/* * Defines, structures, APIs for edac_core module * * (C) 2007 Linux Networx (http://lnxi.com) * This file may be distributed under the terms of the * GNU General Public License. * * Written by Thayne Harbaugh * Based on work by Dan Hollis <goemon at anime dot net> and others. * http://www.anime.net/~goemon/linux-ecc/ * * NMI handling support added by * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com> * * Refactored for multi-source files: * Doug Thompson <norsk5@xmission.com> * */ #ifndef _EDAC_CORE_H_ #define _EDAC_CORE_H_ #include <linux/kernel.h> #include <linux/types.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <linux/pci.h> #include <linux/time.h> #include <linux/nmi.h> #include <linux/rcupdate.h> #include <linux/completion.h> #include <linux/kobject.h> #include <linux/platform_device.h> #include <linux/sysdev.h> #include <linux/workqueue.h> #define EDAC_MC_LABEL_LEN 31 #define EDAC_DEVICE_NAME_LEN 31 #define EDAC_ATTRIB_VALUE_LEN 15 #define MC_PROC_NAME_MAX_LEN 7 #if PAGE_SHIFT < 20 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) ) #else /* PAGE_SHIFT > 20 */ #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) ) #endif #define edac_printk(level, prefix, fmt, arg...) \ printk(level "EDAC " prefix ": " fmt, ##arg) #define edac_mc_printk(mci, level, fmt, arg...) \ printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg) #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \ printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg) /* edac_device printk */ #define edac_device_printk(ctl, level, fmt, arg...) \ printk(level "EDAC DEVICE%d: " fmt, ctl->dev_idx, ##arg) /* edac_pci printk */ #define edac_pci_printk(ctl, level, fmt, arg...) \ printk(level "EDAC PCI%d: " fmt, ctl->pci_idx, ##arg) /* prefixes for edac_printk() and edac_mc_printk() */ #define EDAC_MC "MC" #define EDAC_PCI "PCI" #define EDAC_DEBUG "DEBUG" #ifdef CONFIG_EDAC_DEBUG extern int edac_debug_level; #define edac_debug_printk(level, fmt, arg...) \ do { \ if (level <= edac_debug_level) \ edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \ } while(0) #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ ) #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ ) #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ ) #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ ) #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ ) #else /* !CONFIG_EDAC_DEBUG */ #define debugf0( ... ) #define debugf1( ... ) #define debugf2( ... ) #define debugf3( ... ) #define debugf4( ... ) #endif /* !CONFIG_EDAC_DEBUG */ #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \ PCI_DEVICE_ID_ ## vend ## _ ## dev #define edac_dev_name(dev) (dev)->dev_name /* memory devices */ enum dev_type { DEV_UNKNOWN = 0, DEV_X1, DEV_X2, DEV_X4, DEV_X8, DEV_X16, DEV_X32, /* Do these parts exist? */ DEV_X64 /* Do these parts exist? */ }; #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) #define DEV_FLAG_X1 BIT(DEV_X1) #define DEV_FLAG_X2 BIT(DEV_X2) #define DEV_FLAG_X4 BIT(DEV_X4) #define DEV_FLAG_X8 BIT(DEV_X8) #define DEV_FLAG_X16 BIT(DEV_X16) #define DEV_FLAG_X32 BIT(DEV_X32) #define DEV_FLAG_X64 BIT(DEV_X64) /* memory types */ enum mem_type { MEM_EMPTY = 0, /* Empty csrow */ MEM_RESERVED, /* Reserved csrow type */ MEM_UNKNOWN, /* Unknown csrow type */ MEM_FPM, /* Fast page mode */ MEM_EDO, /* Extended data out */ MEM_BEDO, /* Burst Extended data out */ MEM_SDR, /* Single data rate SDRAM */ MEM_RDR, /* Registered single data rate SDRAM */ MEM_DDR, /* Double data rate SDRAM */ MEM_RDDR, /* Registered Double data rate SDRAM */ MEM_RMBS, /* Rambus DRAM */ MEM_DDR2, /* DDR2 RAM */ MEM_FB_DDR2, /* fully buffered DDR2 */ MEM_RDDR2, /* Registered DDR2 RAM */ MEM_XDR, /* Rambus XDR */ }; #define MEM_FLAG_EMPTY BIT(MEM_EMPTY) #define MEM_FLAG_RESERVED BIT(MEM_RESERVED) #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) #define MEM_FLAG_FPM BIT(MEM_FPM) #define MEM_FLAG_EDO BIT(MEM_EDO) #define MEM_FLAG_BEDO BIT(MEM_BEDO) #define MEM_FLAG_SDR BIT(MEM_SDR) #define MEM_FLAG_RDR BIT(MEM_RDR) #define MEM_FLAG_DDR BIT(MEM_DDR) #define MEM_FLAG_RDDR BIT(MEM_RDDR) #define MEM_FLAG_RMBS BIT(MEM_RMBS) #define