| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 9e04d3804d3ac97d8c03a41d78d0f0674b5d01e1 upstream.
Direct compare of jiffies related values does not work in the wrap
around case. Replace it with time_is_after_jiffies().
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/519BC066.5080600@acm.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 2779db8d37d4b542d9ca2575f5f178dbeaca6c86 upstream.
Commit 02725e7471b8 ('genirq: Use irq_get/put functions'),
inadvertently changed can_request_irq() to return 0 for IRQs that have
no action. This causes pcibios_lookup_irq() to select only IRQs that
already have an action with IRQF_SHARED set, or to fail if there are
none. Change can_request_irq() to return 1 for IRQs that have no
action (if the first two conditions are met).
Reported-by: Bjarni Ingi Gislason <bjarniig@rhi.hi.is>
Tested-by: Bjarni Ingi Gislason <bjarniig@rhi.hi.is> (against 3.2)
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: 709647@bugs.debian.org
Link: http://bugs.debian.org/709647
Link: http://lkml.kernel.org/r/1372383630.23847.40.camel@deadeye.wl.decadent.org.uk
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit c790b0ad23f427c7522ffed264706238c57c007e upstream.
fetch_bp_busy_slots() and toggle_bp_slot() use
for_each_online_cpu(), this is obviously wrong wrt cpu_up() or
cpu_down(), we can over/under account the per-cpu numbers.
For example:
# echo 0 >> /sys/devices/system/cpu/cpu1/online
# perf record -e mem:0x10 -p 1 &
# echo 1 >> /sys/devices/system/cpu/cpu1/online
# perf record -e mem:0x10,mem:0x10,mem:0x10,mem:0x10 -C1 -a &
# taskset -p 0x2 1
triggers the same WARN_ONCE("Can't find any breakpoint slot") in
arch_install_hw_breakpoint().
Reported-by: Vince Weaver <vincent.weaver@maine.edu>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20130620155009.GA6327@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 7f49ef69db6bbf756c0abca7e9b65b32e999eec8 upstream.
As ftrace_filter_lseek is now used with ftrace_pid_fops, it needs to
be moved out of the #ifdef CONFIG_DYNAMIC_FTRACE section as the
ftrace_pid_fops is defined when DYNAMIC_FTRACE is not.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Namhyung Kim <namhyung@kernel.org>
[ lizf: adjust context ]
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 6a76f8c0ab19f215af2a3442870eeb5f0e81998d upstream.
Currently set_ftrace_pid and set_graph_function files use seq_lseek
for their fops. However seq_open() is called only for FMODE_READ in
the fops->open() so that if an user tries to seek one of those file
when she open it for writing, it sees NULL seq_file and then panic.
It can be easily reproduced with following command:
$ cd /sys/kernel/debug/tracing
$ echo 1234 | sudo tee -a set_ftrace_pid
In this example, GNU coreutils' tee opens the file with fopen(, "a")
and then the fopen() internally calls lseek().
Link:
http://lkml.kernel.org/r/1365663302-2170-1-git-send-email-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
[ lizf: adjust context ]
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 264b83c07a84223f0efd0d1db9ccc66d6f88288f upstream.
argv_split(empty_or_all_spaces) happily succeeds, it simply returns
argc == 0 and argv[0] == NULL. Change call_usermodehelper_exec() to
check sub_info->path != NULL to avoid the crash.
This is the minimal fix, todo:
- perhaps we should change argv_split() to return NULL or change the
callers.
- kill or justify ->path[0] check
- narrow the scope of helper_lock()
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-By: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 4b0c0f294f60abcdd20994a8341a95c8ac5eeb96 upstream.
Prarit reported a crash on CPU offline/online. The reason is that on
CPU down the NOHZ related per cpu data of the dead cpu is not cleaned
up. If at cpu online an interrupt happens before the per cpu tick
device is registered the irq_enter() check potentially sees stale data
and dereferences a NULL pointer.
Cleanup the data after the cpu is dead.
Reported-by: Prarit Bhargava <prarit@redhat.com>
Cc: Mike Galbraith <bitbucket@online.de>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1305031451561.2886@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 42a5cf46cd56f46267d2a9fcf2655f4078cd3042 upstream.
An inactive timer's base can refer to a offline cpu's base.
In the current code, cpu_base's lock is blindly reinitialized each
time a CPU is brought up. If a CPU is brought online during the period
that another thread is trying to modify an inactive timer on that CPU
with holding its timer base lock, then the lock will be reinitialized
under its feet. This leads to following SPIN_BUG().
