0]; + struct ath_rate_node *rate_priv; + + DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); + rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp); + if (!rate_priv) { + DPRINTF(sc, ATH_DBG_FATAL, "%s:Unable to allocate" + "private rate control structure", __func__); + return NULL; + } + ath_rc_sib_init(rate_priv); + return rate_priv; +} + +static void ath_rate_free_sta(void *priv, void *priv_sta) +{ + struct ath_rate_node *rate_priv = priv_sta; + struct ath_softc *sc = priv; + + DPRINTF(sc, ATH_DBG_RATE, "%s", __func__); + ath_rate_node_free(rate_priv); +} + +static struct rate_control_ops ath_rate_ops = { + .module = NULL, + .name = "ath9k_rate_control", + .tx_status = ath_tx_status, + .get_rate = ath_get_rate, + .rate_init = ath_rate_init, + .clear = ath_rate_clear, + .alloc = ath_rate_alloc, + .free = ath_rate_free, + .alloc_sta = ath_rate_alloc_sta, + .free_sta = ath_rate_free_sta +}; + +int ath_rate_control_register(void) +{ + return ieee80211_rate_control_register(&ath_rate_ops); +} + +void ath_rate_control_unregister(void) +{ + ieee80211_rate_control_unregister(&ath_rate_ops); +} + |