MEM_FLAG_DDR2 BIT(MEM_DDR2) #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) #define MEM_FLAG_XDR BIT(MEM_XDR) /* chipset Error Detection and Correction capabilities and mode */ enum edac_type { EDAC_UNKNOWN = 0, /* Unknown if ECC is available */ EDAC_NONE, /* Doesnt support ECC */ EDAC_RESERVED, /* Reserved ECC type */ EDAC_PARITY, /* Detects parity errors */ EDAC_EC, /* Error Checking - no correction */ EDAC_SECDED, /* Single bit error correction, Double detection */ EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */ EDAC_S4ECD4ED, /* Chipkill x4 devices */ EDAC_S8ECD8ED, /* Chipkill x8 devices */ EDAC_S16ECD16ED, /* Chipkill x16 devices */ }; #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) #define EDAC_FLAG_NONE BIT(EDAC_NONE) #define EDAC_FLAG_PARITY BIT(EDAC_PARITY) #define EDAC_FLAG_EC BIT(EDAC_EC) #define EDAC_FLAG_SECDED BIT(EDAC_SECDED) #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) /* scrubbing capabilities */ enum scrub_type { SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */ SCRUB_NONE, /* No scrubber */ SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */ SCRUB_SW_SRC, /* Software scrub only errors */ SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */ SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */ SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */ SCRUB_HW_SRC, /* Hardware scrub only errors */ SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */ SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */ }; #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ /* EDAC internal operation states */ #define OP_ALLOC 0x100 #define OP_RUNNING_POLL 0x201 #define OP_RUNNING_INTERRUPT 0x202 #define OP_RUNNING_POLL_INTR 0x203 #define OP_OFFLINE 0x300 /* * There are several things to be aware of that aren't at all obvious: * * * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc.. * * These are some of the many terms that are thrown about that don't always * mean what people think they mean (Inconceivable!). In the interest of * creating a common ground for discussion, terms and their definitions * will be established. * * Memory devices: The individual chip on a memory stick. These devices * commonly output 4 and 8 bits each. Grouping several * of these in parallel provides 64 bits which is common * for a memory stick. * * Memory Stick: A printed circuit board that agregates multiple * memory devices in parallel. This is the atomic * memory component that is purchaseable by Joe consumer * and loaded into a memory socket. * * Socket: A physical connector on the motherboard that accepts * a single memory stick. * * Channel: Set of memory devices on a memory stick that must be * grouped in parallel with one or more additional * channels from other memory sticks. This parallel * grouping of the output from multiple channels are * necessary for the smallest granularity of memory access. * Some memory controllers are capable of single channel - * which means that memory sticks can be loaded * individually. Other memory controllers are only * capable of dual channel - which means that memory * sticks must be loaded as pairs (see "socket set"). * * Chip-select row: All of the memory devices that are selected together. * for a single, minimum grain of memory access. * This selects all of the parallel memory devices across * all of the parallel channels. Common chip-select rows * for single channel are 64 bits, for dual channel 128 * bits. * * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory. * Motherboards commonly drive two chip-select pins to * a memory stick. A single-ranked stick, will occupy * only one of those rows. The other will be unused. * * Double-Ranked stick: A double-ranked stick has two chip-select rows which * access different sets of memory devices. The two * rows cannot be accessed concurrently. * * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick. * A double-sided stick has two chip-select rows which * access different sets of memory devices. The two * rows cannot be accessed concurrently. "Double-sided" * is irrespective of the memory devices being mounted * on both