<0> BUG: spinlock already unlocked on CPU#3, kworker/u:3/1466
<0> lock: 0xe3ebe000, .magic: dead4ead, .owner: kworker/u:3/1466, .owner_cpu: 1
<4> [<c0013dc4>] (unwind_backtrace+0x0/0x11c) from [<c026e794>] (do_raw_spin_unlock+0x40/0xcc)
<4> [<c026e794>] (do_raw_spin_unlock+0x40/0xcc) from [<c076c160>] (_raw_spin_unlock+0x8/0x30)
<4> [<c076c160>] (_raw_spin_unlock+0x8/0x30) from [<c009b858>] (mod_timer+0x294/0x310)
<4> [<c009b858>] (mod_timer+0x294/0x310) from [<c00a5e04>] (queue_delayed_work_on+0x104/0x120)
<4> [<c00a5e04>] (queue_delayed_work_on+0x104/0x120) from [<c04eae00>] (sdhci_msm_bus_voting+0x88/0x9c)
<4> [<c04eae00>] (sdhci_msm_bus_voting+0x88/0x9c) from [<c04d8780>] (sdhci_disable+0x40/0x48)
<4> [<c04d8780>] (sdhci_disable+0x40/0x48) from [<c04bf300>] (mmc_release_host+0x4c/0xb0)
<4> [<c04bf300>] (mmc_release_host+0x4c/0xb0) from [<c04c7aac>] (mmc_sd_detect+0x90/0xfc)
<4> [<c04c7aac>] (mmc_sd_detect+0x90/0xfc) from [<c04c2504>] (mmc_rescan+0x7c/0x2c4)
<4> [<c04c2504>] (mmc_rescan+0x7c/0x2c4) from [<c00a6a7c>] (process_one_work+0x27c/0x484)
<4> [<c00a6a7c>] (process_one_work+0x27c/0x484) from [<c00a6e94>] (worker_thread+0x210/0x3b0)
<4> [<c00a6e94>] (worker_thread+0x210/0x3b0) from [<c00aad9c>] (kthread+0x80/0x8c)
<4> [<c00aad9c>] (kthread+0x80/0x8c) from [<c000ea80>] (kernel_thread_exit+0x0/0x8)
As an example, this particular crash occurred when CPU #3 is executing
mod_timer() on an inactive timer whose base is refered to offlined CPU
#2. The code locked the timer_base corresponding to CPU #2. Before it
could proceed, CPU #2 came online and reinitialized the spinlock
corresponding to its base. Thus now CPU #3 held a lock which was
reinitialized. When CPU #3 finally ended up unlocking the old cpu_base
corresponding to CPU #2, we hit the above SPIN_BUG().
CPU #0 CPU #3 CPU #2
------ ------- -------
..... ...... <Offline>
mod_timer()
lock_timer_base
spin_lock_irqsave(&base->lock)
cpu_up(2) ..... ......
init_timers_cpu()
.... ..... spin_lock_init(&base->lock)
..... spin_unlock_irqrestore(&base->lock) ......
<spin_bug>
Allocation of per_cpu timer vector bases is done only once under
"tvec_base_done[]" check. In the current code, spinlock_initialization
of base->lock isn't under this check. When a CPU is up each time the
base lock is reinitialized. Move base spinlock initialization under
the check.
Signed-off-by: Tirupathi Reddy <tirupath@codeaurora.org>
Link: http://lkml.kernel.org/r/1368520142-4136-1-git-send-email-tirupath@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
audit_trim_trees()
commit 12b2f117f3bf738c1a00a6f64393f1953a740bd4 upstream.
audit_trim_trees() calls get_tree(). If a failure occurs we must call
put_tree().
[akpm@linux-foundation.org: run put_tree() before mutex_lock() for small scalability improvement]
Signed-off-by: Chen Gang <gang.chen@asianux.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric Paris <eparis@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jonghwan Choi <jhbird.choi@samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 7fe70b579c9e3daba71635e31b6189394e7b79d3 upstream.
ftrace_dump() had a lot of issues. What ftrace_dump() does, is when
ftrace_dump_on_oops is set (via a kernel parameter or sysctl), it
will dump out the ftrace buffers to the console when either a oops,
panic, or a sysrq-z occurs.
This was written a long time ago when ftrace was fragile to recursion.
But it wasn't written well even for that.
There's a possible deadlock that can occur if a ftrace_dump() is happening
and an NMI triggers another dump. This is because it grabs a lock
before checking if the dump ran.
It also totally disables ftrace, and tracing for no good reasons.
As the ring_buffer now checks if it is read via a oops or NMI, where
there's a chance that the buffer gets corrupted, it will disable
itself. No need to have ftrace_dump() do the same.
ftrace_dump() is now cleaned up where it uses an atomic counter to
make sure only one dump happens at a time. A simple atomic_inc_return()
is enough that is needed for both other CPUs and NMIs. No need for
a spinlock, as if one CPU is running the dump, no other CPU needs
to do it too.
The tracing_on variable is turned off and not turned on. The original
code did this, but it wasn't pretty. By just disabling this variable
we get the result of not seeing traces that happen between crashes.
For sysrq-z, it doesn't get turned on, but the user can always write
a '1' to the tracing_on file. If they are using sysrq-z, then they should
know about tracing_on.
The new code is much easier to read and less error prone. No more
deadlock possibility when an NMI triggers here.
Reported-by: zhangwei(Jovi) <jovi.zhangwei@huawei.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 6f7a05d7018de222e40ca003721037a530979974 upstream.
Vitaliy reported that a per cpu HPET timer interrupt crashes the
system during hibernation. What happens is that the per cpu HPET timer
gets shut down when the nonboot cpus are stopped. When the nonboot
cpus are onlined again the HPET code sets up the MSI interrupt which
fires before the clock event device is registered. The event handler
is still set to hrtimer_interrupt, which then crashes the machine due
to highres mode not being active.
See http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=700333
There is no real good way to avoid that in the HPET code. The HPET
code alrady has a mechanism to detect spurious interrupts when event
handler == NULL for a similar reason.
We can handle that in the clockevent/tick layer and replace the
previous functional handler with a dummy handler like we do in
tick_setup_new_device().
The original clockevents code did this in clockevents_exchange_device(),
but that got removed by commit 7c1e76897 (clockevents: prevent
clockevent event_handler ending up handler_noop) which forgot to fix
it up in tick_shutdown(). Same issue with the broadcast device.
Reported-by: Vitaliy Fillipov <vitalif@yourcmc.ru>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: 700333@bugs.debian.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 3ac1707a13a3da9cfc8f242a15b2fae6df2c5f88 upstream.
