| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Btrfs needs to be able to control how filemap_write_and_wait_range() is called
in fsync to make it less of a painful operation, so push down taking i_mutex and
the calling of filemap_write_and_wait() down into the ->fsync() handlers. Some
file systems can drop taking the i_mutex altogether it seems, like ext3 and
ocfs2. For correctness sake I just pushed everything down in all cases to make
sure that we keep the current behavior the same for everybody, and then each
individual fs maintainer can make up their mind about what to do from there.
Thanks,
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Josef Bacik <josef@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Conflicts:
Documentation/filesystems/porting
Change-Id: I7697244cce355e6d443a39c5133a5c94f02e199b
|
|\
| |
| |
| |
| | |
Conflicts:
arch/arm/include/asm/hardware/cache-l2x0.h
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 47d06e532e95b71c0db3839ebdef3fe8812fca2c upstream.
The some platforms (e.g., ARM) initializes their clocks as
late_initcalls for some unknown reason. So make sure
random_int_secret_init() is run after all of the late_initcalls are
run.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 96f97a83910cdb9d89d127c5ee523f8fc040a804 upstream.
If a port gets unplugged while a user is blocked on read(), -ENODEV is
returned. However, subsequent read()s returned 0, indicating there's no
host-side connection (but not indicating the device went away).
This also happened when a port was unplugged and the user didn't have
any blocking operation pending. If the user didn't monitor the SIGIO
signal, they won't have a chance to find out if the port went away.
Fix by returning -ENODEV on all read()s after the port gets unplugged.
write() already behaves this way.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 92d3453815fbe74d539c86b60dab39ecdf01bb99 upstream.
SIGIO should be sent when a port gets unplugged. It should only be sent
to prcesses that have the port opened, and have asked for SIGIO to be
delivered. We were clearing out guest_connected before calling
send_sigio_to_port(), resulting in a sigio not getting sent to
processes.
Fix by setting guest_connected to false after invoking the sigio
function.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit ea3768b4386a8d1790f4cc9a35de4f55b92d6442 upstream.
We used to keep the port's char device structs and the /sys entries
around till the last reference to the port was dropped. This is
actually unnecessary, and resulted in buggy behaviour:
1. Open port in guest
2. Hot-unplug port
3. Hot-plug a port with the same 'name' property as the unplugged one
This resulted in hot-plug being unsuccessful, as a port with the same
name already exists (even though it was unplugged).
This behaviour resulted in a warning message like this one:
-------------------8<---------------------------------------
WARNING: at fs/sysfs/dir.c:512 sysfs_add_one+0xc9/0x130() (Not tainted)
Hardware name: KVM
sysfs: cannot create duplicate filename
'/devices/pci0000:00/0000:00:04.0/virtio0/virtio-ports/vport0p1'
Call Trace:
[<ffffffff8106b607>] ? warn_slowpath_common+0x87/0xc0
[<ffffffff8106b6f6>] ? warn_slowpath_fmt+0x46/0x50
[<ffffffff811f2319>] ? sysfs_add_one+0xc9/0x130
[<ffffffff811f23e8>] ? create_dir+0x68/0xb0
[<ffffffff811f2469>] ? sysfs_create_dir+0x39/0x50
[<ffffffff81273129>] ? kobject_add_internal+0xb9/0x260
[<ffffffff812733d8>] ? kobject_add_varg+0x38/0x60
[<ffffffff812734b4>] ? kobject_add+0x44/0x70
[<ffffffff81349de4>] ? get_device_parent+0xf4/0x1d0
[<ffffffff8134b389>] ? device_add+0xc9/0x650
-------------------8<---------------------------------------
Instead of relying on guest applications to release all references to
the ports, we should go ahead and unregister the port from all the core
layers. Any open/read calls on the port will then just return errors,
and an unplug/plug operation on the host will succeed as expected.