sides of the memory stick. * * Socket set: All of the memory sticks that are required for for * a single memory access or all of the memory sticks * spanned by a chip-select row. A single socket set * has two chip-select rows and if double-sided sticks * are used these will occupy those chip-select rows. * * Bank: This term is avoided because it is unclear when * needing to distinguish between chip-select rows and * socket sets. * * Controller pages: * * Physical pages: * * Virtual pages: * * * STRUCTURE ORGANIZATION AND CHOICES * * * * PS - I enjoyed writing all that about as much as you enjoyed reading it. */ struct channel_info { int chan_idx; /* channel index */ u32 ce_count; /* Correctable Errors for this CHANNEL */ char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ struct csrow_info *csrow; /* the parent */ }; struct csrow_info { unsigned long first_page; /* first page number in dimm */ unsigned long last_page; /* last page number in dimm */ unsigned long page_mask; /* used for interleaving - * 0UL for non intlv */ u32 nr_pages; /* number of pages in csrow */ u32 grain; /* granularity of reported error in bytes */ int csrow_idx; /* the chip-select row */ enum dev_type dtype; /* memory device type */ u32 ue_count; /* Uncorrectable Errors for this csrow */ u32 ce_count; /* Correctable Errors for this csrow */ enum mem_type mtype; /* memory csrow type */ enum edac_type edac_mode; /* EDAC mode for this csrow */ struct mem_ctl_info *mci; /* the parent */ struct kobject kobj; /* sysfs kobject for this csrow */ /* channel information for this csrow */ u32 nr_channels; struct channel_info *channels; }; /* mcidev_sysfs_attribute structure * used for driver sysfs attributes and in mem_ctl_info * sysfs top level entries */ struct mcidev_sysfs_attribute { struct attribute attr; ssize_t (*show)(struct mem_ctl_info *,char *); ssize_t (*store)(struct mem_ctl_info *, const char *,size_t); }; /* MEMORY controller information structure */ struct mem_ctl_info { struct list_head link; /* for global list of mem_ctl_info structs */ struct module *owner; /* Module owner of this control struct */ unsigned long mtype_cap; /* memory types supported by mc */ unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ unsigned long edac_cap; /* configuration capabilities - this is * closely related to edac_ctl_cap. The * difference is that the controller may be * capable of s4ecd4ed which would be listed * in edac_ctl_cap, but if channels aren't * capable of s4ecd4ed then the edac_cap would * not have that capability. */ unsigned long scrub_cap; /* chipset scrub capabilities */ enum scrub_type scrub_mode; /* current scrub mode */ /* Translates sdram memory scrub rate given in bytes/sec to the internal representation and configures whatever else needs to be configured. */ int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw); /* Get the current sdram memory scrub rate from the internal representation and converts it to the closest matching bandwith in bytes/sec. */ int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 * bw); /* pointer to edac checking routine */ void (*edac_check) (struct mem_ctl_info * mci); /* * Remaps memory pages: controller pages to physical pages. * For most MC's, this will be NULL. */ /* FIXME - why not send the phys page to begin with? */ unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, unsigned long page); int mc_idx; int nr_csrows; struct csrow_info *csrows; /* * FIXME - what about controllers on other busses? - IDs must be * unique. dev pointer should be sufficiently unique, but * BUS:SLOT.FUNC numbers may not be unique. */ struct device *dev; const char *mod_name; const char *mod_ver; const char *ctl_name; const char *dev_name; char proc_name[MC_PROC_NAME_MAX_LEN + 1]; void *pvt_info; u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */ u32 ce_noinfo_count; /* Correctable Errors w/o info */ u32 ue_count; /* Total Uncorrectable Errors for this MC */ u32 ce_count; /* Total Correctable Errors for this MC */ unsigned long start_time; /* mci load start time (in jiffies) */ /* this stuff is for safe removal of mc devices from global list while * NMI handlers may be traversing list */ struct rcu_head rcu; struct completion complete; /* edac sysfs device control */ struct kobject edac_mci_kobj; /* Additional top controller level attributes, but specified * by the low level driver. * * Set by the low level driver to provide attributes at the * controller level, same level as 'ue_count' and 'ce_count' above. * An array of structures, NULL terminated * * If attributes are desired, then set to array of attributes * If no attributes are desired, leave NULL */ struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; /* work struct for this MC */ struct delayed_work work; /* the internal state of this controller instance */ int op_state; }; /* * The following are the structures to provide for a generic * or abstract 'edac_device'. This set of structures and the * code that implements the APIs for the same, provide for * registering EDAC type devices which are NOT standard memory. * * CPU caches (L1 and L2) * DMA engines * Core CPU swithces * Fabric switch units * PCIe interface controllers * other EDAC/ECC type devices that can be monitored for * errors, etc. * * It allows for a 2 level set of hiearchry. For example: * * cache could be composed of L1, L2 and L3 levels of cache. * Each CPU core would have its own L1 cache, while sharing * L2 and maybe L3 caches. * * View them arranged, via the sysfs presentation: * /sys/devices/system/edac/.. * * mc/ <existing memory device directory> * cpu/cpu0/.. <L1 and L2 block directory> * /L1-cache/ce_count * /ue_count * /L2-cache/ce_count * /ue_count * cpu/cpu1/.. <L1 and L2 block directory> * /L1-cache/ce_count * /ue_count * /L2-cache/ce_count * /ue_count * ... * * the L1 and L2 directories would be "edac_device_block's" */ struct edac_device_counter { u32 ue_count; u32 ce_count; }; /* forward reference */ struct edac_device_ctl_info; struct edac_device_block; /* edac_dev_sysfs_attribute structure * used for driver sysfs attributes in mem_ctl_info * for extra controls and attributes: * like high level error Injection controls */ struct edac_dev_sysfs_attribute { struct attribute attr; ssize_t (*show)(struct edac_device_ctl_info *, char *); ssize_t (*store)(struct edac_device_ctl_info *, const char *, size_t); }; /* edac_dev_sysfs_block_attribute structure * * used in leaf 'block' nodes for adding controls/attributes * * each block in each instance of the containing control structure * can have an array of the following. The show and store functions * will be filled in with the show/store function in the * low level driver. * * The 'value' field will be the actual value field used for * counting */ struct edac_dev_sysfs_block_attribute { struct attribute attr; ssize_t (*show)(struct kobject *, struct attribute *, char *); ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t); struct edac_device_block *block; unsigned int value; }; /* device block control structure */ struct edac_device_block { struct edac_device_instance *instance; /* Up Pointer */ char name[EDAC_DEVICE_NAME_LEN + 1]; struct edac_device_counter counters; /* basic UE and CE counters */ int nr_attribs; /* how many attributes */ /* this block's attributes, could be NULL */ struct edac_dev_sysfs_block_attribute *block_attributes; /* edac sysfs device control */ struct kobject kobj; }; /* device instance control structure */ struct edac_device_instance { struct edac_device_ctl_info *ctl; /* Up pointer */ char name[EDAC_DEVICE_NAME_LEN + 4]; struct edac_device_counter counters; /* instance counters */ u32 nr_blocks; /* how many blocks */ struct edac_device_block *blocks; /* block array */ /* edac sysfs device control */ struct kobject kobj; }; /* * Abstract edac_device control info structure * */ struct edac_device_ctl_info { /* for global list of edac_device_ctl_info structs */ struct list_head link; struct module *owner; /* Module owner of this control struct */ int dev_idx; /* Per instance controls for this edac_device */ int log_ue; /* boolean for logging UEs */ int log_ce; /* boolean for logging CEs */ int panic_on_ue; /* boolean for panic'ing on an UE */ unsigned poll_msec; /* number of milliseconds to poll