The 3rd parameter of flex_array_prealloc() is the number of elements,
not the index of the last element.
The effect of the bug is, when opening cgroup.procs, a flex array will
be allocated and all elements of the array is allocated with
GFP_KERNEL flag, but the last one is GFP_ATOMIC, and if we fail to
allocate memory for it, it'll trigger a BUG_ON().
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 8f294b5a139ee4b75e890ad5b443c93d1e558a8b upstream.
The settimeofday01 test in the LTP testsuite effectively does
gettimeofday(current time);
settimeofday(Jan 1, 1970 + 100 seconds);
settimeofday(current time);
This test causes a stack trace to be displayed on the console during the
setting of timeofday to Jan 1, 1970 + 100 seconds:
[ 131.066751] ------------[ cut here ]------------
[ 131.096448] WARNING: at kernel/time/clockevents.c:209 clockevents_program_event+0x135/0x140()
[ 131.104935] Hardware name: Dinar
[ 131.108150] Modules linked in: sg nfsv3 nfs_acl nfsv4 auth_rpcgss nfs dns_resolver fscache lockd sunrpc nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6table_mangle ip6t_REJECT nf_conntrack_ipv6 nf_defrag_ipv6 iptable_nat nf_nat_ipv4 nf_nat iptable_mangle ipt_REJECT nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter ip_tables kvm_amd kvm sp5100_tco bnx2 i2c_piix4 crc32c_intel k10temp fam15h_power ghash_clmulni_intel amd64_edac_mod pcspkr serio_raw edac_mce_amd edac_core microcode xfs libcrc32c sr_mod sd_mod cdrom ata_generic crc_t10dif pata_acpi radeon i2c_algo_bit drm_kms_helper ttm drm ahci pata_atiixp libahci libata usb_storage i2c_core dm_mirror dm_region_hash dm_log dm_mod
[ 131.176784] Pid: 0, comm: swapper/28 Not tainted 3.8.0+ #6
[ 131.182248] Call Trace:
[ 131.184684] <IRQ> [<ffffffff810612af>] warn_slowpath_common+0x7f/0xc0
[ 131.191312] [<ffffffff8106130a>] warn_slowpath_null+0x1a/0x20
[ 131.197131] [<ffffffff810b9fd5>] clockevents_program_event+0x135/0x140
[ 131.203721] [<ffffffff810bb584>] tick_program_event+0x24/0x30
[ 131.209534] [<ffffffff81089ab1>] hrtimer_interrupt+0x131/0x230
[ 131.215437] [<ffffffff814b9600>] ? cpufreq_p4_target+0x130/0x130
[ 131.221509] [<ffffffff81619119>] smp_apic_timer_interrupt+0x69/0x99
[ 131.227839] [<ffffffff8161805d>] apic_timer_interrupt+0x6d/0x80
[ 131.233816] <EOI> [<ffffffff81099745>] ? sched_clock_cpu+0xc5/0x120
[ 131.240267] [<ffffffff814b9ff0>] ? cpuidle_wrap_enter+0x50/0xa0
[ 131.246252] [<ffffffff814b9fe9>] ? cpuidle_wrap_enter+0x49/0xa0
[ 131.252238] [<ffffffff814ba050>] cpuidle_enter_tk+0x10/0x20
[ 131.257877] [<ffffffff814b9c89>] cpuidle_idle_call+0xa9/0x260
[ 131.263692] [<ffffffff8101c42f>] cpu_idle+0xaf/0x120
[ 131.268727] [<ffffffff815f8971>] start_secondary+0x255/0x257
[ 131.274449] ---[ end trace 1151a50552231615 ]---
When we change the system time to a low value like this, the value of
timekeeper->offs_real will be a negative value.
It seems that the WARN occurs because an hrtimer has been started in the time
between the releasing of the timekeeper lock and the IPI call (via a call to
on_each_cpu) in clock_was_set() in the do_settimeofday() code. The end result
is that a REALTIME_CLOCK timer has been added with softexpires = expires =
KTIME_MAX. The hrtimer_interrupt() fires/is called and the loop at
kernel/hrtimer.c:1289 is executed. In this loop the code subtracts the
clock base's offset (which was set to timekeeper->offs_real in
do_settimeofday()) from the current hrtimer_cpu_base->expiry value (which
was KTIME_MAX):
KTIME_MAX - (a negative value) = overflow
A simple check for an overflow can resolve this problem. Using KTIME_MAX
instead of the overflow value will result in the hrtimer function being run,
and the reprogramming of the timer after that.
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
[jstultz: Tweaked commit subject]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 51fd36f3fad8447c487137ae26b9d0b3ce77bb25 upstream.
One can trigger an overflow when using ktime_add_ns() on a 32bit
architecture not supporting CONFIG_KTIME_SCALAR.
When passing a very high value for u64 nsec, e.g. 7881299347898368000
the do_div() function converts this value to seconds (7881299347) which
is still to high to pass to the ktime_set() function as long. The result
in is a negative value.
The problem on my system occurs in the tick-sched.c,
tick_nohz_stop_sched_tick() when time_delta is set to
timekeeping_max_deferment(). The check for time_delta < KTIME_MAX is
valid, thus ktime_add_ns() is called with a too large value resulting in
a negative expire value. This leads to an endless loop in the ticker code:
time_delta: 7881299347898368000
expires = ktime_add_ns(last_update, time_delta)
expires: negative value
This fix caps the value to KTIME_MAX.
This error doesn't occurs on 64bit or architectures supporting
CONFIG_KTIME_SCALAR (e.g. ARM, x86-32).