This also caused buggy behaviour in case of the device removal (not just
a port): when the device was removed (which means all ports on that
device are removed automatically as well), the ports with active
users would clean up only when the last references were dropped -- and
it would be too late then to be referencing char device pointers,
resulting in oopses:
-------------------8<---------------------------------------
PID: 6162 TASK: ffff8801147ad500 CPU: 0 COMMAND: "cat"
#0 [ffff88011b9d5a90] machine_kexec at ffffffff8103232b
#1 [ffff88011b9d5af0] crash_kexec at ffffffff810b9322
#2 [ffff88011b9d5bc0] oops_end at ffffffff814f4a50
#3 [ffff88011b9d5bf0] die at ffffffff8100f26b
#4 [ffff88011b9d5c20] do_general_protection at ffffffff814f45e2
#5 [ffff88011b9d5c50] general_protection at ffffffff814f3db5
[exception RIP: strlen+2]
RIP: ffffffff81272ae2 RSP: ffff88011b9d5d00 RFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff880118901c18 RCX: 0000000000000000
RDX: ffff88011799982c RSI: 00000000000000d0 RDI: 3a303030302f3030
RBP: ffff88011b9d5d38 R8: 0000000000000006 R9: ffffffffa0134500
R10: 0000000000001000 R11: 0000000000001000 R12: ffff880117a1cc10
R13: 00000000000000d0 R14: 0000000000000017 R15: ffffffff81aff700
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#6 [ffff88011b9d5d00] kobject_get_path at ffffffff8126dc5d
#7 [ffff88011b9d5d40] kobject_uevent_env at ffffffff8126e551
#8 [ffff88011b9d5dd0] kobject_uevent at ffffffff8126e9eb
#9 [ffff88011b9d5de0] device_del at ffffffff813440c7
-------------------8<---------------------------------------
So clean up when we have all the context, and all that's left to do when
the references to the port have dropped is to free up the port struct
itself.
Reported-by: chayang <chayang@redhat.com>
Reported-by: YOGANANTH SUBRAMANIAN <anantyog@in.ibm.com>
Reported-by: FuXiangChun <xfu@redhat.com>
Reported-by: Qunfang Zhang <qzhang@redhat.com>
Reported-by: Sibiao Luo <sluo@redhat.com>
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 671bdea2b9f210566610603ecbb6584c8a201c8c upstream.
Between open() being called and processed, the port can be unplugged.
Check if this happened, and bail out.
A simple test script to reproduce this is:
while true; do for i in $(seq 1 100); do echo $i > /dev/vport0p3; done; done;
This opens and closes the port a lot of times; unplugging the port while
this is happening triggers the bug.
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 057b82be3ca3d066478e43b162fc082930a746c9 upstream.
There's a window between find_port_by_devt() returning a port and us
taking a kref on the port, where the port could get unplugged. Fix it
by taking the reference in find_port_by_devt() itself.
Problem reported and analyzed by Mateusz Guzik.
Reported-by: Mateusz Guzik <mguzik@redhat.com>
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 6368087e851e697679af059b4247aca33a69cef3 upstream.
When a 32 bit version of ipmitool is used on a 64 bit kernel, the
ipmi_devintf code fails to correctly acquire ipmi_mutex. This results in
incomplete data being retrieved in some cases, or other possible failures.
Add a wrapper around compat_ipmi_ioctl() to take ipmi_mutex to fix this.
Signed-off-by: Benjamin LaHaise <bcrl@kvack.org>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit a5f2b3d6a738e7d4180012fe7b541172f8c8dcea upstream.
When calling memcpy, read_data and write_data need additional 2 bytes.
write_data:
for checking: "if (size > IPMI_MAX_MSG_LENGTH)"
for operating: "memcpy(bt->write_data + 3, data + 1, size - 1)"
read_data:
for checking: "if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH)"
for operating: "memcpy(data + 2, bt->read_data + 4, msg_len - 2)"
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Signed-off-by: Corey Minyard <cminyard@mvista.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 2323036dfec8ce3ce6e1c86a49a31b039f3300d1 upstream.
This is my example conversion of a few existing mmap users. The HPET
case is simple, widely available, and easy to test (Clemens Ladisch sent
a trivial test-program for it).
Test-program-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\ \
| |/
| |
| | |
This is the 3.0.72 stable release
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit e84e7a56a3aa2963db506299e29a5f3f09377f9b upstream.
The code currently only supports one virtio-rng device at a time.
Invoking guests with multiple devices causes the guest to blow up.
