/* * Here is where the ball gets rolling as far as the kernel is concerned. * When control is transferred to _start, the bootload has already * loaded us to the correct address. All that's left to do here is * to set up the kernel's global pointer and jump to the kernel * entry point. * * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * Copyright (C) 1999 Intel Corp. * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com> * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com> * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com> * -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2. * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com> * Support for CPU Hotplug */ #include <asm/asmmacro.h> #include <asm/fpu.h> #include <asm/kregs.h> #include <asm/mmu_context.h> #include <asm/asm-offsets.h> #include <asm/pal.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/ptrace.h> #include <asm/system.h> #include <asm/mca_asm.h> #ifdef CONFIG_HOTPLUG_CPU #define SAL_PSR_BITS_TO_SET \ (IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL) #define SAVE_FROM_REG(src, ptr, dest) \ mov dest=src;; \ st8 [ptr]=dest,0x08 #define RESTORE_REG(reg, ptr, _tmp) \ ld8 _tmp=[ptr],0x08;; \ mov reg=_tmp #define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\ mov ar.lc=IA64_NUM_DBG_REGS-1;; \ mov _idx=0;; \ 1: \ SAVE_FROM_REG(_breg[_idx], ptr, _dest);; \ add _idx=1,_idx;; \ br.cloop.sptk.many 1b #define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\ mov ar.lc=IA64_NUM_DBG_REGS-1;; \ mov _idx=0;; \ _lbl: RESTORE_REG(_breg[_idx], ptr, _tmp);; \ add _idx=1, _idx;; \ br.cloop.sptk.many _lbl #define SAVE_ONE_RR(num, _reg, _tmp) \ movl _tmp=(num<<61);; \ mov _reg=rr[_tmp] #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \ SAVE_ONE_RR(0,_r0, _tmp);; \ SAVE_ONE_RR(1,_r1, _tmp);; \ SAVE_ONE_RR(2,_r2, _tmp);; \ SAVE_ONE_RR(3,_r3, _tmp);; \ SAVE_ONE_RR(4,_r4, _tmp);; \ SAVE_ONE_RR(5,_r5, _tmp);; \ SAVE_ONE_RR(6,_r6, _tmp);; \ SAVE_ONE_RR(7,_r7, _tmp);; #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \ st8 [ptr]=_r0, 8;; \ st8 [ptr]=_r1, 8;; \ st8 [ptr]=_r2, 8;; \ st8 [ptr]=_r3, 8;; \ st8 [ptr]=_r4, 8;; \ st8 [ptr]=_r5, 8;; \ st8 [ptr]=_r6, 8;; \ st8 [ptr]=_r7, 8;; #define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \ mov ar.lc=0x08-1;; \ movl _idx1=0x00;; \ RestRR: \ dep.z _idx2=_idx1,61,3;; \ ld8 _tmp=[ptr],8;; \ mov rr[_idx2]=_tmp;; \ srlz.d;; \ add _idx1=1,_idx1;; \ br.cloop.sptk.few RestRR #define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \ movl reg1=sal_state_for_booting_cpu;; \ ld8 reg2=[reg1];; /* * Adjust region registers saved before starting to save * break regs and rest of the states that need to be preserved. */ #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred) \ SAVE_FROM_REG(b0,_reg1,_reg2);; \ SAVE_FROM_REG(b1,_reg1,_reg2);; \ SAVE_FROM_REG(b2,_reg1,_reg2);; \ SAVE_FROM_REG(b3,_reg1,_reg2);; \ SAVE_FROM_REG(b4,_reg1,_reg2);; \ SAVE_FROM_REG(b5,_reg1,_reg2);; \ st8 [_reg1]=r1,0x08;; \ st8 [_reg1]=r12,0x08;; \ st8 [_reg1]=r13,0x08;; \ SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);; \ SAVE_FROM_REG(ar.pfs,_reg1,_reg2);; \ SAVE_FROM_REG(ar.rnat,_reg1,_reg2);; \ SAVE_FROM_REG(ar.unat,_reg1,_reg2);; \ SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);; \ SAVE_FROM_REG(cr.dcr,_reg1,_reg2);; \ SAVE_FROM_REG(cr.iva,_reg1,_reg2);; \ SAVE_FROM_REG(cr.pta,_reg1,_reg2);; \ SAVE_FROM_REG(cr.itv,_reg1,_reg2);; \ SAVE_FROM_REG(cr.pmv,_reg1,_reg2);; \ SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);; \ SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);; \ SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);; \ st8 [_reg1]=r4,0x08;; \ st8 [_reg1]=r5,0x08;; \ st8 [_reg1]=r6,0x08;; \ st8 [_reg1]=r7,0x08;; \ st8 [_reg1]=_pred,0x08;; \ SAVE_FROM_REG(ar.lc, _reg1, _reg2);; \ stf.spill.nta [_reg1]=f2,16;; \ stf.spill.nta [_reg1]=f3,16;; \ stf.spill.nta [_reg1]=f4,16;; \ stf.spill.nta [_reg1]=f5,16;; \ stf.spill.nta [_reg1]=f16,16;; \ stf.spill.nta [_reg1]=f17,16;; \ stf.spill.nta [_reg1]=f18,16;; \ stf.spill.nta [_reg1]=f19,16;; \ stf.spill.nta [_reg1]=f20,16;; \ stf.spill.nta [_reg1]=f21,16;; \ stf.spill.nta [_reg1]=f22,16;; \ stf.spill.nta [_reg1]=f23,16;; \ stf.spill.nta [_reg1]=f24,16;; \ stf.spill.nta [_reg1]=f25,16;; \ stf.spill.nta [_reg1]=f26,16;; \ stf.spill.nta [_reg1]=f27,16;; \ stf.spill.nta [_reg1]=f28,16;; \ stf.spill.nta [_reg1]=f29,16;; \ stf.spill.nta [_reg1]=f30,16;; \ stf.spill.nta [_reg1]=f31,16;; #else #define SET_AREA_FOR_BOOTING_CPU(a1, a2) #define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3) #define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) #define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) #endif #define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \ movl _tmp1=(num << 61);; \ mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \ mov rr[_tmp1]=_tmp2 .section __special_page_section,"ax" .global empty_zero_page empty_zero_page: .skip PAGE_SIZE .global swapper_pg_dir swapper_pg_dir: .skip PAGE_SIZE .rodata halt_msg: stringz "Halting kernel\n" .text .global start_ap /* * Start the kernel. When the bootloader passes control to _start(), r28 * points to the address of the boot parameter area. Execution reaches * here in physical mode. */ GLOBAL_ENTRY(_start) start_ap: .prologue .save rp, r0 // terminate unwind chain with a NULL rp .body rsm psr.i | psr.ic ;; srlz.i ;; { flushrs // must be first insn in group srlz.i } ;; /* * Save the region registers, predicate before they get clobbered */ SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15); mov r25=pr;; /* * Initialize kernel region registers: * rr[0]: VHPT enabled, page size = PAGE_SHIFT * rr[1]: VHPT enabled, page size = PAGE_SHIFT * rr[2]: VHPT enabled, page size = PAGE_SHIFT * rr[3]: VHPT enabled, page size = PAGE_SHIFT * rr[4]: VHPT enabled, page size = PAGE_SHIFT * rr[5]: VHPT enabled, page size = PAGE_SHIFT * rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT * rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT * We initialize all of them to prevent inadvertently assuming * something about the state of address translation early in boot. */ SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);; SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);; SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);; SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);; SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);; SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);; SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);; SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);; /* * Now pin mappings into the TLB for kernel text and data */ mov r18=KERNEL_TR_PAGE_SHIFT<<2 movl r17=KERNEL_START ;; mov cr.itir=r18 mov cr.ifa=r17 mov r16=IA64_TR_KERNEL mov r3=ip movl r18=PAGE_KERNEL ;; dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT ;; or r18=r2,r18 ;; srlz.i ;; itr.i itr[r16]=r18 ;; itr.d dtr[r16]=r18 ;; srlz.i /* * Switch into virtual mode: */ movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \ |IA64_PSR_DI) ;; mov cr.ipsr=r16 movl r17=1f ;; mov cr.iip=r17 mov cr.ifs=r0 ;; rfi ;; 1: // now we are in virtual mode SET_AREA_FOR_BOOTING_CPU(r2, r16); STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15); SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25) ;; // set IVT entry point---can't access I/O ports without it movl r3=ia64_ivt ;; mov cr.iva=r3 movl r2=FPSR_DEFAULT ;; srlz.i movl gp=__gp mov ar.fpsr=r2 ;; #define isAP p2 // are we an Application Processor? #define isBP p3 // are we the Bootstrap Processor? #ifdef CONFIG_SMP /* * Find the init_task for the currently booting CPU. At poweron, and in * UP mode, task_for_booting_cpu is NULL. */ movl r3=task_for_booting_cpu ;; ld8 r3=[r3] movl r2=init_task ;; cmp.eq isBP,isAP=r3,r0 ;; (isAP) mov r2=r3 #else movl r2=init_task cmp.eq isBP,isAP=r0,r0 #endif ;; tpa r3=r2 // r3 == phys addr of task struct mov r16=-1 (isBP) br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it // load mapping for stack (virtaddr in r2, physaddr in r3) rsm psr.ic movl r17=PAGE_KERNEL ;; srlz.d dep r18=0,r3,0,12 ;; or r18=r17,r18 dep r2=-1,r3,61,3 // IMVA of task ;; mov r17=rr[r2] shr.u r16=r3,IA64_GRANULE_SHIFT ;; dep r17=0,r17,8,24 ;; mov cr.itir=r17 mov cr.ifa=r2 mov r19=IA64_TR_CURRENT_STACK ;; itr.d dtr[r19]=r18 ;; ssm psr.ic srlz.d ;; .load_current: // load the "current" pointer (r13) and ar.k6 with the current task mov IA64_KR(CURRENT)=r2 // virtual address mov IA64_KR(CURRENT_STACK)=r16 mov r13=r2 /* * Reserve space at the top of the stack for "struct pt_regs". Kernel * threads don't store interesting values in that structure, but the space * still needs to be there because time-critical stuff such as the context * switching can be implemented more efficiently (for example, __switch_to() * always sets the psr.dfh bit of the task it is switching to). */ addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2 addl r2=IA64_RBS_OFFSET,r2 // initialize the RSE mov ar.rsc=0 // place RSE in enforced lazy mode ;; loadrs // clear the dirty partition mov IA64_KR(PER_CPU_DATA)=r0 // clear physical per-CPU base ;; mov ar.bspstore=r2 // establish the new RSE stack ;; mov ar.rsc=0x3 // place RSE in eager mode (isBP) dep r28=-1,r28,61,3 // make address virtual (isBP) movl r2=ia64_boot_param ;; (isBP) st8 [r2]=r28 // save the address of the boot param area passed by the bootloader #ifdef CONFIG_SMP (isAP) br.call.sptk.many rp=start_secondary .ret0: (isAP) br.cond.sptk self #endif // This is executed by the bootstrap processor (bsp) only: #ifdef CONFIG_IA64_FW_EMU // initialize PAL & SAL emulator: br.call.sptk.many rp=sys_fw_init .ret1: #endif br.call.sptk.many rp=start_kernel .ret2: addl r3=@ltoff(halt_msg),gp ;; alloc r2=ar.pfs,8,0,2,0 ;; ld8 out0=[r3] br.call.sptk.many b0=console_print self: hint @pause br.sptk.many self // endless loop END(_start) GLOBAL_ENTRY(ia64_save_debug_regs) alloc r16=ar.pfs,1,0,0,0 mov r20=ar.lc // preserve ar.lc mov ar.lc=IA64_NUM_DBG_REGS-1 mov r18=0 add r19=IA64_NUM_DBG_REGS*8,in0 ;; 1: mov r16=dbr[r18] #ifdef CONFIG_ITANIUM ;; srlz.d #endif mov r17=ibr[r18] add r18=1,r18 ;; st8.nta [in0]=r16,8 st8.nta [r19]=r17,8 br.cloop.sptk.many 1b ;; mov ar.lc=r20 // restore ar.lc br.ret.sptk.many rp END(ia64_save_debug_regs) GLOBAL_ENTRY(ia64_load_debug_regs) alloc r16=ar.pfs,1,0,0,0 lfetch.nta [in0] mov r20=ar.lc // preserve ar.lc add r19=IA64_NUM_DBG_REGS*8,in0 mov ar.lc=IA64_NUM_DBG_REGS-1 mov r18=-1 ;; 1: ld8.nta r16=[in0],8 ld8.nta r17=[r19],8 add r18=1,r18 ;; mov dbr[r18]=r16 #ifdef CONFIG_ITANIUM ;; srlz.d // Errata 132 (NoFix status) #endif mov ibr[r18]=r17 br.cloop.sptk.many 1b ;; mov ar.lc=r20 // restore ar.lc br.ret.sptk.many rp END(ia64_load_debug_regs) GLOBAL_ENTRY(__ia64_save_fpu) alloc r2=ar.pfs,1,4,0,0 adds loc0=96*16-16,in0 adds loc1=96*16-16-128,in0 ;; stf.spill.nta [loc0]=f127,-256 stf.spill.nta [loc1]=f119,-256 ;; stf.spill.nta [loc0]=f111,-256 stf.spill.nta [loc1]=f103,-256 ;; stf.spill.nta [loc0]=f95,-256 stf.spill.nta [loc1]=f87,-256 ;; stf.spill.nta [loc0]=f79,-256 stf.spill.nta [loc1]=f71,-256 ;; stf.spill.nta [loc0]=f63,-256 stf.spill.nta [loc1]=f55,-256 adds loc2=96*16-32,in0 ;; stf.spill.nta [loc0]=f47,-256 stf.spill.nta [loc1]=f39,-256 adds loc3=96*16-32-128,in0 ;; stf.spill.nta [loc2]=f126,-256 stf.spill.nta [loc3]=f118,-256 ;; stf.spill.nta [loc2]=f110,-256 stf.spill.nta [loc3]=f102,-256 ;; stf.spill.nta [loc2]=f94,-256 stf.spill.nta [loc3]=f86,-256 ;; stf.spill.nta [loc2]=f78,-256 stf.spill.nta [loc3]=f70,-256 ;; stf.spill.nta [loc2]=f62,-256 stf.spill.nta [loc3]=f54,-256 adds loc0=96*16-48,in0 ;; stf.spill.nta [loc2]=f46,-256 stf.spill.nta [loc3]=f38,-256 adds loc1=96*16-48-128,in0 ;; stf.spill.nta [loc0]=f125,-256 stf.spill.nta [loc1]=f117,-256 ;; stf.spill.nta [loc0]=f109,-256 stf.spill.nta [loc1]=f101,-256 ;; stf.spill.nta [loc0]=f93,-256 stf.spill.nta [loc1]=f85,-256 ;; stf.spill.nta [loc0]=f77,-256 stf.spill.nta [loc1]=f69,-256 ;; stf.spill.nta [loc0]=f61,-256 stf.spill.nta [loc1]=f53,-256 adds loc2=96*16-64,in0 ;; stf.spill.nta [loc0]=f45,-256 stf.spill.nta [loc1]=f37,-256 adds loc3=96*16-64-128,in0 ;; stf.spill.nta [loc2]=f124,-256 stf.spill.nta [loc3]=f116,-256 ;; stf.spill.nta [loc2]=f108,-256 stf.spill.nta [loc3]=f100,-256 ;; stf.spill.nta [loc2]=f92,-256 stf.spill.nta [loc3]=f84,-256 ;; stf.spill.nta [loc2]=f76,-256 stf.spill.nta [loc3]=f68,-256 ;; stf.spill.nta [loc2]=f60,-256 stf.spill.nta [loc3]=f52,-256 adds loc0=96*16-80,in0 ;; stf.spill.nta [loc2]=f44,-256 stf.spill.nta [loc3]=f36,-256 adds loc1=96*16-80-128,in0 ;; stf.spill.nta [loc0]=f123,-256 stf.spill.nta [loc1]=f115,-256 ;; stf.spill.nta [loc0]=f107,-256 stf.spill.nta [loc1]=f99,-256 ;; stf.spill.nta [loc0]=f91,-256 stf.spill.nta [loc1]=f83,-256 ;; stf.spill.nta [loc0]=f75,-256 stf.spill.nta [loc1]=f67,-256 ;; stf.spill.nta [loc0]=f59,-256 stf.spill.nta [loc1]=f51,-256 adds loc2=96*16-96,in0 ;; stf.spill.nta [loc0]=f43,-256 stf.spill.nta [loc1]=f35,-256 adds loc3=96*16-96-128,in0 ;; stf.spill.nta [loc2]=f122,-256 stf.spill.nta [loc3]=f114,-256 ;; stf.spill.nta [loc2]=f106,-256 stf.spill.nta [loc3]=f98,-256 ;; stf.spill.nta [loc2]=f90,-256 stf.spill.nta [loc3]=f82,-256 ;; stf.spill.nta [loc2]=f74,-256 stf.spill.nta [loc3]=f66,-256 ;; stf.spill.nta [loc2]=f58,-256 stf.spill.nta [loc3]=f50,-256 adds loc0=96*16-112,in0 ;; stf.spill.nta [loc2]=f42,-256 stf.spill.nta [loc3]=f34,-256 adds loc1=96*16-112-128,in0 ;; stf.spill.nta [loc0]=f121,-256 stf.spill.nta [loc1]=f113,-256 ;; stf.spill.nta [loc0]=f105,-256 stf.spill.nta [loc1]=f97,-256 ;; stf.spill.nta [loc0]=f89,-256 stf.spill.nta [loc1]=f81,-256 ;; stf.spill.nta [loc0]=f73,-256 stf.spill.nta [loc1]=f65,-256 ;; stf.spill.nta [loc0]=f57,-256 stf.spill.nta [loc1]=f49,-256 adds loc2=96*16-128,in0 ;; stf.spill.nta [loc0]=f41,-256 stf.spill.nta [loc1]=f33,-256 adds loc3=96*16-128-128,in0 ;; stf.spill.nta [loc2]=f120,-256 stf.spill.nta [loc3]=f112,-256 ;; stf.spill.nta [loc2]=f104,-256 stf.spill.nta [loc3]=f96,-256 ;; stf.spill.nta [loc2]=f88,-256 stf.spill.nta [loc3]=f80,-256 ;; stf.spill.nta [loc2]=f72,-256 stf.spill.nta [loc3]=f64,-256 ;; stf.spill.nta [loc2]=f56,-256 stf.spill.nta [loc3]=f48,-256 ;; stf.spill.nta [loc2]=f40 stf.spill.nta [loc3]=f32 br.ret.sptk.many rp END(__ia64_save_fpu) GLOBAL_ENTRY(__ia64_load_fpu) alloc r2=ar.pfs,1,2,0,0 adds r3=128,in0 adds r14=256,in0 adds r15=384,in0 mov loc0=512 mov loc1=-1024+16 ;; ldf.fill.nta f32=[in0],loc0 ldf.fill.nta f40=[ r3],loc0 ldf.fill.nta f48=[r14],loc0 ldf.fill.nta f56=[r15],loc0 ;; ldf.fill.nta f64=[in0],loc0 ldf.fill.nta f72=[ r3],loc0 ldf.fill.nta f80=[r14],loc0 ldf.fill.nta f88=[r15],loc0 ;; ldf.fill.nta f96=[in0],loc1 ldf.fill.nta f104=[ r3],loc1 ldf.fill.nta f112=[r14],loc1 ldf.fill.nta f120=[r15],loc1 ;; ldf.fill.nta f33=[in0],loc0 ldf.fill.nta f41=[ r3],loc0 ldf.fill.nta f49=[r14],loc0 ldf.fill.nta f57=[r15],loc0 ;; ldf.fill.nta f65=[in0],loc0 ldf.fill.nta f73=[ r3],loc0 ldf.fill.nta f81=[r14],loc0 ldf.fill.nta f89=[r15],loc0 ;; ldf.fill.nta f97=[in0],loc1 ldf.fill.nta f105=[ r3],loc1 ldf.fill.nta f113=[r14],loc1 ldf.fill.nta f121=[r15],loc1 ;; ldf.fill.nta f34=[in0],loc0 ldf.fill.nta f42=[ r3],loc0 ldf.fill.nta f50=[r14],loc0 ldf.fill.nta f58=[r15],loc0 ;; ldf.fill.nta f66=[in0],loc0 ldf.fill.nta f74=[ r3],loc0 ldf.fill.nta f82=[r14],loc0 ldf.fill.nta f90=[r15],loc0 ;; ldf.fill.nta f98=[in0],loc1 ldf.fill.nta f106=[ r3],loc1 ldf.fill.nta f114=[r14],loc1 ldf.fill.nta f122=[r15],loc1 ;; ldf.fill.nta f35=[in0],loc0 ldf.fill.nta f43=[ r3],loc0 ldf.fill.nta f51=[r14],loc0 ldf.fill.nta f59=[r15],loc0 ;; ldf.fill.nta f67=[in0],loc0 ldf.fill.nta f75=[ r3],loc0 ldf.fill.nta f83=[r14],loc0 ldf.fill.nta f91=[r15],loc0 ;; ldf.fill.nta f99=[in0],loc1 ldf.fill.nta f107=[ r3],loc1 ldf.fill.nta f115=[r14],loc1 ldf.fill.nta f123=[r15],loc1 ;; ldf.fill.nta f36=[in0],loc0 ldf.fill.nta f44=[ r3],loc0 ldf.fill.nta f52=[r14],loc0 ldf.fill.nta f60=[r15],loc0 ;; ldf.fill.nta f68=[in0],loc0 ldf.fill.nta f76=[ r3],loc0 ldf.fill.nta f84=[r14],loc0 ldf.fill.nta f92=[r15],loc0 ;; ldf.fill.nta f100=[in0],loc1 ldf.fill.nta f108=[ r3],loc1 ldf.fill.nta f116=[r14],loc1 ldf.fill.nta f124=[r15],loc1 ;; ldf.fill.nta f37=[in0],loc0 ldf.fill.nta f45=[ r3],loc0 ldf.fill.nta f53=[r14],loc0 ldf.fill.nta f61=[r15],loc0 ;; ldf.fill.nta f69=[in0],loc0 ldf.fill.nta f77=[ r3],loc0 ldf.fill.nta f85=[r14],loc0 ldf.fill.nta f93=[r15],loc0 ;; ldf.fill.nta f101=[in0],loc1 ldf.fill.nta f109=[ r3],loc1 ldf.fill.nta f117=[r14],loc1 ldf.fill.nta f125=[r15],loc1 ;; ldf.fill.nta f38 =[in0],loc0 ldf.fill.nta f46 =[ r3],loc0 ldf.fill.nta f54 =[r14],loc0 ldf.fill.nta f62 =[r15],loc0 ;; ldf.fill.nta f70 =[in0],loc0 ldf.fill.nta f78 =[ r3],loc0 ldf.fill.nta f86 =[r14],loc0 ldf.fill.nta f94 =[r15],loc0 ;; ldf.fill.nta f102=[in0],loc1 ldf.fill.nta f110=[ r3],loc1 ldf.fill.nta f118=[r14],loc1 ldf.fill.nta f126=[r15],loc1 ;; ldf.fill.nta f39 =[in0],loc0 ldf.fill.nta f47 =[ r3],loc0 ldf.fill.nta f55 =[r14],loc0 ldf.fill.nta f63 =[r15],loc0 ;; ldf.fill.nta f71 =[in0],loc0 ldf.fill.nta f79 =[ r3],loc0 ldf.fill.nta f87 =[r14],loc0 ldf.fill.nta f95 =[r15],loc0 ;; ldf.fill.nta f103=[in0] ldf.fill.nta f111=[ r3] ldf.fill.nta f119=[r14] ldf.fill.nta f127=[r15] br.ret.sptk.many rp END(__ia64_load_fpu) GLOBAL_ENTRY(__ia64_init_fpu) stf.spill [sp]=f0 // M3 mov f32=f0 // F nop.b 0 ldfps f33,f34=[sp] // M0 ldfps f35,f36=[sp] // M1 mov f37=f0 // F ;; setf.s f38=r0 // M2 setf.s f39=r0 // M3 mov f40=f0 // F ldfps f41,f42=[sp] // M0 ldfps f43,f44=[sp] // M1 mov f45=f0 // F setf.s f46=r0 // M2 setf.s f47=r0 // M3 mov f48=f0 // F ldfps f49,f50=[sp] // M0 ldfps