Signed-off-by: David Engraf <david.engraf@sysgo.com>
[jstultz: Minor tweaks to commit message & header]
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 9f50afccfdc15d95d7331acddcb0f7703df089ae upstream.
The ftrace_graph_count can be decreased with a "!" pattern, so that
the enabled flag should be updated too.
Link: http://lkml.kernel.org/r/1365663698-2413-1-git-send-email-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit ed6f1c996bfe4b6e520cf7a74b51cd6988d84420 upstream.
Check return value and bail out if it's NULL.
Link: http://lkml.kernel.org/r/1365553093-10180-2-git-send-email-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 39e30cd1537937d3c00ef87e865324e981434e5b upstream.
The first page was allocated separately, so no need to start from 0.
Link: http://lkml.kernel.org/r/1364820385-32027-2-git-send-email-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 4df297129f622bdc18935c856f42b9ddd18f9f28 upstream.
Currently, the depth reported in the stack tracer stack_trace file
does not match the stack_max_size file. This is because the stack_max_size
includes the overhead of stack tracer itself while the depth does not.
The first time a max is triggered, a calculation is not performed that
figures out the overhead of the stack tracer and subtracts it from
the stack_max_size variable. The overhead is stored and is subtracted
from the reported stack size for comparing for a new max.
Now the stack_max_size corresponds to the reported depth:
# cat stack_max_size
4640
# cat stack_trace
Depth Size Location (48 entries)
----- ---- --------
0) 4640 32 _raw_spin_lock+0x18/0x24
1) 4608 112 ____cache_alloc+0xb7/0x22d
2) 4496 80 kmem_cache_alloc+0x63/0x12f
3) 4416 16 mempool_alloc_slab+0x15/0x17
[...]
While testing against and older gcc on x86 that uses mcount instead
of fentry, I found that pasing in ip + MCOUNT_INSN_SIZE let the
stack trace show one more function deep which was missing before.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit d4ecbfc49b4b1d4b597fb5ba9e4fa25d62f105c5 upstream.
When gcc 4.6 on x86 is used, the function tracer will use the new
option -mfentry which does a call to "fentry" at every function
instead of "mcount". The significance of this is that fentry is
called as the first operation of the function instead of the mcount
usage of being called after the stack.
This causes the stack tracer to show some bogus results for the size
of the last function traced, as well as showing "ftrace_call" instead
of the function. This is due to the stack frame not being set up
by the function that is about to be traced.
# cat stack_trace
Depth Size Location (48 entries)
----- ---- --------
0) 4824 216 ftrace_call+0x5/0x2f
1) 4608 112 ____cache_alloc+0xb7/0x22d
2) 4496 80 kmem_cache_alloc+0x63/0x12f
The 216 size for ftrace_call includes both the ftrace_call stack
(which includes the saving of registers it does), as well as the
stack size of the parent.
To fix this, if CC_USING_FENTRY is defined, then the stack_tracer
will reserve the first item in stack_dump_trace[] array when
calling save_stack_trace(), and it will fill it in with the parent ip.
Then the code will look for the parent pointer on the stack and
give the real size of the parent's stack pointer:
# cat stack_trace
Depth Size Location (14 entries)
----- ---- --------
0) 2640 48 update_group_power+0x26/0x187
1) 2592 224 update_sd_lb_stats+0x2a5/0x4ac
2) 2368 160 find_busiest_group+0x31/0x1f1
3) 2208 256 load_balance+0xd9/0x662
I'm Cc'ing stable, although it's not urgent, as it only shows bogus
size for item #0, the rest of the trace is legit. It should still be
corrected in previous stable releases.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 87889501d0adfae10e3b0f0e6f2d7536eed9ae84 upstream.
Use the stack of stack_trace_call() instead of check_stack() as
the test pointer for max stack size. It makes it a bit cleaner
and a little more accurate.
Adding stable, as a later fix depends on this patch.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 8176cced706b5e5d15887584150764894e94e02f upstream.
Trinity discovered that we fail to check all 64 bits of
attr.config passed by user space, resulting to out-of-bounds
access of the perf_swevent_enabled array in
sw_perf_event_destroy().
Introduced in commit b0a873ebb ("perf: Register PMU
implementations").
Signed-off-by: Tommi Rantala <tt.rantala@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Link: http://lkml.kernel.org/r/1365882554-30259-1-git-send-email-tt.rantala@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 383efcd00053ec40023010ce5034bd702e7ab373 upstream.
try_to_wake_up_local() should only be invoked to wake up another
task in the same runqueue and BUG_ON()s are used to enforce the
rule. Missing try_to_wake_up_local() can stall workqueue
execution but such stalls are likely to be finite either by
another work item being queued or the one blocked getting
unblocked. There's no reason to trigger BUG while holding rq
lock crashing the whole system.
Convert BUG_ON()s in try_to_wake_up_local() to WARN_ON_ONCE()s.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20130318192234.GD3042@htj.dyndns.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit b9e146d8eb3b9ecae5086d373b50fa0c1f3e7f0f upstream.
This fixes a kernel memory contents leak via the tkill and tgkill syscalls
for compat processes.
This is visible in the siginfo_t->_sifields._rt.si_sigval.sival_ptr field
when handling signals delivered from tkill.
The place of the infoleak:
int copy_siginfo_to_user32(compat_siginfo_t __user *to, siginfo_t *from)
{
...
put_user_ex(ptr_to_compat(from->si_ptr), &to->si_ptr);
...