Check if we've already registered and initialised the driver. Also
cleanup in case of registration errors or hot-unplug so that a new
device can be used.
Reported-by: Peter Krempa <pkrempa@redhat.com>
Reported-by: <yunzheng@redhat.com>
Signed-off-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit f7f154f1246ccc5a0a7e9ce50932627d60a0c878 upstream.
virtio_rng feeds the randomness buffer handed by the core directly
into the scatterlist, since commit bb347d98079a547e80bd4722dee1de61e4dca0e8.
However, if CONFIG_HW_RANDOM=m, the static buffer isn't a linear address
(at least on most archs). We could fix this in virtio_rng, but it's actually
far easier to just do it in the core as virtio_rng would have to allocate
a buffer every time (it doesn't know how much the core will want to read).
Reported-by: Aurelien Jarno <aurelien@aurel32.net>
Tested-by: Aurelien Jarno <aurelien@aurel32.net>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\ \
| |/
| |
| |
| |
| |
| |
| |
| | |
This is the 3.0.68 stable release
Conflicts:
kernel/cgroup.c
Change-Id: I067982d25e18e3a12de93a5eb6429b8829d7ca11
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit aded024a12b32fc1ed9a80639681daae2d07ec25 upstream.
Don't access uninitialized work-queue when removing device.
The work queue is initialized only if the device multi-queue.
So don't call cancel_work unless this is a multi-queue device.
This fixes the following panic:
Kernel panic - not syncing: BUG!
Call Trace:
62031b28: [<6026085d>] panic+0x16b/0x2d3
62031b30: [<6004ef5e>] flush_work+0x0/0x1d7
62031b60: [<602606f2>] panic+0x0/0x2d3
62031b68: [<600333b0>] memcpy+0x0/0x140
62031b80: [<6002d58a>] unblock_signals+0x0/0x84
62031ba0: [<602609c5>] printk+0x0/0xa0
62031bd8: [<60264e51>] __mutex_unlock_slowpath+0x13d/0x148
62031c10: [<6004ef5e>] flush_work+0x0/0x1d7
62031c18: [<60050234>] try_to_grab_pending+0x0/0x17e
62031c38: [<6004e984>] get_work_gcwq+0x71/0x8f
62031c48: [<60050539>] __cancel_work_timer+0x5b/0x115
62031c78: [<628acc85>] unplug_port+0x0/0x191 [virtio_console]
62031c98: [<6005061c>] cancel_work_sync+0x12/0x14
62031ca8: [<628ace96>] virtcons_remove+0x80/0x15c [virtio_console]
62031ce8: [<628191de>] virtio_dev_remove+0x1e/0x7e [virtio]
62031d08: [<601cf242>] __device_release_driver+0x75/0xe4
62031d28: [<601cf2dd>] device_release_driver+0x2c/0x40
62031d48: [<601ce0dd>] driver_unbind+0x7d/0xc6
62031d88: [<601cd5d9>] drv_attr_store+0x27/0x29
62031d98: [<60115f61>] sysfs_write_file+0x100/0x14d
62031df8: [<600b737d>] vfs_write+0xcb/0x184
62031e08: [<600b58b8>] filp_close+0x88/0x94
62031e38: [<600b7686>] sys_write+0x59/0x88
62031e88: [<6001ced1>] handle_syscall+0x5d/0x80
62031ea8: [<60030a74>] userspace+0x405/0x531
62031f08: [<600d32cc>] sys_dup+0x0/0x5e
62031f28: [<601b11d6>] strcpy+0x0/0x18
62031f38: [<600be46c>] do_execve+0x10/0x12
62031f48: [<600184c7>] run_init_process+0x43/0x45
62031fd8: [<60019a91>] new_thread_handler+0xba/0xbc
Signed-off-by: Sjur Brændeland <sjur.brandeland@stericsson.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\ \
| |/
| |
| |
| | |
Change-Id: I9685feb9277b450da10d78a455b3c0674d6cfe18
Signed-off-by: Todd Poynor <toddpoynor@google.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit abce9ac292e13da367bbd22c1f7669f988d931ac upstream.
tpm_write calls tpm_transmit without checking the return value and
assigns the return value unconditionally to chip->pending_data, even if
it's an error value.