f51,f52=[sp] // M1 mov f53=f0 // F setf.s f54=r0 // M2 setf.s f55=r0 // M3 mov f56=f0 // F ldfps f57,f58=[sp] // M0 ldfps f59,f60=[sp] // M1 mov f61=f0 // F setf.s f62=r0 // M2 setf.s f63=r0 // M3 mov f64=f0 // F ldfps f65,f66=[sp] // M0 ldfps f67,f68=[sp] // M1 mov f69=f0 // F setf.s f70=r0 // M2 setf.s f71=r0 // M3 mov f72=f0 // F ldfps f73,f74=[sp] // M0 ldfps f75,f76=[sp] // M1 mov f77=f0 // F setf.s f78=r0 // M2 setf.s f79=r0 // M3 mov f80=f0 // F ldfps f81,f82=[sp] // M0 ldfps f83,f84=[sp] // M1 mov f85=f0 // F setf.s f86=r0 // M2 setf.s f87=r0 // M3 mov f88=f0 // F /* * When the instructions are cached, it would be faster to initialize * the remaining registers with simply mov instructions (F-unit). * This gets the time down to ~29 cycles. However, this would use up * 33 bundles, whereas continuing with the above pattern yields * 10 bundles and ~30 cycles. */ ldfps f89,f90=[sp] // M0 ldfps f91,f92=[sp] // M1 mov f93=f0 // F setf.s f94=r0 // M2 setf.s f95=r0 // M3 mov f96=f0 // F ldfps f97,f98=[sp] // M0 ldfps f99,f100=[sp] // M1 mov f101=f0 // F setf.s f102=r0 // M2 setf.s f103=r0 // M3 mov f104=f0 // F ldfps f105,f106=[sp] // M0 ldfps f107,f108=[sp] // M1 mov f109=f0 // F setf.s f110=r0 // M2 setf.s f111=r0 // M3 mov f112=f0 // F ldfps f113,f114=[sp] // M0 ldfps f115,f116=[sp] // M1 mov f117=f0 // F setf.s f118=r0 // M2 setf.s f119=r0 // M3 mov f120=f0 // F ldfps f121,f122=[sp] // M0 ldfps f123,f124=[sp] // M1 mov f125=f0 // F setf.s f126=r0 // M2 setf.s f127=r0 // M3 br.ret.sptk.many rp // F END(__ia64_init_fpu) /* * Switch execution mode from virtual to physical * * Inputs: * r16 = new psr to establish * Output: * r19 = old virtual address of ar.bsp * r20 = old virtual address of sp * * Note: RSE must already be in enforced lazy mode */ GLOBAL_ENTRY(ia64_switch_mode_phys) { rsm psr.i | psr.ic // disable interrupts and interrupt collection mov r15=ip } ;; { flushrs // must be first insn in group srlz.i } ;; mov cr.ipsr=r16 // set new PSR add r3=1f-ia64_switch_mode_phys,r15 mov r19=ar.bsp mov r20=sp mov r14=rp // get return address into a general register ;; // going to physical mode, use tpa to translate virt->phys tpa r17=r19 tpa r3=r3 tpa sp=sp tpa r14=r14 ;; mov r18=ar.rnat // save ar.rnat mov ar.bspstore=r17 // this steps on ar.rnat mov cr.iip=r3 mov cr.ifs=r0 ;; mov ar.rnat=r18 // restore ar.rnat rfi // must be last insn in group ;; 1: mov rp=r14 br.ret.sptk.many rp END(ia64_switch_mode_phys) /* * Switch execution mode from physical to virtual * * Inputs: * r16 = new psr to establish * r19 = new bspstore to establish * r20 = new sp to establish * * Note: RSE must already be in enforced lazy mode */ GLOBAL_ENTRY(ia64_switch_mode_virt) { rsm psr.i | psr.ic // disable interrupts and interrupt collection mov r15=ip } ;; { flushrs // must be first insn in group srlz.i } ;; mov cr.ipsr=r16 // set new PSR add r3=1f-ia64_switch_mode_virt,r15 mov r14=rp // get return address into a general register ;; // going to virtual // - for code addresses, set upper bits of addr to KERNEL_START // - for stack addresses, copy from input argument movl r18=KERNEL_START dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT mov sp=r20 ;; or r3=r3,r18 or r14=r14,r18 ;; mov r18=ar.rnat // save ar.rnat mov ar.bspstore=r19 // this steps on ar.rnat mov cr.iip=r3 mov cr.ifs=r0 ;; mov ar.rnat=r18 // restore ar.rnat rfi // must be last insn in group ;; 1: mov rp=r14 br.ret.sptk.many rp END(ia64_switch_mode_virt) GLOBAL_ENTRY(ia64_delay_loop) .prologue { nop 0 // work around