}
Signed-off-by: Emese Revfy <re.emese@gmail.com>
Reviewed-by: PaX Team <pageexec@freemail.hu>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 84cc8fd2fe65866e49d70b38b3fdf7219dd92fe0 upstream.
The current code makes the assumption that a cpu_base lock won't be
held if the CPU corresponding to that cpu_base is offline, which isn't
always true.
If a hrtimer is not queued, then it will not be migrated by
migrate_hrtimers() when a CPU is offlined. Therefore, the hrtimer's
cpu_base may still point to a CPU which has subsequently gone offline
if the timer wasn't enqueued at the time the CPU went down.
Normally this wouldn't be a problem, but a cpu_base's lock is blindly
reinitialized each time a CPU is brought up. If a CPU is brought
online during the period that another thread is performing a hrtimer
operation on a stale hrtimer, then the lock will be reinitialized
under its feet, and a SPIN_BUG() like the following will be observed:
<0>[ 28.082085] BUG: spinlock already unlocked on CPU#0, swapper/0/0
<0>[ 28.087078] lock: 0xc4780b40, value 0x0 .magic: dead4ead, .owner: <none>/-1, .owner_cpu: -1
<4>[ 42.451150] [<c0014398>] (unwind_backtrace+0x0/0x120) from [<c0269220>] (do_raw_spin_unlock+0x44/0xdc)
<4>[ 42.460430] [<c0269220>] (do_raw_spin_unlock+0x44/0xdc) from [<c071b5bc>] (_raw_spin_unlock+0x8/0x30)
<4>[ 42.469632] [<c071b5bc>] (_raw_spin_unlock+0x8/0x30) from [<c00a9ce0>] (__hrtimer_start_range_ns+0x1e4/0x4f8)
<4>[ 42.479521] [<c00a9ce0>] (__hrtimer_start_range_ns+0x1e4/0x4f8) from [<c00aa014>] (hrtimer_start+0x20/0x28)
<4>[ 42.489247] [<c00aa014>] (hrtimer_start+0x20/0x28) from [<c00e6190>] (rcu_idle_enter_common+0x1ac/0x320)
<4>[ 42.498709] [<c00e6190>] (rcu_idle_enter_common+0x1ac/0x320) from [<c00e6440>] (rcu_idle_enter+0xa0/0xb8)
<4>[ 42.508259] [<c00e6440>] (rcu_idle_enter+0xa0/0xb8) from [<c000f268>] (cpu_idle+0x24/0xf0)
<4>[ 42.516503] [<c000f268>] (cpu_idle+0x24/0xf0) from [<c06ed3c0>] (rest_init+0x88/0xa0)
<4>[ 42.524319] [<c06ed3c0>] (rest_init+0x88/0xa0) from [<c0c00978>] (start_kernel+0x3d0/0x434)
As an example, this particular crash occurred when hrtimer_start() was
executed on CPU #0. The code locked the hrtimer's current cpu_base
corresponding to CPU #1. CPU #0 then tried to switch the hrtimer's
cpu_base to an optimal CPU which was online. In this case, it selected
the cpu_base corresponding to CPU #3.
Before it could proceed, CPU #1 came online and reinitialized the
spinlock corresponding to its cpu_base. Thus now CPU #0 held a lock
which was reinitialized. When CPU #0 finally ended up unlocking the
old cpu_base corresponding to CPU #1 so that it could switch to CPU
#3, we hit this SPIN_BUG() above while in switch_hrtimer_base().
CPU #0 CPU #1
---- ----
... <offline>
hrtimer_start()
lock_hrtimer_base(base #1)
... init_hrtimers_cpu()
switch_hrtimer_base() ...
... raw_spin_lock_init(&cpu_base->lock)
raw_spin_unlock(&cpu_base->lock) ...
<spin_bug>
Solve this by statically initializing the lock.
Signed-off-by: Michael Bohan <mbohan@codeaurora.org>
Link: http://lkml.kernel.org/r/1363745965-23475-1-git-send-email-mbohan@codeaurora.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit a1cbcaa9ea87b87a96b9fc465951dcf36e459ca2 upstream.
The sched_clock_remote() implementation has the following inatomicity
problem on 32bit systems when accessing the remote scd->clock, which
is a 64bit value.
CPU0 CPU1
sched_clock_local() sched_clock_remote(CPU0)
...
remote_clock = scd[CPU0]->clock
read_low32bit(scd[CPU0]->clock)
cmpxchg64(scd->clock,...)
read_high32bit(scd[CPU0]->clock)
While the update of scd->clock is using an atomic64 mechanism, the
readout on the remote cpu is not, which can cause completely bogus
readouts.
It is a quite rare problem, because it requires the update to hit the
narrow race window between the low/high readout and the update must go
across the 32bit boundary.
The resulting misbehaviour is, that CPU1 will see the sched_clock on
CPU1 ~4 seconds ahead of it's own and update CPU1s sched_clock value
to this bogus timestamp. This stays that way due to the clamping
implementation for about 4 seconds until the synchronization with
CLOCK_MONOTONIC undoes the problem.
The issue is hard to observe, because it might only result in a less
accurate SCHED_OTHER timeslicing behaviour. To create observable
damage on realtime scheduling classes, it is necessary that the bogus
update of CPU1 sched_clock happens in the context of an realtime
thread, which then gets charged 4 seconds of RT runtime, which results
in the RT throttler mechanism to trigger and prevent scheduling of RT
tasks for a little less than 4 seconds. So this is quite unlikely as
well.