This causes three bugs.
So if we write to /dev/tpm0 with a tpm_param_size bigger than
TPM_BUFSIZE=0x1000 (e.g. 0x100a)
and a bufsize also bigger than TPM_BUFSIZE (e.g. 0x100a)
tpm_transmit returns -E2BIG which is assigned to chip->pending_data as
-7, but tpm_write returns that TPM_BUFSIZE bytes have been successfully
been written to the TPM, altough this is not true (bug #1).
As we did write more than than TPM_BUFSIZE bytes but tpm_write reports
that only TPM_BUFSIZE bytes have been written the vfs tries to write
the remaining bytes (in this case 10 bytes) to the tpm device driver via
tpm_write which then blocks at
/* cannot perform a write until the read has cleared
either via tpm_read or a user_read_timer timeout */
while (atomic_read(&chip->data_pending) != 0)
msleep(TPM_TIMEOUT);
for 60 seconds, since data_pending is -7 and nobody is able to
read it (since tpm_read luckily checks if data_pending is greater than
0) (#bug 2).
After that the remaining bytes are written to the TPM which are
interpreted by the tpm as a normal command. (bug #3)
So if the last bytes of the command stream happen to be a e.g.
tpm_force_clear this gets accidentally sent to the TPM.
This patch fixes all three bugs, by propagating the error code of
tpm_write and returning -E2BIG if the input buffer is too big,
since the response from the tpm for a truncated value is bogus anyway.
Moreover it returns -EBUSY to userspace if there is a response ready to be
read.
Signed-off-by: Peter Huewe <peter.huewe@infineon.com>
Signed-off-by: Kent Yoder <key@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit ee8b593affdf893012e57f4c54a21984d1b0d92e upstream.
If a user provides a buffer larger than a tty->write_buf chunk and
passes '\r' at the end of the buffer, we touch an out-of-bound memory.
Add a check there to prevent this.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: Samo Pogacnik <samo_pogacnik@t-2.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit d2e7c96af1e54b507ae2a6a7dd2baf588417a7e5 upstream.
Mix in any architectural randomness in extract_buf() instead of
xfer_secondary_buf(). This allows us to mix in more architectural
randomness, and it also makes xfer_secondary_buf() faster, moving a
tiny bit of additional CPU overhead to process which is extracting the
randomness.
[ Commit description modified by tytso to remove an extended
advertisement for the RDRAND instruction. ]
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: DJ Johnston <dj.johnston@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit cbc96b7594b5691d61eba2db8b2ea723645be9ca upstream.
Many platforms have per-machine instance data (serial numbers,
asset tags, etc.) squirreled away in areas that are accessed
during early system bringup. Mixing this data into the random
pools has a very high value in providing better random data,
so we should allow (and even encourage) architecture code to
call add_device_randomness() from the setup_arch() paths.
However, this limits our options for internal structure of
the random driver since random_initialize() is not called
until long after setup_arch().
Add a big fat comment to rand_initialize() spelling out
this requirement.
Suggested-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit c5857ccf293968348e5eb4ebedc68074de3dcda6 upstream.
With the new interrupt sampling system, we are no longer using the
timer_rand_state structure in the irq descriptor, so we can stop
initializing it now.
[ Merged in fixes from Sedat to find some last missing references to
rand_initialize_irq() ]
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| | |
commit 00ce1db1a634746040ace24c09a4e3a7949a3145 upstream.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit c2557a303ab6712bb6e09447df828c557c710ac9 upstream.
Create a new function, get_random_bytes_arch() which will use the
architecture-specific hardware random number generator if it is
present. Change get_random_bytes() to not use the HW RNG, even if it
is avaiable.
The reason for this is that the hw random number generator is fast (if
it is present), but it requires that we trust the hardware
manufacturer to have not put in a back door. (For example, an
increasing counter encrypted by an AES key known to the NSA.)
It's unlikely that Intel (for example) was paid off by the US
Government to do this, but it's impossible for them to prove otherwise
--- especially since Bull Mountain is documented to use AES as a
whitener. Hence, the output of an evil, trojan-horse version of
RDRAND is statistically indistinguishable from an RDRAND implemented
to the specifications claimed by Intel. Short of using a tunnelling
electronic microscope to reverse engineer an Ivy Bridge chip and
disassembling and analyzing the CPU microcode, there's no way for us
to tell for sure.
