#include #include #include #include #include "voltage.h" #include "vc.h" #include "prm-regbits-34xx.h" #include "prm-regbits-44xx.h" #include "prm44xx.h" /* Voltage scale and accessory APIs */ int omap_vc_pre_scale(struct voltagedomain *voltdm, unsigned long target_volt, u8 *target_vsel, u8 *current_vsel) { struct omap_vc_channel *vc = voltdm->vc; struct omap_vdd_info *vdd = voltdm->vdd; struct omap_volt_data *volt_data; const struct omap_vp_common_data *vp_common; u32 vc_cmdval, vp_errgain_val; vp_common = vdd->vp_data->vp_common; /* Check if sufficient pmic info is available for this vdd */ if (!vdd->pmic_info) { pr_err("%s: Insufficient pmic info to scale the vdd_%s\n", __func__, voltdm->name); return -EINVAL; } if (!vdd->pmic_info->uv_to_vsel) { pr_err("%s: PMIC function to convert voltage in uV to" "vsel not registered. Hence unable to scale voltage" "for vdd_%s\n", __func__, voltdm->name); return -ENODATA; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return -EINVAL; } /* Get volt_data corresponding to target_volt */ volt_data = omap_voltage_get_voltdata(voltdm, target_volt); if (IS_ERR(volt_data)) volt_data = NULL; *target_vsel = vdd->pmic_info->uv_to_vsel(target_volt); *current_vsel = voltdm->read(vdd->vp_data->voltage); /* Setting the ON voltage to the new target voltage */ vc_cmdval = voltdm->read(vc->cmdval_reg); vc_cmdval &= ~vc->common->cmd_on_mask; vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift); voltdm->write(vc_cmdval, vc->cmdval_reg); /* Setting vp errorgain based on the voltage */ if (volt_data) { vp_errgain_val = voltdm->read(vdd->vp_data->vpconfig); vdd->vp_rt_data.vpconfig_errorgain = volt_data->vp_errgain; vp_errgain_val &= ~vp_common->vpconfig_errorgain_mask; vp_errgain_val |= vdd->vp_rt_data.vpconfig_errorgain << vp_common->vpconfig_errorgain_shift; voltdm->write(vp_errgain_val, vdd->vp_data->vpconfig); } return 0; } void omap_vc_post_scale(struct voltagedomain *voltdm, unsigned long target_volt, u8 target_vsel, u8 current_vsel) { struct omap_vdd_info *vdd = voltdm->vdd; u32 smps_steps = 0, smps_delay = 0; smps_steps = abs(target_vsel - current_vsel); /* SMPS slew rate / step size. 2us added as buffer. */ smps_delay = ((smps_steps * vdd->pmic_info->step_size) / vdd->pmic_info->slew_rate) + 2; udelay(smps_delay); vdd->curr_volt = target_volt; } /* vc_bypass_scale_voltage - VC bypass method of voltage scaling */ int omap_vc_bypass_scale_voltage(struct voltagedomain *voltdm, unsigned long target_volt) { struct omap_vc_channel *vc = voltdm->vc; struct omap_vdd_info *vdd = voltdm->vdd; u32 loop_cnt = 0, retries_cnt = 0; u32 vc_valid, vc_bypass_val_reg, vc_bypass_value; u8 target_vsel, current_vsel; int ret; ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, ¤t_vsel); if (ret) return ret; vc_valid = vc->common->valid; vc_bypass_val_reg = vc->common->bypass_val_reg; vc_bypass_value = (target_vsel << vc->common->data_shift) | (vdd->pmic_info->volt_reg_addr << vc->common->regaddr_shift) | (vdd->pmic_info->i2c_slave_addr << vc->common->slaveaddr_shift); voltdm->write(vc_bypass_value, vc_bypass_val_reg); voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg); vc_bypass_value = voltdm->read(vc_bypass_val_reg); /* * Loop till the bypass command is acknowledged from the SMPS. * NOTE: This is legacy code. The loop count and retry count needs * to be revisited. */ while (!