The issue was quite hard to decode as the reproduction time is between
2 days and 3 weeks and intrusive tracing makes it less likely, but the
following trace recorded with trace_clock=global, which uses
sched_clock_local(), gave the final hint:
<idle>-0 0d..30 400269.477150: hrtimer_cancel: hrtimer=0xf7061e80
<idle>-0 0d..30 400269.477151: hrtimer_start: hrtimer=0xf7061e80 ...
irq/20-S-587 1d..32 400273.772118: sched_wakeup: comm= ... target_cpu=0
<idle>-0 0dN.30 400273.772118: hrtimer_cancel: hrtimer=0xf7061e80
What happens is that CPU0 goes idle and invokes
sched_clock_idle_sleep_event() which invokes sched_clock_local() and
CPU1 runs a remote wakeup for CPU0 at the same time, which invokes
sched_remote_clock(). The time jump gets propagated to CPU0 via
sched_remote_clock() and stays stale on both cores for ~4 seconds.
There are only two other possibilities, which could cause a stale
sched clock:
1) ktime_get() which reads out CLOCK_MONOTONIC returns a sporadic
wrong value.
2) sched_clock() which reads the TSC returns a sporadic wrong value.
#1 can be excluded because sched_clock would continue to increase for
one jiffy and then go stale.
#2 can be excluded because it would not make the clock jump
forward. It would just result in a stale sched_clock for one jiffy.
After quite some brain twisting and finding the same pattern on other
traces, sched_clock_remote() remained the only place which could cause
such a problem and as explained above it's indeed racy on 32bit
systems.
So while on 64bit systems the readout is atomic, we need to verify the
remote readout on 32bit machines. We need to protect the local->clock
readout in sched_clock_remote() on 32bit as well because an NMI could
hit between the low and the high readout, call sched_clock_local() and
modify local->clock.
Thanks to Siegfried Wulsch for bearing with my debug requests and
going through the tedious tasks of running a bunch of reproducer
systems to generate the debug information which let me decode the
issue.
Reported-by: Siegfried Wulsch <Siegfried.Wulsch@rovema.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1304051544160.21884@ionos
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 6f389a8f1dd22a24f3d9afc2812b30d639e94625 upstream.
As commit 40dc166c (PM / Core: Introduce struct syscore_ops for core
subsystems PM) say, syscore_ops operations should be carried with one
CPU on-line and interrupts disabled. However, after commit f96972f2d
(kernel/sys.c: call disable_nonboot_cpus() in kernel_restart()),
syscore_shutdown() is called before disable_nonboot_cpus(), so break
the rules. We have a MIPS machine with a 8259A PIC, and there is an
external timer (HPET) linked at 8259A. Since 8259A has been shutdown
too early (by syscore_shutdown()), disable_nonboot_cpus() runs without
timer interrupt, so it hangs and reboot fails. This patch call
syscore_shutdown() a little later (after disable_nonboot_cpus()) to
avoid reboot failure, this is the same way as poweroff does.
For consistency, add disable_nonboot_cpus() to kernel_halt().
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 83e03b3fe4daffdebbb42151d5410d730ae50bd1 upstream.
On the failure path, stat->start and stat->pages will refer same page.
So it'll attempt to free the same page again and get kernel panic.
Link: http://lkml.kernel.org/r/1364820385-32027-1-git-send-email-namhyung@kernel.org
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
commit 5000c418840b309251c5887f0b56503aae30f84c upstream.
If we reenable ftrace via syctl, we currently set ftrace_trace_function
based on the previous simplistic algorithm. This is inconsistent with
what update_ftrace_function does. So better call that helper instead.
Link: http://lkml.kernel.org/r/5151D26F.1070702@siemens.com
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Running a 3.4 kernel + Fedora-18 (systemd) userland on my Allwinner A10
(arm cortex a8), I'm seeing repeated, reproducable list_del list corruption
errors when build with CONFIG_DEBUG_LIST, and the backtrace always shows
free_css_set_work as the function making the problematic list_del call.
I've tracked this doen to a use after free of the cgrp struct, specifically
of the cgrp->css_sets list_head, which gets cleared by free_css_set_work.
Since free_css_set_work runs form a workqueue, it is possible for it to not be
done with clearing the list when the cgrp gets free-ed. To avoid this the code
adding the links increases cgrp->count, and the freeing code running from the
workqueue decreases cgrp->count *after* doing list_del, and then if the count
goes to 0 calls cgroup_wakeup_rmdir_waiter().
However cgroup_rmdir() is missing a check for cgrp->count != 0, causing it
to still continue with the rmdir (which leads to the free-ing of the cgrp),
before free_css_set_work is done. Sometimes the free-ed memory is re-used
before free_css_set_work gets around to unlinking link->cgrp_link_list,
triggering the list_del list corruption messages.
This patch fixes this by properly checking for cgrp->count != 0 and waiting
for the cgroup_rmdir_waitq in that case.
Change-Id: I9dbc02a0a75d5dffa1b65d67456e00139dea57c3
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
As indicated in the comment above cgroup_css_sets_empty it needs the
css_set_lock. But neither of the 2 call points have it, so rather then fixing
the callers just take the lock inside cgroup_css_sets_empty().
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Change-Id: If7aea71824f6d0e3f2cc6c1ce236c3ae6be2037b
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 5fbd036b55 ("sched: Cleanup cpu_active madness"), which was
supposed to finally sort the cpu_active mess, instead uncovered more.
Since CPU_STARTING is ran before setting the cpu online, there's a
(small) window where the cpu has active,!online.
If during this time there's a wakeup of a task that used to reside on
that cpu select_task_rq() will use select_fallback_rq() to compute an
alternative cpu to run on since we find !online.
select_fallback_rq() however will compute the new cpu against
cpu_active, this means that it can return the same cpu it started out
with, the !online one, since that cpu is in fact marked active.