Since users of get_random_bytes() in the Linux kernel need to be able
to support hardware systems where the HW RNG is not present, most
time-sensitive users of this interface have already created their own
cryptographic RNG interface which uses get_random_bytes() as a seed.
So it's much better to use the HW RNG to improve the existing random
number generator, by mixing in any entropy returned by the HW RNG into
/dev/random's entropy pool, but to always _use_ /dev/random's entropy
pool.
This way we get almost of the benefits of the HW RNG without any
potential liabilities. The only benefits we forgo is the
speed/performance enhancements --- and generic kernel code can't
depend on depend on get_random_bytes() having the speed of a HW RNG
anyway.
For those places that really want access to the arch-specific HW RNG,
if it is available, we provide get_random_bytes_arch().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit e6d4947b12e8ad947add1032dd754803c6004824 upstream.
If the CPU supports a hardware random number generator, use it in
xfer_secondary_pool(), where it will significantly improve things and
where we can afford it.
Also, remove the use of the arch-specific rng in
add_timer_randomness(), since the call is significantly slower than
get_cycles(), and we're much better off using it in
xfer_secondary_pool() anyway.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit a2080a67abe9e314f9e9c2cc3a4a176e8a8f8793 upstream.
Add a new interface, add_device_randomness() for adding data to the
random pool that is likely to differ between two devices (or possibly
even per boot). This would be things like MAC addresses or serial
numbers, or the read-out of the RTC. This does *not* add any actual
entropy to the pool, but it initializes the pool to different values
for devices that might otherwise be identical and have very little
entropy available to them (particularly common in the embedded world).
[ Modified by tytso to mix in a timestamp, since there may be some
variability caused by the time needed to detect/configure the hardware
in question. ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 902c098a3663de3fa18639efbb71b6080f0bcd3c upstream.
The real-time Linux folks don't like add_interrupt_randomness() taking
a spinlock since it is called in the low-level interrupt routine.
This also allows us to reduce the overhead in the fast path, for the
random driver, which is the interrupt collection path.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 775f4b297b780601e61787b766f306ed3e1d23eb upstream.
We've been moving away from add_interrupt_randomness() for various
reasons: it's too expensive to do on every interrupt, and flooding the
CPU with interrupts could theoretically cause bogus floods of entropy
from a somewhat externally controllable source.
This solves both problems by limiting the actual randomness addition
to just once a second or after 64 interrupts, whicever comes first.
During that time, the interrupt cycle data is buffered up in a per-cpu
pool. Also, we make sure the the nonblocking pool used by urandom is
initialized before we start feeding the normal input pool. This
assures that /dev/urandom is returning unpredictable data as soon as
possible.
(Based on an original patch by Linus, but significantly modified by
tytso.)
Tested-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Eric Wustrow <ewust@umich.edu>
Reported-by: Nadia Heninger <nadiah@cs.ucsd.edu>
Reported-by: Zakir Durumeric <zakir@umich.edu>
Reported-by: J. Alex Halderman <jhalderm@umich.edu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 44e4360fa3384850d65dd36fb4e6e5f2f112709b upstream.
/proc/sys/kernel/random/boot_id can be read concurrently by userspace
processes. If two (or more) user-space processes concurrently read
boot_id when sysctl_bootid is not yet assigned, a race can occur making
boot_id differ between the reads. Because the whole point of the boot id
is to be unique across a kernel execution, fix this by protecting this
operation with a spinlock.
Given that this operation is not frequently used, hitting the spinlock
on each call should not be an issue.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 2dac8e54f988ab58525505d7ef982493374433c3 upstream.
When we are initializing using arch_get_random_long() we only need to
loop enough times to touch all the bytes in the buffer; using
poolwords for that does twice the number of operations necessary on a
64-bit machine, since in the random number generator code "word" means
32 bits.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 3e88bdff1c65145f7ba297ccec69c774afe4c785 upstream.