(vc_bypass_value & vc_valid)) { loop_cnt++; if (retries_cnt > 10) { pr_warning("%s: Retry count exceeded\n", __func__); return -ETIMEDOUT; } if (loop_cnt > 50) { retries_cnt++; loop_cnt = 0; udelay(10); } vc_bypass_value = voltdm->read(vc_bypass_val_reg); } omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel); return 0; } static void __init omap3_vfsm_init(struct voltagedomain *voltdm) { /* * Voltage Manager FSM parameters init * XXX This data should be passed in from the board file */ voltdm->write(OMAP3_CLKSETUP, OMAP3_PRM_CLKSETUP_OFFSET); voltdm->write(OMAP3_VOLTOFFSET, OMAP3_PRM_VOLTOFFSET_OFFSET); voltdm->write(OMAP3_VOLTSETUP2, OMAP3_PRM_VOLTSETUP2_OFFSET); } static void __init omap3_vc_init_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; struct omap_vdd_info *vdd = voltdm->vdd; static bool is_initialized; u8 on_vsel, onlp_vsel, ret_vsel, off_vsel; u32 vc_val; if (is_initialized) return; /* Set up the on, inactive, retention and off voltage */ on_vsel = vdd->pmic_info->uv_to_vsel(vdd->pmic_info->on_volt); onlp_vsel = vdd->pmic_info->uv_to_vsel(vdd->pmic_info->onlp_volt); ret_vsel = vdd->pmic_info->uv_to_vsel(vdd->pmic_info->ret_volt); off_vsel = vdd->pmic_info->uv_to_vsel(vdd->pmic_info->off_volt); vc_val = ((on_vsel << vc->common->cmd_on_shift) | (onlp_vsel << vc->common->cmd_onlp_shift) | (ret_vsel << vc->common->cmd_ret_shift) | (off_vsel << vc->common->cmd_off_shift)); voltdm->write(vc_val, vc->cmdval_reg); /* * Generic VC parameters init * XXX This data should be abstracted out */ voltdm->write(OMAP3430_CMD1_MASK | OMAP3430_RAV1_MASK, OMAP3_PRM_VC_CH_CONF_OFFSET); voltdm->write(OMAP3430_MCODE_SHIFT | OMAP3430_HSEN_MASK, OMAP3_PRM_VC_I2C_CFG_OFFSET); omap3_vfsm_init(voltdm); is_initialized = true; } /* OMAP4 specific voltage init functions */ static void __init omap4_vc_init_channel(struct voltagedomain *voltdm) { static bool is_initialized; u32 vc_val; if (is_initialized) return; /* TODO: Configure setup times and CMD_VAL values*/ /* * Generic VC parameters init * XXX This data should be abstracted out */ vc_val = (OMAP4430_RAV_VDD_MPU_L_MASK | OMAP4430_CMD_VDD_MPU_L_MASK | OMAP4430_RAV_VDD_IVA_L_MASK | OMAP4430_CMD_VDD_IVA_L_MASK | OMAP4430_RAV_VDD_CORE_L_MASK | OMAP4430_CMD_VDD_CORE_L_MASK); voltdm->write(vc_val, OMAP4_PRM_VC_CFG_CHANNEL_OFFSET); /* XXX These are magic numbers and do not belong! */ vc_val = (0x60 << OMAP4430_SCLL_SHIFT | 0x26 << OMAP4430_SCLH_SHIFT); voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET); is_initialized = true; } void __init omap_vc_init_channel(struct voltagedomain *voltdm) { struct omap_vc_channel *vc = voltdm->vc; struct omap_vdd_info *vdd = voltdm->vdd; u32 vc_val; if (!vdd->pmic_info || !vdd->pmic_info->uv_to_vsel) { pr_err("%s: PMIC info requried to configure vc for" "vdd_%s not populated.Hence cannot initialize vc\n", __func__, voltdm->name); return; } if (!voltdm->read || !voltdm->write) { pr_err("%s: No read/write API for accessing vdd_%s regs\n", __func__, voltdm->name); return; } /* get PMIC/board specific settings */ vc->i2c_slave_addr = vdd->pmic_info->i2c_slave_addr; vc->volt_reg_addr = vdd->pmic_info->volt_reg_addr; vc->cmd_reg_addr = vdd->pmic_info->cmd_reg_addr; /* Configure the i2c slave address for this VC */ voltdm->rmw(vc->smps_sa_mask, vc->i2c_slave_addr << __ffs(vc->smps_sa_mask), vc->common->smps_sa_reg); /* * Configure the PMIC register addresses. */ voltdm->rmw(vc->smps_volra_mask, vc->volt_reg_addr << __ffs(vc->smps_volra_mask), vc->common->smps_volra_reg); if (vc->cmd_reg_addr) voltdm->rmw(vc->smps_cmdra_mask, vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask), vc->common->smps_cmdra_reg); /* Configure the setup times */ vc_val = voltdm->read(vdd->vfsm->voltsetup_reg); vc_val &= ~vdd->vfsm->voltsetup_mask; vc_val |= vdd->pmic_info->volt_setup_time << vdd->vfsm->voltsetup_shift; voltdm->write(vc_val, vdd->vfsm->voltsetup_reg); if (cpu_is_omap34xx()) omap3_vc_init_channel(voltdm); else if (cpu_is_omap44xx()) omap4_vc_init_channel(voltdm); }