This results in us trying to scheduling a task on an offline cpu and
triggering a WARN in the IPI code.
The solution proposed by Chuansheng Liu of setting cpu_active in
set_cpu_online() is buggy, firstly not all archs actually use
set_cpu_online(), secondly, not all archs call set_cpu_online() with
IRQs disabled, this means we would introduce either the same race or
the race from fd8a7de17 ("x86: cpu-hotplug: Prevent softirq wakeup on
wrong CPU") -- albeit much narrower.
[ By setting online first and active later we have a window of
online,!active, fresh and bound kthreads have task_cpu() of 0 and
since cpu0 isn't in tsk_cpus_allowed() we end up in
select_fallback_rq() which excludes !active, resulting in a reset
of ->cpus_allowed and the thread running all over the place. ]
The solution is to re-work select_fallback_rq() to require active
_and_ online. This makes the active,!online case work as expected,
OTOH archs running CPU_STARTING after setting online are now
vulnerable to the issue from fd8a7de17 -- these are alpha and
blackfin.
Change-Id: I34bedb461f77bfe4af78ef5ddd3fb3a230ca3551
Reported-by: Chuansheng Liu <chuansheng.liu@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: linux-alpha@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-hubqk1i10o4dpvlm06gq7v6j@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Taras Kondratiuk <taras@ti.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Stepan found:
CPU0 CPUn
_cpu_up()
__cpu_up()
boostrap()
notify_cpu_starting()
set_cpu_online()
while (!cpu_active())
cpu_relax()
<PREEMPT-out>
smp_call_function(.wait=1)
/* we find cpu_online() is true */
arch_send_call_function_ipi_mask()
/* wait-forever-more */
<PREEMPT-in>
local_irq_enable()
cpu_notify(CPU_ONLINE)
sched_cpu_active()
set_cpu_active()
Now the purpose of cpu_active is mostly with bringing down a cpu, where
we mark it !active to avoid the load-balancer from moving tasks to it
while we tear down the cpu. This is required because we only update the
sched_domain tree after we brought the cpu-down. And this is needed so
that some tasks can still run while we bring it down, we just don't want
new tasks to appear.
On cpu-up however the sched_domain tree doesn't yet include the new cpu,
so its invisible to the load-balancer, regardless of the active state.
So instead of setting the active state after we boot the new cpu (and
consequently having to wait for it before enabling interrupts) set the
cpu active before we set it online and avoid the whole mess.
Change-Id: Ibad68784d481672eed23b0e8ad1d5fefc8755bd7
Reported-by: Stepan Moskovchenko <stepanm@codeaurora.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1323965362.18942.71.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[taras@ti.com: backported from v3.4-rc1]
Signed-off-by: Taras Kondratiuk <taras@ti.com>
|
|\ \ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Trinity discovered that we fail to check all 64 bits of
attr.config passed by user space, resulting to out-of-bounds
access of the perf_swevent_enabled array in
sw_perf_event_destroy().
Introduced in commit b0a873ebb ("perf: Register PMU
implementations").
Signed-off-by: Tommi Rantala <tt.rantala@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: davej@redhat.com
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Link: http://lkml.kernel.org/r/1365882554-30259-1-git-send-email-tt.rantala@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \ \
| |/ / |
|
| |\ \
| | |/
| | |
| | | |
This is the 3.0.72 stable release
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 613f04a0f51e6e68ac6fe571ab79da3c0a5eb4da upstream.
The latency tracers require the buffers to be in overwrite mode,
otherwise they get screwed up. Force the buffers to stay in overwrite
mode when latency tracers are enabled.
Added a flag_changed() method to the tracer structure to allow
the tracers to see what flags are being changed, and also be able
to prevent the change from happing.
[Backported for 3.4-stable. Re-added current_trace NULL checks; removed
allocated_snapshot field; adapted to tracing_trace_options_write without
trace_set_options.]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Lingzhu Xiang <lxiang@redhat.com>
Reviewed-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 69d34da2984c95b33ea21518227e1f9470f11d95 upstream.
Seems that the tracer flags have never been protected from
synchronous writes. Luckily, admins don't usually modify the
tracing flags via two different tasks. But if scripts were to
be used to modify them, then they could get corrupted.
Move the trace_types_lock that protects against tracers changing
to also protect the flags being set.
[Backported for 3.4, 3.0-stable. Moved return to after unlock.]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Lingzhu Xiang <lxiang@redhat.com>
Reviewed-by: CAI Qian <caiqian@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 522cff142d7d2f9230839c9e1f21a4d8bcc22a4a upstream.
__ARCH_HAS_SA_RESTORER is the preferred conditional for use in 3.9 and
later kernels, per Kees.
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Julien Tinnes <jln@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit a7dc19b8652c862d5b7c4d2339bd3c428bd29c4a upstream.
Currently tick_check_broadcast_device doesn't reject clock_event_devices
with CLOCK_EVT_FEAT_DUMMY, and may select them in preference to real
hardware if they have a higher rating value. In this situation, the
dummy timer is responsible for broadcasting to itself, and the core
clockevents code may attempt to call non-existent callbacks for
programming the dummy, eventually leading to a panic.
This patch makes tick_check_broadcast_device always reject dummy timers,
preventing this problem.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Jon Medhurst (Tixy) <tixy@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 740466bc89ad8bd5afcc8de220f715f62b21e365 upstream.