If there is an architecture-specific random number generator (such as
RDRAND for Intel architectures), use it to initialize /dev/random's
entropy stores. Even in the worst case, if RDRAND is something like
AES(NSA_KEY, counter++), it won't hurt, and it will definitely help
against any other adversaries.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Link: http://lkml.kernel.org/r/1324589281-31931-1-git-send-email-tytso@mit.edu
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit cf833d0b9937874b50ef2867c4e8badfd64948ce upstream.
We still don't use rdrand in /dev/random, which just seems stupid. We
accept the *cycle*counter* as a random input, but we don't accept
rdrand? That's just broken.
Sure, people can do things in user space (write to /dev/random, use
rdrand in addition to /dev/random themselves etc etc), but that
*still* seems to be a particularly stupid reason for saying "we
shouldn't bother to try to do better in /dev/random".
And even if somebody really doesn't trust rdrand as a source of random
bytes, it seems singularly stupid to trust the cycle counter *more*.
So I'd suggest the attached patch. I'm not going to even bother
arguing that we should add more bits to the entropy estimate, because
that's not the point - I don't care if /dev/random fills up slowly or
not, I think it's just stupid to not use the bits we can get from
rdrand and mix them into the strong randomness pool.
Link: http://lkml.kernel.org/r/CA%2B55aFwn59N1=m651QAyTy-1gO1noGbK18zwKDwvwqnravA84A@mail.gmail.com
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Theodore Ts'o" <tytso@mit.edu>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit bd29e568a4cb6465f6e5ec7c1c1f3ae7d99cbec1 upstream.
If there is an architecture-specific random number generator we use it
to acquire randomness one "long" at a time. We should put these random
words into consecutive words in the result buffer - not just overwrite
the first word again and again.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 63d77173266c1791f1553e9e8ccea65dc87c4485 upstream.
Add support for architecture-specific hooks into the kernel-directed
random number generator interfaces. This patchset does not use the
architecture random number generator interfaces for the
userspace-directed interfaces (/dev/random and /dev/urandom), thus
eliminating the need to distinguish between them based on a pool
pointer.
Changes in version 3:
- Moved the hooks from extract_entropy() to get_random_bytes().
- Changes the hooks to inlines.
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit a119365586b0130dfea06457f584953e0ff6481d upstream.
The following build error occured during a ia64 build with
swap-over-NFS patches applied.
net/core/sock.c:274:36: error: initializer element is not constant
net/core/sock.c:274:36: error: (near initialization for 'memalloc_socks')
net/core/sock.c:274:36: error: initializer element is not constant
This is identical to a parisc build error. Fengguang Wu, Mel Gorman
and James Bottomley did all the legwork to track the root cause of
the problem. This fix and entire commit log is shamelessly copied
from them with one extra detail to change a dubious runtime use of
ATOMIC_INIT() to atomic_set() in drivers/char/mspec.c
Dave Anglin says:
> Here is the line in sock.i:
>
> struct static_key memalloc_socks = ((struct static_key) { .enabled =
> ((atomic_t) { (0) }) });
The above line contains two compound literals. It also uses a designated
initializer to initialize the field enabled. A compound literal is not a
constant expression.
The location of the above statement isn't fully clear, but if a compound
literal occurs outside the body of a function, the initializer list must
consist of constant expressions.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 67384fe3fd450536342330f684ea1f7dcaef8130 upstream.
This seems to come on Gigabyte H55M-S2V and was discovered through the
https://bugs.freedesktop.org/show_bug.cgi?id=50381 debugging.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=50381
Signed-off-by: Eugeni Dodonov <eugeni.dodonov@intel.com>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\ \
| |/ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 3321c07ae5068568cd61ac9f4ba749006a7185c9 upstream.
Since the buffer might contain security related data it might be a good idea to
zero the buffer after we have copied it to userspace.
This got assigned CVE-2011-1162.
Signed-off-by: Rajiv Andrade <srajiv@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 6b07d30aca7e52f2881b8c8c20c8a2cd28e8b3d3 upstream.
This patch changes the call of tpm_transmit by supplying the size of the
userspace buffer instead of TPM_BUFSIZE.
This got assigned CVE-2011-1161.