GAS unwind info generation bug... .save ar.lc,r2 mov r2=ar.lc .body ;; mov ar.lc=r32 } ;; // force loop to be 32-byte aligned (GAS bug means we cannot use .align // inside function body without corrupting unwind info). { nop 0 } 1: br.cloop.sptk.few 1b ;; mov ar.lc=r2 br.ret.sptk.many rp END(ia64_delay_loop) /* * Return a CPU-local timestamp in nano-seconds. This timestamp is * NOT synchronized across CPUs its return value must never be * compared against the values returned on another CPU. The usage in * kernel/sched.c ensures that. * * The return-value of sched_clock() is NOT supposed to wrap-around. * If it did, it would cause some scheduling hiccups (at the worst). * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even * that would happen only once every 5+ years. * * The code below basically calculates: * * (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT * * except that the multiplication and the shift are done with 128-bit * intermediate precision so that we can produce a full 64-bit result. */ GLOBAL_ENTRY(sched_clock) addl r8=THIS_CPU(cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0 mov.m r9=ar.itc // fetch cycle-counter (35 cyc) ;; ldf8 f8=[r8] ;; setf.sig f9=r9 // certain to stall, so issue it _after_ ldf8... ;; xmpy.lu f10=f9,f8 // calculate low 64 bits of 128-bit product (4 cyc) xmpy.hu f11=f9,f8 // calculate high 64 bits of 128-bit product ;; getf.sig r8=f10 // (5 cyc) getf.sig r9=f11 ;; shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT br.ret.sptk.many rp END(sched_clock) GLOBAL_ENTRY(start_kernel_thread) .prologue .save rp, r0 // this is the end of the call-chain .body alloc r2 = ar.pfs, 0, 0, 2, 0 mov out0 = r9 mov out1 = r11;; br.call.sptk.many rp = kernel_thread_helper;; mov out0 = r8 br.call.sptk.many rp = sys_exit;; 1: br.sptk.few 1b // not reached END(start_kernel_thread) #ifdef CONFIG_IA64_BRL_EMU /* * Assembly routines used by brl_emu.c to set preserved register state. */ #define SET_REG(reg) \ GLOBAL_ENTRY(ia64_set_##reg); \ alloc r16=ar.pfs,1,0,0,0; \ mov reg=r32; \ ;; \ br.ret.sptk.many rp; \ END(ia64_set_##reg) SET_REG(b1); SET_REG(b2); SET_REG(b3); SET_REG(b4); SET_REG(b5); #endif /* CONFIG_IA64_BRL_EMU */ #ifdef CONFIG_SMP /* * This routine handles spinlock contention. It uses a non-standard calling * convention to avoid converting leaf routines into interior routines. Because * of this special convention, there are several restrictions: * * - do not use gp relative variables, this code is called from the kernel * and from modules, r1 is undefined. * - do not use stacked registers, the caller owns them. * - do not use the scratch stack space, the caller owns it. * - do not use any registers other than the ones listed below * * Inputs: * ar.pfs - saved CFM of caller * ar.ccv - 0 (and available for use) * r27 - flags from spin_lock_irqsave or 0. Must be preserved. * r28 - available for use. * r29 - available for use. * r30 - available for use. * r31 - address of lock, available for use. * b6 - return address * p14 - available for use. * p15 - used to track flag status. * * If you patch this code to use more registers, do not forget to update * the clobber lists for spin_lock() in include/asm-ia64/spinlock.h. */ #if (__GNUC__ == 3 && __GNUC_MINOR__ < 3) GLOBAL_ENTRY(ia64_spinlock_contention_pre3_4) .prologue .save ar.pfs, r0 // this code effectively has a zero frame size .save rp, r28 .body nop 0 tbit.nz p15,p0=r27,IA64_PSR_I_BIT .restore sp // pop existing prologue after next insn mov b6 = r28 .prologue .save ar.pfs, r0 .altrp b6 .body ;; (p15) ssm psr.i // reenable interrupts if they were on // DavidM says that srlz.d is slow and is not required in this case .wait: // exponential backoff, kdb, lockmeter etc. go in here hint @pause ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word nop 0 ;; cmp4.ne p14,p0=r30,r0 (p14) br.cond.sptk.few .wait (p15) rsm psr.i // disable interrupts if we reenabled them br.cond.sptk.few b6 // lock is now free, try to acquire .global ia64_spinlock_contention_pre3_4_end // for kernprof ia64_spinlock_contention_pre3_4_end: END(ia64_spinlock_contention_pre3_4) #else GLOBAL_ENTRY(ia64_spinlock_contention) .prologue .altrp b6 .body tbit.nz p15,p0=r27,IA64_PSR_I_BIT ;; .wait: (p15) ssm psr.i // reenable interrupts if they were on // DavidM says that srlz.d is slow and is not required in this case .wait2: // exponential backoff, kdb, lockmeter etc. go in here hint @pause ld4 r30=[r31] // don't use ld4.bias; if it's contended, we won't write the word ;; cmp4.ne p14,p0=r30,r0 mov r30 = 1 (p14) br.cond.sptk.few .wait2 (p15) rsm psr.i // disable interrupts if we reenabled them ;; cmpxchg4.acq r30=[r31], r30, ar.ccv ;; cmp4.ne p14,p0=r0,r30 (p14) br.cond.sptk.few .wait br.ret.sptk.many b6 // lock is now taken END(ia64_spinlock_contention) #endif #ifdef CONFIG_HOTPLUG_CPU GLOBAL_ENTRY(ia64_jump_to_sal) alloc r16=ar.pfs,1,0,0,0;; rsm psr.i | psr.ic { flushrs srlz.i } tpa r25=in0 movl r18=tlb_purge_done;; DATA_VA_TO_PA(r18);; mov b1=r18 // Return location movl r18=ia64_do_tlb_purge;; DATA_VA_TO_PA(r18);; mov b2=r18 // doing tlb_flush work mov ar.rsc=0 // Put RSE in enforced lazy, LE mode movl r17=1f;; DATA_VA_TO_PA(r17);; mov cr.iip=r17 movl r16=SAL_PSR_BITS_TO_SET;; mov cr.ipsr=r16 mov cr.ifs=r0;; rfi;; 1: /* * Invalidate all TLB data/inst */ br.sptk.many b2;; // jump to tlb purge code tlb_purge_done: RESTORE_REGION_REGS(r25, r17,r18,r19);; RESTORE_REG(b0, r25, r17);; RESTORE_REG(b1, r25, r17);; RESTORE_REG(b2, r25, r17);; RESTORE_REG(b3, r25, r17);; RESTORE_REG(b4, r25, r17);; RESTORE_REG(b5, r25, r17);; ld8 r1=[r25],0x08;; ld8 r12=[r25],0x08;; ld8 r13=[r25],0x08;; RESTORE_REG(ar.fpsr, r25, r17);; RESTORE_REG(ar.pfs, r25, r17);; RESTORE_REG(ar.rnat, r25, r17);; RESTORE_REG(ar.unat, r25, r17);; RESTORE_REG(ar.bspstore, r25, r17);; RESTORE_REG(cr.dcr, r25, r17);; RESTORE_REG(cr.iva, r25, r17);; RESTORE_REG(cr.pta, r25, r17);; RESTORE_REG(cr.itv, r25, r17);; RESTORE_REG(cr.pmv, r25, r17);; RESTORE_REG(cr.cmcv, r25, r17);; RESTORE_REG(cr.lrr0, r25, r17);; RESTORE_REG(cr.lrr1, r25, r17);; ld8 r4=[r25],0x08;; ld8 r5=[r25],0x08;; ld8 r6=[r25],0x08;; ld8 r7=[r25],0x08;; ld8 r17=[r25],0x08;; mov pr=r17,-1;; RESTORE_REG(ar.lc, r25, r17);; /* * Now Restore floating point regs */ ldf.fill.nta f2=[r25],16;; ldf.fill.nta f3=[r25],16;; ldf.fill.nta f4=[r25],16;; ldf.fill.nta f5=[r25],16;; ldf.fill.nta f16=[r25],16;; ldf.fill.nta f17=[r25],16;; ldf.fill.nta f18=[r25],16;; ldf.fill.nta f19=[r25],16;; ldf.fill.nta f20=[r25],16;; ldf.fill.nta f21=[r25],16;; ldf.fill.nta f22=[r25],16;; ldf.fill.nta f23=[r25],16;; ldf.fill.nta f24=[r25],16;; ldf.fill.nta f25=[r25],16;; ldf.fill.nta f26=[r25],16;; ldf.fill.nta f27=[r25],16;; ldf.fill.nta f28=[r25],16;; ldf.fill.nta f29=[r25],16;; ldf.fill.nta f30=[r25],16;; ldf.fill.nta f31=[r25],16;; /* * Now that we have done all the register restores * we are now ready for the big DIVE to SAL Land */ ssm psr.ic;; srlz.d;; br.ret.sptk.many b0;; END(ia64_jump_to_sal) #endif /* CONFIG_HOTPLUG_CPU */ #endif /* CONFIG_SMP */