/* * Blackfin architecture-dependent process handling * * Copyright 2004-2009 Analog Devices Inc. * * Licensed under the GPL-2 or later */ #include <linux/module.h> #include <linux/smp_lock.h> #include <linux/unistd.h> #include <linux/user.h> #include <linux/uaccess.h> #include <linux/sched.h> #include <linux/tick.h> #include <linux/fs.h> #include <linux/err.h> #include <asm/blackfin.h> #include <asm/fixed_code.h> #include <asm/mem_map.h> asmlinkage void ret_from_fork(void); /* Points to the SDRAM backup memory for the stack that is currently in * L1 scratchpad memory. */ void *current_l1_stack_save; /* The number of tasks currently using a L1 stack area. The SRAM is * allocated/deallocated whenever this changes from/to zero. */ int nr_l1stack_tasks; /* Start and length of the area in L1 scratchpad memory which we've allocated * for process stacks. */ void *l1_stack_base; unsigned long l1_stack_len; /* * Powermanagement idle function, if any.. */ void (*pm_idle)(void) = NULL; EXPORT_SYMBOL(pm_idle); void (*pm_power_off)(void) = NULL; EXPORT_SYMBOL(pm_power_off); /* * The idle loop on BFIN */ #ifdef CONFIG_IDLE_L1 static void default_idle(void)__attribute__((l1_text)); void cpu_idle(void)__attribute__((l1_text)); #endif /* * This is our default idle handler. We need to disable * interrupts here to ensure we don't miss a wakeup call. */ static void default_idle(void) { #ifdef CONFIG_IPIPE ipipe_suspend_domain(); #endif local_irq_disable_hw(); if (!need_resched()) idle_with_irq_disabled(); local_irq_enable_hw(); } /* * The idle thread. We try to conserve power, while trying to keep * overall latency low. The architecture specific idle is passed * a value to indicate the level of "idleness" of the system. */ void cpu_idle(void) { /* endless idle loop with no priority at all */ while (1) { void (*idle)(void) = pm_idle; #ifdef CONFIG_HOTPLUG_CPU if (cpu_is_offline(smp_processor_id())) cpu_die(); #endif if (!idle) idle = default_idle; tick_nohz_stop_sched_tick(1); while (!need_resched()) idle(); tick_nohz_restart_sched_tick(); preempt_enable_no_resched(); schedule(); preempt_disable(); } } /* * This gets run with P1 containing the * function to call, and R1 containing * the "args". Note P0 is clobbered on the way here. */ void kernel_thread_helper(void); __asm__(".section .text\n" ".align 4\n" "_kernel_thread_helper:\n\t" "\tsp += -12;\n\t" "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous"); /* * Create a kernel thread. */ pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags) { struct pt_regs regs; memset(®s, 0, sizeof(regs)); regs.r1 = (unsigned long)arg; regs.p1 = (unsigned long)fn; regs.pc = (unsigned long)kernel_thread_helper; regs.orig_p0 = -1; /* Set bit 2 to tell ret_from_fork we should be returning to kernel mode. */ regs.ipend = 0x8002; __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):); return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); } EXPORT_SYMBOL(kernel_thread); /* * Do necessary setup to start up a newly executed thread. * * pass the data segment into user programs if it exists, * it can't hurt anything as far as I can tell */ void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) { set_fs(USER_DS); regs->pc = new_ip; if (current->mm) regs->p5 = current->mm->start_data; #ifndef CONFIG_SMP task_thread_info(current)->l1_task_info.stack_start = (void *)current->mm->context.stack_start; task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp; memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info, sizeof(*L1_SCRATCH_TASK_INFO)); #endif wrusp(new_sp); } EXPORT_SYMBOL_GPL(start_thread); void flush_thread(void) { } asmlinkage int bfin_vfork(struct pt_regs *regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL, NULL); } asmlinkage int bfin_clone(struct pt_regs *regs) { unsigned long clone_flags; unsigned long newsp; #ifdef __ARCH_SYNC_CORE_DCACHE if (current->rt.nr_cpus_allowed == num_possible_cpus()) { current->cpus_allowed = cpumask_of_cpu(smp_processor_id()); current->rt.nr_cpus_allowed = 1; } #endif /* syscall2 puts clone_flags in r0 and usp in r1 */ clone_flags = regs->r0; newsp = regs->r1; if (!newsp) newsp = rdusp(); else newsp -= 12; return do_fork(clone_flags, newsp, regs, 0, NULL, NULL); } int copy_thread(unsigned long clone_flags, unsigned long usp, unsigned long topstk, struct task_struct *p, struct pt_regs *regs) { struct pt_regs *childregs; childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1; *childregs = *regs; childregs->r0 = 0; p->thread.usp = usp; p->thread.ksp = (unsigned long)childregs; p->thread.pc = (unsigned long)ret_from_fork; return 0; } /* * sys_execve() executes a new program. */ asmlinkage int sys_execve(char __user *name, char __user * __user *argv, char __user * __user *envp) { int error; char *filename; struct pt_regs *regs = (struct pt_regs *)((&name) + 6); filename = getname(name); error = PTR_ERR(filename); if (IS_ERR(filename)) return error; error = do_execve(filename, argv, envp, regs); putname(filename); return error; } unsigned long get_wchan(struct task_struct *p) { unsigned long fp, pc; unsigned long stack_page; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; stack_page = (unsigned long)p; fp = p->thread.usp; do { if (fp < stack_page + sizeof(struct thread_info) || fp >= 8184 + stack_page) return 0; pc = ((unsigned long *)fp)[1]; if (!in_sched_functions(pc)) return pc; fp = *(unsigned long *)fp; } while (count++ < 16); return 0; } void finish_atomic_sections (struct pt_regs *regs) { int __user *up0 = (int __user *)regs->p0; switch (regs->pc) { default: /* not in middle of an atomic step, so resume like normal */ return; case ATOMIC_XCHG32 + 2: put_user(regs->r1, up0); break; case ATOMIC_CAS32 + 2: case ATOMIC_CAS32 + 4: if (regs->r0 == regs->r1) case ATOMIC_CAS32 + 6: put_user(regs->r2, up0); break; case ATOMIC_ADD32 + 2: regs->r0 = regs->r1 + regs->r0; /* fall through */ case ATOMIC_ADD32 + 4: put_user(regs->r0, up0); break; case ATOMIC_SUB32 + 2: regs->r0 = regs->r1 - regs->r0; /* fall through */ case ATOMIC_SUB32 + 4: put_user(regs->r0, up0); break; case ATOMIC_IOR32 + 2: regs->r0 = regs->r1 | regs->r0; /* fall through */ case ATOMIC_IOR32 + 4: put_user(regs->r0, up0); break; case ATOMIC_AND32 + 2: regs->r0 = regs->r1 & regs->r0; /* fall through */ case ATOMIC_AND32 + 4: put_user(regs->r0, up0); break; case ATOMIC_XOR32 + 2: regs->r0 = regs->r1 ^ regs->r0; /* fall through */ case ATOMIC_XOR32 + 4: put_user(regs->r0, up0); break; } /* * We've finished the atomic section, and the only thing left for * userspace is to do a RTS, so we might as well handle that too * since we need to update the PC anyways. */ regs->pc = regs->rets; } static inline int in_mem(unsigned long addr, unsigned long size, unsigned long start, unsigned long end) { return addr >= start && addr + size <= end; } static inline int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off, unsigned long const_addr, unsigned long const_size) { return const_size && in_mem(addr, size, const_addr + off, const_addr + const_size); } static inline int in_mem_const(unsigned long addr, unsigned long size, unsigned long const_addr, unsigned long const_size) { return in_mem_const_off(addr, size, 0, const_addr, const_size); } #define ASYNC_ENABLED(bnum, bctlnum) \ ({ \ (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \ bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \ 1; \ }) /* * We can't read EBIU banks that aren't enabled or we end up hanging * on the access to the async space. Make sure we validate accesses * that cross async banks too. * 0 - found, but unusable * 1 - found & usable * 2 - not found */ static int in_async(unsigned long addr, unsigned long size) { if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) { if (!ASYNC_ENABLED(0, 0)) return 0; if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) return 1; size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr; addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE; } if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) { if (!ASYNC_ENABLED(1, 0)) return 0; if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) return 1; size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr; addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE; } if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) { if (!ASYNC_ENABLED(2, 1)) return 0; if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) return 1; size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr; addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE; } if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) { if (ASYNC_ENABLED(3, 1)) return 0; if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) return 1; return 0; } /* not within async bounds */ return 2; } int bfin_mem_access_type(unsigned long addr, unsigned long size) { int cpu = raw_smp_processor_id(); /* Check that things do not wrap around */ if (addr > ULONG_MAX - size) return -EFAULT; if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end)) return BFIN_MEM_ACCESS_CORE; if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH)) return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA; if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH)) return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT; if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH)) return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH)) return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; #ifdef COREB_L1_CODE_START if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH)) return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA; if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH)) return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT; if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH)) return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH)) return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA; #endif if (in_mem_const(addr, size, L2_START, L2_LENGTH)) return BFIN_MEM_ACCESS_CORE; if (addr >= SYSMMR_BASE) return BFIN_MEM_ACCESS_CORE_ONLY; switch (in_async(addr, size)) { case 0: return -EFAULT; case 1: return BFIN_MEM_ACCESS_CORE; case 2: /* fall through */; } if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH)) return BFIN_MEM_ACCESS_CORE; if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH)) return BFIN_MEM_ACCESS_DMA; return -EFAULT; } #if defined(CONFIG_ACCESS_CHECK) #ifdef CONFIG_ACCESS_OK_L1 __attribute__((l1_text)) #endif /* Return 1 if access to memory range is OK, 0 otherwise */ int _access_ok(unsigned long addr, unsigned long size) { int aret; if (size == 0) return 1; /* Check that things do not wrap around */ if (addr > ULONG_MAX - size) return 0; if (segment_eq(get_fs(), KERNEL_DS)) return 1; #ifdef CONFIG_MTD_UCLINUX if (1) #else if (0) #endif { if (in_mem(addr, size, memory_start, memory_end)) return 1; if (in_mem(addr, size, memory_mtd_end, physical_mem_end)) return 1; # ifndef CONFIG_ROMFS_ON_MTD if (0) # endif /* For XIP, allow user space to use pointers within the ROMFS. */ if (in_mem(addr, size, memory_mtd_start, memory_mtd_end)) return 1; } else { if (in_mem(addr, size, memory_start, physical_mem_end)) return 1; } if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end)) return 1; if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH)) return 1; if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH)) return 1; if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH)) return 1; if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH)) return 1; #ifdef COREB_L1_CODE_START if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH)) return 1; if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH)) return 1; if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH)) return 1; if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH)) return 1; #endif aret = in_async(addr, size); if (aret < 2) return aret; if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH)) return 1; if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH)) return 1; if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH)) return 1; return 0; } EXPORT_SYMBOL(_access_ok); #endif /* CONFIG_ACCESS_CHECK */