[The first hunk didn't make sense given one could expect
way less data than TPM_BUFSIZE, so added tpm_transmit boundary
check over bufsiz instead
The last parameter of tpm_transmit() reflects the amount
of data expected from the device, and not the buffer size
being supplied to it. It isn't ideal to parse it directly,
so we just set it to the maximum the input buffer can handle
and let the userspace API to do such job.]
Signed-off-by: Rajiv Andrade <srajiv@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Computers have become a lot faster since we compromised on the
partial MD4 hash which we use currently for performance reasons.
MD5 is a much safer choice, and is inline with both RFC1948 and
other ISS generators (OpenBSD, Solaris, etc.)
Furthermore, only having 24-bits of the sequence number be truly
unpredictable is a very serious limitation. So the periodic
regeneration and 8-bit counter have been removed. We compute and
use a full 32-bit sequence number.
For ipv6, DCCP was found to use a 32-bit truncated initial sequence
number (it needs 43-bits) and that is fixed here as well.
Reported-by: Dan Kaminsky <dan@doxpara.com>
Tested-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|\ \
| |/ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Konstantin Belousov found an error in the define of G4x_GMCH_SIZE_VT_2M
relative to the GMCH specs, and confirmed that indeed one of his users
with a Q45 reports 0xb not 0xc for a 2/2MiB GATT.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Konstantin Belousov <kostikbel@gmail.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|\ \
| |/ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When interrupts are delayed due to interrupt masking or due to other
interrupts being serviced the HPET periodic-emuation would fail. This
happened because given an interval t and a time for the current interrupt
m we would compute the next time as t + m. This works until we are
delayed for > t, in which case we would be writing a new value which is in
fact in the past.
This can be solved by computing the next time instead as (k * t) + m where
k is large enough to be in the future. The exact computation of k is
described in a comment to the code.
More detail:
Assuming an interval of 5 between each expected interrupt we have a normal
case of
t0: interrupt, read t0 from comparator, set next interrupt t0 + 5
t5: interrupt, read t5 from comparator, set next interrupt t5 + 5
t10: interrupt, read t10 from comparator, set next interrupt t10 + 5
...
So, what happens when the interrupt is serviced too late?
t0: interrupt, read t0 from comparator, set next interrupt t0 + 5
t11: delayed interrupt serviced, read t5 from comparator, set next
interrupt t5 + 5, which is in the past!
... counter loops ...
t10: Much much later, get the next interrupt.
This can happen either because we have interrupts masked for too long
(some stupid driver goes on a printk rampage) or just because we are
pushing the limits of the interval (too small a period), or both most
probably.
My solution is to read the main counter as well and set the next interrupt
to occur at the right interval, for example:
t0: interrupt, read t0 from comparator, set next interrupt t0 + 5
t11: delayed interrupt serviced, read t5 from comparator, set next
interrupt t15 as t10 has been missed.
t15: back on track.
Signed-off-by: Nils Carlson <nils.carlson@ericsson.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| | |
Signed-off-by: Brian Swetland <swetland@google.com>
|
|/
|
|
|
| |
Signed-off-by: Brian Swetland <swetland@google.com>
Signed-off-by: Arve Hjønnevåg <arve@android.com>
|
|
|
|
|
|
|
|
|
|
| |
That's already been done by the virtio infrastructure before the probe
function is called.
Reported-by: alexey.kardashevskiy@au1.ibm.com
Acked-by: Amit Shah <amit.shah@redhat.com>
Tested-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
parport_find_number() calls parport_get_port() on its result, so there
should be a corresponding call to parport_put_port() before dropping the
reference. Similar code is found in the function register_device() in the
same file.
The semantic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@exists@
local idexpression struct parport * x;
expression ra,rr;
statement S1,S2;
@@
x = parport_find_number(...)
... when != x = rr
when any
when != parport_put_port(x,...)
when != if (...) { ... parport_put_port(x,...) ...}
(
if(<+...x...+>) S1 else S2
|
if(...) { ... when != x = ra
when forall
when != parport_put_port(x,...)
*return...;
}
)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
Let memory allocator initialize the allocated memory as null, thus remove
the use of memset.
Signed-off-by: Rakib Mullick <rakib.mullick@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
| |
The ->read_proc interface is going away, convert to seq_file.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc:Corey Minyard <minyard@acm.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|