Because function tracing is very invasive, and can even trace
calls to rcu_read_lock(), RCU access in function tracing is done
with preempt_disable_notrace(). This requires a synchronize_sched()
for updates and not a synchronize_rcu().
Function probes (traceon, traceoff, etc) must be freed after
a synchronize_sched() after its entry has been removed from the
hash. But call_rcu() is used. Fix this by using call_rcu_sched().
Also fix the usage to use hlist_del_rcu() instead of hlist_del().
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 2721e72dd10f71a3ba90f59781becf02638aa0d9 upstream.
Although the swap is wrapped with a spin_lock, the assignment
of the temp buffer used to swap is not within that lock.
It needs to be moved into that lock, otherwise two swaps
happening on two different CPUs, can end up using the wrong
temp buffer to assign in the swap.
Luckily, all current callers of the swap function appear to have
their own locks. But in case something is added that allows two
different callers to call the swap, then there's a chance that
this race can trigger and corrupt the buffers.
New code is coming soon that will allow for this race to trigger.
I've Cc'd stable, so this bug will not show up if someone backports
one of the changes that can trigger this bug.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 2ca39528c01a933f6689cd6505ce65bd6d68a530 upstream.
When the new signal handlers are set up, the location of sa_restorer is
not cleared, leaking a parent process's address space location to
children. This allows for a potential bypass of the parent's ASLR by
examining the sa_restorer value returned when calling sigaction().
Based on what should be considered "secret" about addresses, it only
matters across the exec not the fork (since the VMAs haven't changed
until the exec). But since exec sets SIG_DFL and keeps sa_restorer,
this is where it should be fixed.
Given the few uses of sa_restorer, a "set" function was not written
since this would be the only use. Instead, we use
__ARCH_HAS_SA_RESTORER, as already done in other places.
Example of the leak before applying this patch:
$ cat /proc/$$/maps
...
7fb9f3083000-7fb9f3238000 r-xp 00000000 fd:01 404469 .../libc-2.15.so
...
$ ./leak
...
7f278bc74000-7f278be29000 r-xp 00000000 fd:01 404469 .../libc-2.15.so
...
1 0 (nil) 0x7fb9f30b94a0
2 4000000 (nil) 0x7f278bcaa4a0
3 4000000 (nil) 0x7f278bcaa4a0
4 0 (nil) 0x7fb9f30b94a0
...
[akpm@linux-foundation.org: use SA_RESTORER for backportability]
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Emese Revfy <re.emese@gmail.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Cc: Julien Tinnes <jln@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit db05021d49a994ee40a9735d9c3cb0060c9babb8 upstream.
The prompt to enable DYNAMIC_FTRACE (the ability to nop and
enable function tracing at run time) had a confusing statement:
"enable/disable ftrace tracepoints dynamically"
This was written before tracepoints were added to the kernel,
but now that tracepoints have been added, this is very confusing
and has confused people enough to give wrong information during
presentations.
Not only that, I looked at the help text, and it still references
that dreaded daemon that use to wake up once a second to update
the nop locations and brick NICs, that hasn't been around for over
five years.
Time to bring the text up to the current decade.
Reported-by: Ezequiel Garcia <elezegarcia@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\ \ \
| |/ / |
|
| |\ \
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This is the 3.0.68 stable release
Conflicts:
kernel/cgroup.c
Change-Id: I067982d25e18e3a12de93a5eb6429b8829d7ca11
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 71b5707e119653039e6e95213f00479668c79b75 upstream.
In cgroup_exit() put_css_set_taskexit() is called without any lock,
which might lead to accessing a freed cgroup:
thread1 thread2
---------------------------------------------
exit()
cgroup_exit()
put_css_set_taskexit()
atomic_dec(cgrp->count);
rmdir();
/* not safe !! */
check_for_release(cgrp);
rcu_read_lock() can be used to make sure the cgroup is alive.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
commit 63f43f55c9bbc14f76b582644019b8a07dc8219a upstream.
rename() will change dentry->d_name. The result of this race can
be worse than seeing partially rewritten name, but we might access
a stale pointer because rename() will re-allocate memory to hold
a longer name.
It's safe in the protection of dentry->d_lock.
v2: check NULL dentry before acquiring dentry lock.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Upstream commit 9067ac85d533651b98c2ff903182a20cbb361fcb.
wake_up_process() should never wakeup a TASK_STOPPED/TRACED task.
Change it to use TASK_NORMAL and add the WARN_ON().
TASK_ALL has no other users, probably can be killed.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Upstream commit 9899d11f654474d2d54ea52ceaa2a1f4db3abd68.
putreg() assumes that the tracee is not running and pt_regs_access() can
safely play with its stack. However a killed tracee can return from
ptrace_stop() to the low-level asm code and do RESTORE_REST, this means
that debugger can actually read/modify the kernel stack until the tracee
does SAVE_REST again.
set_task_blockstep() can race with SIGKILL too and in some sense this
race is even worse, the very fact the tracee can be woken up breaks the
logic.
As Linus suggested we can clear TASK_WAKEKILL around the arch_ptrace()
call, this ensures that nobody can ever wakeup the tracee while the
debugger looks at it. Not only this fixes the mentioned problems, we
can do some cleanups/simplifications in arch_ptrace() paths.
Probably ptrace_unfreeze_traced() needs more callers, for example it
makes sense to make the tracee killable for oom-killer before
access_process_vm().
While at it, add the comment into may_ptrace_stop() to explain why
ptrace_stop() still can't rely on SIGKILL and signal_pending_state().
Reported-by: Salman Qazi <sqazi@google.com>
Reported-by: Suleiman Souhlal <suleiman@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|