interval */ unsigned long delay; /* number of jiffies for poll_msec */ /* Additional top controller level attributes, but specified * by the low level driver. * * Set by the low level driver to provide attributes at the * controller level, same level as 'ue_count' and 'ce_count' above. * An array of structures, NULL terminated * * If attributes are desired, then set to array of attributes * If no attributes are desired, leave NULL */ struct edac_dev_sysfs_attribute *sysfs_attributes; /* pointer to main 'edac' class in sysfs */ struct sysdev_class *edac_class; /* the internal state of this controller instance */ int op_state; /* work struct for this instance */ struct delayed_work work; /* pointer to edac polling checking routine: * If NOT NULL: points to polling check routine * If NULL: Then assumes INTERRUPT operation, where * MC driver will receive events */ void (*edac_check) (struct edac_device_ctl_info * edac_dev); struct device *dev; /* pointer to device structure */ const char *mod_name; /* module name */ const char *ctl_name; /* edac controller name */ const char *dev_name; /* pci/platform/etc... name */ void *pvt_info; /* pointer to 'private driver' info */ unsigned long start_time; /* edac_device load start time (jiffies) */ /* these are for safe removal of mc devices from global list while * NMI handlers may be traversing list */ struct rcu_head rcu; struct completion removal_complete; /* sysfs top name under 'edac' directory * and instance name: * cpu/cpu0/... * cpu/cpu1/... * cpu/cpu2/... * ... */ char name[EDAC_DEVICE_NAME_LEN + 1]; /* Number of instances supported on this control structure * and the array of those instances */ u32 nr_instances; struct edac_device_instance *instances; /* Event counters for the this whole EDAC Device */ struct edac_device_counter counters; /* edac sysfs device control for the 'name' * device this structure controls */ struct kobject kobj; }; /* To get from the instance's wq to the beginning of the ctl structure */ #define to_edac_mem_ctl_work(w) \ container_of(w, struct mem_ctl_info, work) #define to_edac_device_ctl_work(w) \ container_of(w,struct edac_device_ctl_info,work) /* * The alloc() and free() functions for the 'edac_device' control info * structure. A MC driver will allocate one of these for each edac_device * it is going to control/register with the EDAC CORE. */ extern struct edac_device_ctl_info *edac_device_alloc_ctl_info( unsigned sizeof_private, char *edac_device_name, unsigned nr_instances, char *edac_block_name, unsigned nr_blocks, unsigned offset_value, struct edac_dev_sysfs_block_attribute *block_attributes, unsigned nr_attribs, int device_index); /* The offset value can be: * -1 indicating no offset value * 0 for zero-based block numbers * 1 for 1-based block number * other for other-based block number */ #define BLOCK_OFFSET_VALUE_OFF ((unsigned) -1) extern void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info); #ifdef CONFIG_PCI struct edac_pci_counter { atomic_t pe_count; atomic_t npe_count; }; /* * Abstract edac_pci control info structure * */ struct edac_pci_ctl_info { /* for global list of edac_pci_ctl_info structs */ struct list_head link; int pci_idx; struct sysdev_class *edac_class; /* pointer to class */ /* the internal state of this controller instance */ int op_state; /* work struct for this instance */ struct delayed_work work; /* pointer to edac polling checking routine: * If NOT NULL: points to polling check routine * If NULL: Then assumes INTERRUPT operation, where * MC driver will receive events */ void (*edac_check) (struct edac_pci_ctl_info * edac_dev); struct device *dev; /* pointer to device structure */ const char *mod_name; /* module name */ const char *ctl_name; /* edac controller name */ const char *dev_name; /* pci/platform/etc... name */ void *pvt_info; /* pointer to 'private driver' info */ unsigned long start_time; /* edac_pci load start time (jiffies) */ /* these are for safe removal of devices from global list while * NMI handlers may be traversing list */ struct rcu_head rcu; struct completion complete; /* sysfs top name under 'edac' directory * and instance name: * cpu/cpu0/... * cpu/cpu1/... * cpu/cpu2/... * ... */ char name[EDAC_DEVICE_NAME_LEN + 1]; /* Event counters for the this whole EDAC Device */ struct edac_pci_counter counters; /* edac sysfs device control for the 'name' * device this structure controls */ struct kobject kobj; struct completion kobj_complete; }; #define to_edac_pci_ctl_work(w) \ container_of(w, struct edac_pci_ctl_info,work) /* write all or some bits in a byte-register*/ static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value, u8 mask) { if (mask != 0xff) { u8 buf; pci_read_config_byte(pdev, offset, &buf); value &= mask; buf &= ~mask; value |= buf; } pci_write_config_byte(pdev, offset, value); } /* write all or some bits in a word-register*/ static inline void pci_write_bits16(struct pci_dev *pdev, int offset, u16 value, u16 mask) { if (mask != 0xffff) { u16 buf; pci_read_config_word(pdev, offset, &buf); value &= mask; buf &= ~mask; value |= buf; } pci_write_config_word(pdev, offset, value); } /* write all or some bits in a dword-register*/ static inline void pci_write_bits32(struct pci_dev *pdev, int offset, u32 value, u32 mask) { if (mask != 0xffff) { u32 buf; pci_read_config_dword(pdev, offset, &buf); value &= mask; buf &= ~mask; value |= buf; } pci_write_config_dword(pdev, offset, value); } #endif /* CONFIG_PCI */ extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows, unsigned nr_chans, int edac_index); extern int edac_mc_add_mc(struct mem_ctl_info *mci); extern void edac_mc_free(struct mem_ctl_info *mci); extern struct mem_ctl_info *edac_mc_find(int idx); extern struct mem_ctl_info *edac_mc_del_mc(struct device *dev); extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page); /* * The no info errors are used when error overflows are reported. * There are a limited number of error logging registers that can * be exausted. When all registers are exhausted and an additional * error occurs then an error overflow register records that an * error occured and the type of error, but doesn't have any * further information. The ce/ue versions make for cleaner * reporting logic and function interface - reduces conditional * statement clutter and extra function arguments. */ extern void edac_mc_handle_ce(struct mem_ctl_info *mci, unsigned long page_frame_number, unsigned long offset_in_page, unsigned long syndrome, int row, int channel, const char *msg); extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg); extern void edac_mc_handle_ue(struct mem_ctl_info *mci, unsigned long page_frame_number, unsigned long offset_in_page, int row, const char *msg); extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg); extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci, unsigned int csrow, unsigned int channel0, unsigned int channel1, char *msg); extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci, unsigned int csrow, unsigned int channel, char *msg); /* * edac_device APIs */ extern int edac_device_add_device(struct edac_device_ctl_info *edac_dev); extern struct edac_device_ctl_info *edac_device_del_device(struct device *dev); extern void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev, int inst_nr, int block_nr, const char *msg); extern void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, int inst_nr, int block_nr, const char *msg); /* * edac_pci APIs */ extern struct edac_pci_ctl_info *edac_pci_alloc_ctl_info(unsigned int sz_pvt, const char *edac_pci_name); extern void edac_pci_free_ctl_info(struct edac_pci_ctl_info *pci); extern void edac_pci_reset_delay_period(struct edac_pci_ctl_info *pci, unsigned long value); extern int edac_pci_add_device(struct edac_pci_ctl_info *pci, int edac_idx); extern struct edac_pci_ctl_info *edac_pci_del_device(struct device *dev); extern struct edac_pci_ctl_info *edac_pci_create_generic_ctl( struct device *dev, const char *mod_name); extern void edac_pci_release_generic_ctl(struct edac_pci_ctl_info *pci); extern int edac_pci_create_sysfs(struct edac_pci_ctl_info *pci); extern void edac_pci_remove_sysfs(struct edac_pci_ctl_info *pci); /* * edac misc APIs */ extern char *edac_op_state_to_string(int op_state); #endif /* _EDAC_CORE_H_ */